Last but not least

Final office period

+Monday, 2:30-4:00, Skiles 218D.

New theorems Prom old.
Green: $\int_{-2} \int_{=}\left(\frac{\partial Q}{\partial x}-\frac{\partial p}{\partial y}\right) d x d y=\oint_{F} \vec{F} \cdot d \vec{r}=\oint_{=} \vec{F} \cdot \hat{t} d s$ where $\vec{F}=P \hat{\imath}+Q \hat{\jmath}$
But what if we choose

$$
\begin{aligned}
& \vec{H}=Q \hat{\imath}-P \hat{\jmath} \text { ? Le it }=\iint_{\Omega} \nabla \cdot H d A . \\
& \text { Right is } \oint\left(P t_{x}+Q t_{y}\right) d s \\
&=\oint\left[\begin{array}{c}
Q \\
-P
\end{array}\right] \cdot\left[\begin{array}{c}
t_{y} \\
-t_{x}
\end{array}\right] d s \\
&=\oint\left(\vec{H} \cdot \hat{n}_{\text {out }}\right) d s \\
& \iint_{\Omega} \nabla \cdot \vec{H} d a=\oint(\vec{H} \cdot \hat{n}) d s \quad \text { "Divergence } \\
& \text { theron." }
\end{aligned}
$$

Conservation of mass and the
 continuity equation

$+\partial \rho / d r=-(\nabla \cdot \rho v)$ says that the mass in a small region changes in time in proportion (negatively) to the flux out of the region.

Conservation of mass and the continuity equation
$+\partial \rho / d r=-(\nabla \cdot \rho v)$ says that the mass in a small region changes in time in proportion (negatively) to the flux out of the region.

Stokes's Theorem

Let b be a curve a lay the edge of a surface Ω (not a spumed flat).

Let 6 be a curve along the edge of a (smooth, orientible, connected) survou 2 . Let the unit normal to R point according to the right hand cole with respect to the orientation of E. Them ta any smooth vechfletelF,

$$
\int_{\Omega} \int_{\sigma}(\nabla \times F) \cdot \hat{n} d a=\oint_{\tau} \vec{F} \cdot d \vec{r}
$$

Magnetic field near a wire

$$
\begin{aligned}
& \text { 位 } \\
& \begin{array}{l}
\text { Ampere's } \\
\text { law } \\
\nabla \times B=\mu_{0} J
\end{array} \quad \quad \text { also }=\iint_{\partial \Omega} \vec{B} \cdot d \vec{r}=2 \pi R|B|
\end{aligned}
$$

Blow uh
So ... $|B|=\frac{\mu_{0} I}{2 \pi R}$

Magnetic field near a wire
Blow uh

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { Ampere's } \\
\text { law } \\
\nabla \times B=\mu_{0} J
\end{array}\right) \\
& \text { so... }|B|=\frac{\mu_{0} I}{2 \pi R}
\end{aligned}
$$

PROF. HIS ABSOLUTE TOP TEN LIST

10

The PDEs using grad, curl, and div

9

............The Laplacian

$+\Delta$ or $\nabla^{2}=\nabla \cdot \nabla=\partial^{2} / \partial x^{2}+\partial^{2} / \partial y^{2}+\partial^{2} / \partial z^{2}$

+ If $\Delta u=0$, "Laplace's equation," then u is "harmonic."
$+x-y$
$+x^{2}-y^{2}$
$+e^{x} \cos y$
$+x^{2}+z^{2}-y^{2} \quad$ (NOT THIS ONE!)

Laplacian

+Laplace's equation for "harmonic fns":

$$
+\Delta u=0 \text {. }
$$

+Equilibrium membrane, electric potential

+ Heat or diffusion equation

$$
+\mathrm{u}_{\mathrm{t}}=\mathrm{k} \Delta \mathrm{u}
$$

+ Temperature, density of dye
+ Wave equation

$$
\begin{aligned}
+\mathrm{u}_{\mathrm{tt}} & =\mathrm{c}^{2} \Delta \mathrm{u} . \\
& + \text { Sound, light }
\end{aligned}
$$

Green, Gauß, and Stokes

+ You can swap out integrals with curls and divs for integrals of a lower dimension
+ or vice versa.

5, 4...
 Curl and Divergence

+ (We'll get to Grad later)
+ Think of ($\partial / \partial x, \partial / \partial y, \partial / \partial z$) as a
"vector operator."
+ Div: vector in, scalar out $\nabla \cdot v$
+Curl: vector in, vector out $\nabla \times v$
+ Sometines simplify with Green, Gauß or Stokes.

+ Triple integrals

+ Related to volume.
+ Do 'em as 3 kindergarten integrals in a row.
+ The tricky part is the limits.
+ Double integrals
+ Related to area.
+ Do 'em as 2 kindergarten integrals in a row.
+ The tricky part is the limits.

The Fundamental VP

$+N=r_{u} \times r_{v}$.

+ It is normal (perpendicular) to the surface, as defined by $r(u, v)$, with two parameters.

$$
\begin{aligned}
& + \text { If } z=f(x, y), N=-f_{x} i--f_{y} j+k \\
& +d \sigma=|N| d u d v
\end{aligned}
$$

O.... Line integrals

+ Sometimes you can evaluate them as

$$
f(b)-f(a) \ldots
$$

+ Otherwise you have to parametrize. + (Or use Green or Stokes)

-/.... Jacobians

+ Curvilinear coordinates
+ My favorite is paraboloidal! Mine is bipolar!
+Change to convenient coordinates to do an integral.

-9.... Cylindrical

+ Cylindrical is just polar with z .
$+\mathrm{x}=\mathrm{r} \cos \theta, \mathrm{y}=\mathrm{r} \sin \theta, \mathrm{z}=\mathrm{z}$
+ Remember rdr d $\theta \mathrm{dz}$

-0..... Spherical

+Spherical is colatitude (like polar, but from north pole down) and longitude
$+\mathrm{r}=\rho \sin \phi, \theta=\theta, \mathrm{z}=\rho \cos \phi$
$+\mathrm{x}=\rho \sin \phi \cos \theta, \mathrm{y}=\rho \sin \phi \sin \theta, \mathrm{z}=\rho \cos \theta$

+ Remember $\rho^{2} \sin \phi d \rho d \theta d \phi$

We pause here for one of the great integrals

Newton's Theorem, $\lambda(\vec{r})=$ mass density.

$$
\phi(\vec{r})=-G_{m} \iiint \frac{\lambda\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} d^{3} r^{\prime}
$$

If λ is spherically symmetric (indef $y \theta, \phi)$, and $|r|>$ radius of object, then
$\phi(\vec{r})=-\frac{G m m}{|r|}$ (as if all muss at origin).
Proof. We maws. $\vec{r}=a \hat{k}$, and use spherical coons. for \vec{r}^{\prime}

$$
\begin{aligned}
&\left|\vec{r}-\vec{r}^{\prime}\right|=\sqrt{(a-\rho \cos \phi)^{2}+(\rho \sin \phi \cos \theta)^{2}+(\rho \sin \phi \sin \theta)^{2}} \\
&=\sqrt{a^{2}+\rho^{2}-2 a \rho \cos \phi} \\
& \phi(\vec{r})= G m \int_{0}^{R} \int_{0}^{\pi} \int_{0}^{2 \pi} \frac{\lambda(\rho) \cdot \rho^{2} \sin \phi}{\sqrt{a^{2}+\rho^{2}-2 a \rho \cos \phi}} d \theta d \phi d \rho \\
&=-2 \pi G m \int_{0}^{R} \lambda(\rho) \rho^{2}\left(\left(\int_{\cos \phi=1}^{\cos \phi=-1}+\rho^{2}-2 a \rho \cos \phi\right)^{-\frac{1}{2}} d(\cos \phi)\right) d \rho
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\phi(\vec{r}) & =-\left.2 \pi G m \int_{0}^{R} \lambda(\rho) \rho^{2} \cdot \frac{2}{(-2 a \rho)}\left(a^{2}+\rho^{2}-2 a \rho \cos \phi\right)^{\frac{1}{2}}\right|_{\cos \phi=1} ^{\cos \phi=-1} d \rho \\
& =-\frac{2 \pi G m}{a} \int_{0}^{R} \lambda(\rho) \cdot \rho \cdot\left(\left(a^{2}+\rho^{2}+2 a \rho\right)^{\frac{1}{2}}-\left(a^{2}+\rho^{2}-2 a \rho\right)^{\frac{1}{2}}\right) d \rho \\
& =-\frac{2 \pi G m}{a} \int_{0}^{R} \lambda(\rho) \cdot \rho((a+\rho)-(a-\rho)) d \rho \\
& =-\frac{G m}{a} \cdot 4 \pi \cdot \int_{0}^{R} \lambda(\rho) \rho^{2} d \rho
\end{array}\right\}
$$

+ Reconstructing a function from its gradient
+ Just when is a vector field the gradient of a function?
$+\mathrm{xi}+\mathrm{yj}$
$+x i-y j$
$+\mathrm{yi}-\mathrm{xj}$ (NOT THIS ONE!)
$+y i+x j$

-5...lagrange

+ Max/Min with constraints

$$
+\nabla F=\lambda \nabla G
$$

+n equations in $\mathrm{n}+1$ unknowns

- 6:Iocal max/min
 $+\nabla F=0 \ldots$ or ∇F not defined.

+ Two questions: where, and how big?
+ The Hessian.
+ The basic vector derivative.
+ Direction uphill
+ Tangent planes
+ Approximation
+ Seems kind of kindergarteny now that we know div and curl, doesn't it?

$$
-8 \ldots \text { arc length }
$$

$+|d r|$
$+|\mathrm{v}| \mathrm{dt}=|\mathrm{dr} / \mathrm{dt}| \mathrm{dt}$

$-9 \ldots$ curvature

+ A kind of second derivative
+ There's also torsion!

The End

