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Who in the cast of characters
mlght show up on the test?

+ Curves r(t), velocity v(t).

+Tangent and normal lines.
+Angles at which curves cross.
+T,N,B.

+ The arc length s.

4+

4+



~ Inour previous episode:

RSy iféngent and normal lines.

2. Curvature as the rate the direction of T changes.

3. The best plane (‘osculating” plane).

4. A spaceship doesn’t see a big Cartesian grid in the
SKy. Looked at from the inside, a better basis for

vectors will use the unit tangent T, the principal
normal N., and the binormal B.



Different 2D expressions for k

.+ k=d¢/ds]

+ k = |(d¢/dt)/(ds/dt)]

+ K= IX(t) y'(t) - Y(8) X' (t)]
[(X'(1)? + (y'(t))?1 %2 Huh??




Example

+Spiral: The formula for curvature is
complicated, but the spiral is simple,
so the curvature should be simple.

+ Still, we’ll be lazy and use
Mathematica:



Example: spiral
Spiral[t_] := {tCos[t]. tSin[t]}
Spiral3D[t_] := {tCos[t]. t Sin[t], 0}

ParametricPlot[Spiral[t], {t., 0, 10}]
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Speed[r ] := Sqrt[D[r[[1]], t]"°2 + D[r[[2]], t]"~2]

NumeratorOfCurvature([r ] :=

D[r[[2]], (%, 2}]D[~([[1]], £] - D[=[[1]], {®t, 2}] D[~[[2]], ®]

Curvature[r ] := D[r[[2]], {%, 2}]D[~[[1]], £] -
D[r[[1]], {%, 2}]D[~r[[2]], £] /Speed[r] "3

Spiral := {tCos[t], tSin[t]}

Speed|[Spiral]

J (tCos[t] +Sin[t])?+ (Cos[t] -t Sin[t])?

Curvature[Spiral]

(Cos[t] ~-tSin[t]) (2Cos[t] -t Sin[t])
(~-tCos[t] -2Sin[t]) (tCos[t] +Sin[t])

{(tcos[t] +Sin[t])?+ (Cos[t] - tSin[t])?)*"?

Simplify[NumeratorOfCurvature[Spiral]]

24 t?

Simplify[Speed[Spiral]]
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Dimensional analysis

4+ What units do you use to measure
curvature?

+Answer: 1/distance, for instance 1/cm.

1/x is known as the radius of curvature.

It’s the radius of the circle that best
matches the curve at a given contact

point.



WHICH CURVES MORE?

1.0



3D

41t seems as though 3D would be more
complicated, but there is a sneaky
mathematician trick: Write what you
know about a special case without
referring explicitly to what makes it
special. The angle is special to 2D.
Vectors r, T, N, and the arclength s
are not.



2D or 3D
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This formula does not refer in any way to two dimensions!



2D or 3D

. +Another way to write this formula is

“ dT/ds=x N **



| e ;_;ﬁ_i';?al'ong (T,N B) not some Cartesian system (i, ], k) in

the sky.







The trihedron of unit vectors

1 T(t)=r'(t)/ [r'(t)| or just
.... dr/ds.

+ Because of the chain rule, since the speed
|r'(t)| is ds/dt.



The trihedron of unit vectors
 1.T(s) = dr/ds.

2. N(s) = (dT/ds)/x, where x = |dT/ds| is our
definition of the curvature in 3D.

3. B(s) = T(s) x N(s).

The trihedron (T,N,B) is the basis for 3-space that
the curve cares about.



The osculating plane




The equations for motion on
- acurve - “from the inside”

To keep life simple, we first work things out
when moving at constant speed 1. Velocity is
then a unit vector, our friend T:

v(s) = T(s).

The length of T is fixed, but not its direction.



The curve equations of

Frenet and Serret

- +The first of these is
+dT/ds =x N

+So0... what is dN/ds ?
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The curve equations of
Frenet and Serret
4+ The first of these is

+dT/ds =x N

+ Next:
+dN/ds=-«xT-tB
+What does torsion tell us?






The curve equations of

Frenet and Serret

_+The first of these is
+dT/ds=x N

+ Next:
+dN/ds=-«xT-tB

+ Finally,
+dB/ds = tN



Motion in 3 D

+Remember that a curve’s favorite
coordinate system is based on the
moving trihedron (T,N,B).

+ What happens to a moving particle in
this moving frame?
+velocity
+acceleration



Motion in 3 D

+v= lv| T+ 0N + 0 B.
+Thereforev=|v| T+0ON+0B

+So0... what’s the acceleration in the
local frame?



Motion in 3 D




Notation: The thing on the right is a column vector.
We could as easily have written

(cos6 - sinB ) i+ (sinB + cosO ) j






Selected applications of vector
calculus to physics

‘Angular momentum,
L=rxp=rxmr.

How does this change in time? (This is called
the torque.)



Selected applications of vector
calculus to physics

‘Angular momentum,
L=rxp=rxmr.

How does this change in time? (This is called
the torque.)

dL/dt=rxmr"” =r x f (The other term given by the
chain rule is 0 because cross prod of vector with self.)



Selected applications of vector
calculus to physics

'Magnetic motion,

F:=(qg/c)v x B, Lorentz force law.

Funny font because the magnetic field is not the
same as the binormal. Suppose for now that B
IS a constant vector.



Selected applications to physics
Magnetic motion,

F=(g/c)vxB
Suppose for now that B is a constant vector.

r' =(g/ecm)r x B



Selected applications to physics

But if r'’ = (g/cm) r' x B and the initial velocity
r'(t) happens to be perpendicular to B,

then r'(t) and r”(t) will both remain
perpendicular to the magnetic field B. The
entire trajectory is therefore in a plane
perpendicular to B, which must be parallel to B
after all! Moreover, r'" and r’ are perpendicular,
so ||r'|| is constant, as we have seen. The
velocities must be of the form

r'(t) = A cos(qt/cm - ¢) i £ Asin(gt/cm - ¢) j



Seflected applications to physics

Finally, by integrating,
r(t)- c = A sin(qt/cm - ¢) i ¥ A cos(qt/cm - ¢) j

.. which is a circle.



