MATH 2401 - Harrell

Curves from the inside

Lecture 5

Who in the cast of characters might show up on the test?

+ Curves $r(t)$, velocity $\mathrm{v}(\mathrm{t})$.
+ Tangent and normal lines.
+ Angles at which curves cross.
+ T, N,B.
+ The arc length s.
+ The curvature κ.
+ The osculating plane.

In our previous episode:

1. Tangent and normal lines.
2. Curvature as the rate the direction of \boldsymbol{T} changes.
3. The best plane ("osculating" plane).
4. A spaceship doesn't see a big Cartesian grid in the sky. Looked at from the inside, a better basis for vectors will use the unit tangent \mathbf{T}, the principal normal \mathbf{N}., and the binormal \mathbf{B}.

Different 2D expressions for к

$+\kappa=|\mathrm{d} \phi / \mathrm{ds}|$
$+\kappa=|(d \phi / d t) /(d s / d t)|$
$+\kappa=\left|x^{\prime}(s) y^{\prime \prime}(s)-y^{\prime}(s) x^{\prime \prime}(s)\right|$
$+\kappa=\frac{\left|x^{\prime}(t) y^{\prime \prime}(t)-y^{\prime}(t) x^{\prime \prime}(t)\right|}{\left|\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}\right|^{3 / 2}}$

$$
\left|\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}\right|^{3 / 2}
$$

Huh??

Example

+ Spiral: The formula for curvature is complicated, but the spiral is simple, so the curvature should be simple.
+ Still, we'll be lazy and use Mathematica:

Example: spiral

$\operatorname{Spiral}\left[\mathrm{t} _\right]:=\{\mathrm{t} \operatorname{Cos}[\mathrm{t}], \mathrm{t} \operatorname{Sin}[\mathrm{t}]\}$

ParanetricPlot[Spiral[t], \{t, 0, 10\}]

$\ln [5]=\operatorname{Speed}\left[r_{-}\right]:=\operatorname{Sqrt}\left[\mathbf{D}[r[[1]], t]^{\wedge} \mathbf{2}+\mathbf{D}[r[[2]], t]^{\wedge} 2\right]$
$\ln [22]==$ NumeratorOfCurvature[$\left.r_{-}\right]:=$
$\mathbf{D}[x[[2]],\{t, 2\}] \mathbf{D}[x[[1]], t]-\mathbf{D}[x[[1]],\{t, 2\}] \mathbf{D}[r[[2]], t]$
Curvature[$\left.r_{-}\right]:=\mathrm{D}[\mathrm{r}[[2]],\{t, 2\}] \mathrm{D}[r[[1]], t]-$
$\mathbf{D}[r[[1]],\{t, 2\}] \mathbf{D}[r[[2]], t] /$ Speed $[r]^{\wedge} 3$
$\ln [11]:=\operatorname{Spiral}:=\{t \operatorname{Cos}[t], t \operatorname{Sin}[t]\}$
$\ln [12]=$ Speed[Spiral]
$\operatorname{Out}[12]=\sqrt{(t \operatorname{Cos}[t]+\operatorname{Sin}[t])^{2}+(\operatorname{Cos}[t]-t \operatorname{Sin}[t])^{2}}$
$\ln [19]:=$ Curvature[Spiral]
$\operatorname{Out}[19]=(\operatorname{Cos}[t]-t \operatorname{Sin}[t])(2 \operatorname{Cos}[t]-t \operatorname{Sin}[t])-$

$$
\frac{(-t \cos [t]-2 \sin [t])(t \cos [t]+\sin [t])}{\left((t \cos [t]+\sin [t])^{2}+(\cos [t]-t \sin [t])^{2}\right)^{3 / 2}}
$$

$\ln [23]=$ Simplify[NumeratorOfCurvature[Spiral]]
$\operatorname{Out}[23]=2+t^{2}$
$\ln [24]=$ Simplify[Speed[Spiral]]
Out [24] $=\sqrt{1+\mathrm{t}^{2}}$
$\ln [25]:=\% \% / \% \wedge 3$
Out[25] $=\frac{2+t^{2}}{\left(1+t^{2}\right)^{3 / 2}}$

Example

Dimensional analysis

+ What units do you use to measure curvature?
+Answer: $1 /$ distance, for instance $1 / \mathrm{cm}$.
$1 / \kappa$ is known as the radius of curvature. It's the radius of the circle that best matches the curve at a given contact point.
HOV.ABOUT HER非?

Just innat is carvature?

$$
-0.2
$$

3 D

+1t seems as though 3D would be more complicated, but there is a sneaky mathematician trick: Write what you know about a special case without referring explicitly to what makes it special. The angle is special to 2D. Vectors $\mathbf{r}, \mathrm{T}, \mathrm{N}$, and the arclength s are not.
$2 D$ or $3 D$
In 2D,

$$
\hat{T}=\left[\begin{array}{l}
\cos \phi(s) \\
\sin \phi(s)
\end{array}\right] \quad \hat{N}= \pm\left[\begin{array}{l}
-\sin \phi(s) \\
\cos \phi(s)
\end{array}\right]
$$

Also

$$
\begin{aligned}
& \text { so } \frac{d \hat{T}}{d s}=\phi^{\prime}(s)\left[\begin{array}{c}
-\sin \phi(s) \\
\cos \phi(s)
\end{array}\right], \text { so } \\
& K=\left|\phi^{\prime}(s)\right|=\left\|\frac{d \hat{T}}{d s}\right\|
\end{aligned}
$$

This formula does not refer in any way to two dimensions!

$2 D$ or $3 D$

+Another way to write this formula is

$$
\text { *** } \quad \mathrm{dT} / \mathrm{ds}=\kappa \mathrm{N}^{* * *}
$$

The moving trihedron

+ The curve's preferred coordinate system is oriented along ($\mathbf{T}, \mathbf{N}, \mathbf{B}$), not some Cartesian system (i,j,k) in the sky.

The trihedron of unit vectors

1. $T(t)=r^{\prime}(t) /\left|r^{\prime}(t)\right|$ or just dr/ds.

+ Because of the chain rule, since the speed $\left|\mathrm{r}^{\prime}(\mathrm{t})\right|$ is $\mathrm{ds} / \mathrm{dt}$.

The trihedron of unit vectors

1. $\mathrm{T}(\mathrm{s})=\mathrm{dr} / \mathrm{ds}$.
2. $N(s)=(d T / d s) / \kappa$, where $\kappa=|d T / d s|$ is our definition of the curvature in 3D.
3. $B(s)=T(s) \times N(s)$.

The trihedron ($\mathrm{T}, \mathrm{N}, \mathrm{B}$) is the basis for 3 -space that the curve cares about.

The osculating plane

The equations for motion on a curve - "from the inside"

To keep life simple, we first work things out when moving at constant speed 1 . Velocity is then a unit vector, our friend \mathbf{T} :

$$
\mathrm{v}(\mathrm{~s})=\mathrm{T}(\mathrm{~s})
$$

The length of \mathbf{T} is fixed, but not its direction.

The curve equations of Frenet and Serret

+ The first of these is
$+\mathrm{dT} / \mathrm{ds}=\kappa \mathrm{N}$
+ So... what is $\mathrm{dN} / \mathrm{ds}$?

If $\vec{V}=a \hat{T}+b \hat{N}+c \hat{B}$.
Then $\quad a=\vec{V} \cdot \hat{T}, b=\vec{V} \cdot \hat{N}, c=\vec{V} \cdot \hat{B}$
As for $\frac{d \hat{N}}{d s}$, what is its \hat{N} component?

$$
\frac{d \hat{N}}{d s} \cdot \hat{N}=\underline{0, \text { because } N} \cdot \mathbf{N}=1
$$

What is

$$
\frac{d \hat{N}}{d s} \cdot \hat{T}=
$$

\qquad

If $\vec{V}=a \hat{T}+b \hat{N}+c \hat{B}$.
Then $a=\vec{V} \cdot \hat{T}, b=\vec{V} \cdot \hat{N}, c=\vec{v} \cdot \hat{B}$
As for $\frac{d \hat{N}}{d s}$, what is its \hat{N} component?

$$
\frac{d \hat{N}}{d s} \cdot \hat{N}=\underline{0, \text { because } N \cdot N}=1
$$

What is

$$
\frac{d \hat{N}}{d s} \cdot \hat{T}=
$$

\qquad
Well, $\mathbf{N} \cdot \mathbf{T}=0$, so $\mathbf{N}^{\prime} \cdot \mathbf{T} .+\mathbf{N} \cdot \mathbf{T}^{\prime}=0$.
Therefore $\mathbf{N}^{\prime} \cdot \mathbf{T} .=-\mathbf{N} \cdot \mathbf{T}^{\prime}=-\mathbf{N} \cdot \kappa \mathbf{N}^{\prime}=-\kappa$.

$$
\mathbf{N}^{\prime}=-\kappa \mathbf{T}+\ldots \quad \mathbf{N}+\ldots \quad \mathbf{B} .
$$

The curve equations of Frenet and Serret

+ The first of these is
$+\mathrm{dT} / \mathrm{ds}=\kappa \mathrm{N}$
+ Next:
$+\mathrm{dN} / \mathrm{ds}=-\kappa \mathbf{T}-\tau$ B
+ What does torsion tell us?

The curve equations of Frenet and Serret

+ The first of these is
$+\mathrm{dT} / \mathrm{ds}=\kappa \mathrm{N}$
+ Next:
$+\mathrm{dN} / \mathrm{ds}=-\kappa \mathbf{T}-\tau \mathbf{B}$
+Finally,
$+d B / d s=\tau N$

Motion in 3 D

+Remember that a curve's favorite coordinate system is based on the moving trihedron ($\mathrm{T}, \mathrm{N}, \mathrm{B}$).

+ What happens to a moving particle in this moving frame?
+ velocity
+acceleration

Motion in 3 D

$+\mathbf{v}=|\mathbf{v}| \mathbf{T}+0 \mathbf{N}+0 \mathbf{B}$.

+ Therefore $\mathbf{v}=|\mathbf{v}| \mathbf{T}+0 \mathbf{N}+0 \mathrm{~B}$
+ So... what's the acceleration in the local frame?

Motion in 3 D
A physicist or engineer would probably write
$S(t):=$ distance a long the curve
$\dot{s}(t)=$ speed. Dot $=\frac{d}{d t}$.

$$
\vec{V}(t)=\dot{s}(t) \hat{T}(t)
$$

$$
\left.\begin{array}{rl}
\vec{a}=\frac{d V}{d t} & =\ddot{S} \hat{T}+\dot{s} \frac{d}{d t} \hat{T}(t) \\
& \text { (product) } \\
\text { rule }
\end{array}\right)
$$

$$
=\ddot{S} \hat{T}+\dot{S} \frac{d s}{d t} \frac{d}{d S} \hat{T} \quad\binom{\text { chain }}{\text { rule }}
$$

$\vec{a}=\ddot{r}=\ddot{s} \hat{T}+\dot{s}^{2} k \hat{N}+0 B$

Notation: The thing on the right is a column vector.
We could as easily have written
$(\cos \theta-\sin \theta) \mathbf{i}+(\sin \theta+\cos \theta) \mathbf{j}$

To get k, \hat{N}, we need

$$
\frac{d \hat{T}}{d s}=\frac{d \theta}{d s} \frac{d \hat{T}}{d \theta}=\underbrace{\downarrow}_{K} \underbrace{\frac{d \theta}{d s} \frac{1}{\sqrt{2}}\left[\begin{array}{c}
-\sin \theta-\cos \theta \\
\cos \theta-\sin \theta
\end{array}\right]}_{\hat{N}}
$$

We also need to calculate

$$
\frac{d s}{d \theta}=\|v\|=\left\|e^{\theta}\left[\begin{array}{c}
\cos \theta-\sin \theta \\
\sin \theta+\cos \theta
\end{array}\right]\right\|=\sqrt{2} e^{\theta}
$$

So $k=\frac{1}{\sqrt{2} e^{6}}=\frac{e^{-\theta}}{\sqrt{2}}$.
WARNING! It was somewhat coincidental that $\frac{d \theta}{d s}$ $=\frac{d \phi}{d s}$, θ being the polys angle ad ϕ being the angle of $\widehat{T}(\theta)$. We knew $\frac{d \theta}{d s}=K$ only because $\left\|\frac{1}{\sqrt{2}}\left[\begin{array}{c}\sin \theta-c \cos t \\ \cos \theta-\sin \theta\end{array}\right)\right\|=1$.

Selected applications of vector calculus to physics

Angular momentum,

$$
\mathbf{L}:=\mathbf{r} \times \mathbf{p}=\mathbf{r} \times \mathrm{m} \mathbf{r}^{\prime} .
$$

How does this change in time? (This is called the torque.)

Selected applications of vector calculus to physics

Angular momentum,

$$
\mathbf{L}:=\mathbf{r} \times \mathbf{p}=\mathbf{r} \times \mathrm{m} \mathbf{r}^{\prime} .
$$

How does this change in time? (This is called the torque.)
$\mathrm{dL} / \mathrm{dt}=\mathbf{r} \times \mathrm{m} \mathbf{r}^{\prime \prime}=\mathbf{r} \times \mathbf{f}$ (The other term given by the
chain rule is 0 because cross prod of vector with self.)

Selected applications of vector calculus to physics

Magnetic motion,

$$
\mathbf{F}:=(\mathrm{q} / \mathrm{c}) \mathbf{v} \times \mathcal{B}, \quad \text { Lorentz force law. }
$$

Funny font because the magnetic field is not the same as the binormal. Suppose for now that \mathcal{B} is a constant vector.

Selected applications to physics

Magnetic motion,

$$
\mathbf{F}=(\mathrm{q} / \mathrm{c}) \mathbf{v} \times \mathcal{B}
$$

Suppose for now that \mathcal{B} is a constant vector.

$$
\mathbf{r}^{\prime \prime}=(\mathrm{q} / \mathrm{cm}) \mathbf{r}^{\prime} \times \mathcal{B}
$$

Selected applications to physics

But if $\mathbf{r}^{\prime \prime}=(\mathrm{q} / \mathrm{cm}) \mathbf{r}^{\prime} \times \mathcal{B}$ and the initial velocity
$\mathbf{r}^{\prime}(\mathrm{t})$ happens to be perpendicular to \mathcal{B},
then $\mathbf{r}^{\prime}(\mathrm{t})$ and $\mathbf{r}^{\prime \prime}(\mathrm{t})$ will both remain perpendicular to the magnetic field \mathcal{B}. The entire trajectory is therefore in a plane perpendicular to \mathcal{B}, which must be parallel to \mathbf{B} after all! Moreover, $\mathbf{r}^{\prime \prime}$ and \mathbf{r}^{\prime} are perpendicular, so \|r'|| is constant, as we have seen. The velocities must be of the form

$$
\mathbf{r}^{\prime}(\mathrm{t})=\mathrm{A} \cos (\mathrm{qt} / \mathrm{cm}-\phi) \mathbf{i} \pm \mathrm{A} \sin (\mathrm{qt} / \mathrm{cm}-\phi) \mathbf{j}
$$

Selected applications to physics

Finally, by integrating,

$$
\mathbf{r}(\mathrm{t})-\mathbf{c}=A \sin (\mathrm{qt} / \mathrm{cm}-\phi) \mathbf{i} \mp A \cos (q \mathrm{t} / \mathrm{cm}-\phi) \mathbf{j}
$$

..... which is a circle.

