MATH 2401 - Harrell

Curves on the test

Lecture 6

About that test...

```
Mathematics 2401T Test 1 4 September 2008 VERSION \(\Uparrow\)
```

NAME: \qquad
On the graph paper on the final page
a) $(0 \mathrm{pts})$ Plot the point $P=(3,0)$ and mark it with the letter P
b) (2 pts) Sketch the curve $\mathbf{r}(t)=3 e^{-t} \cos \pi t \mathbf{i}-3 e^{-t} \sin \pi t \mathbf{j}$
for $t \in\left[-\frac{1}{2}, 3\right]$.
c) Draw the unit tangent vector at the point P, oriented
consistently with the parametrization of the curve. Label it T
You do not need to show any calculation.
d) Draw the principal unit normal vector at the point P Label it \mathbf{N}. You do not need to show any calculation.
ibupr fen
tabl ts
IBUPROFEN PABLETS
USP INSAIF: 200 mg
 50 TA 50 tailets
nsider the same curve as in Problem 4. Find the following. a) The speed at time t of an object moving along the curve $\mathbf{r}(t)$

b) A specific integral formula for the length of the curve: (- $1-\pi \cos \pi t \sin \pi t) e^{-t} \hat{1}$

The length of the curve (actual value, not the formula).
ANSWER

About the test

+Median was 70. Bingo! + As it is written:

Students' grades will depend on the following quantity:

```
(T1 +T2 +T3 +T4 +Q + F - min(T1..T4,F)) +E + F/2
```

where the components of this formula correspond to the ingredients mentioned above, afteraling so that all of them except $\mathrm{E}=$ extra credit total have a common median of (70.) The drop in the formula is the only mechanism for coping with personal events such as illness and family emergencies. There will be no opportunities for make-up tests after the fact. In the event of an absence due to travel representing Georgia Tech, such as an intercollegiate sports competition, you must notify the professor at least two weeks in advance to arrange an early test or other alternative. Otherwise, such absences will be treated as personal.

About the test

+ Percentiles:

$$
\begin{array}{lll}
\text { + 90th: } & 84 & \\
\text { + 75th: } & 78 & \\
\text { + 50th: } & 70 & \\
\text { + 25th: } & 57 & \text { (Seek help.) }
\end{array}
$$

Range: 10 to 95

Diagnosis and cure

+ We are reasonably happy with the conceptual skills of a majority of the class.

Diagnosis and cure

\pm What held most people back was

1. Differentiating. R_{x} : More boot camp needed! Go to MATH Lab and work every problem in Chapter 3 in front of a TA.
2. Algebra. No, $(a+b)^{1 / 2}$ isn't equal to $a^{1 / 2}+b^{1 / 2}$. Quick quiz: If $a, b>0$, one of these is always bigger. Which one?

Diagnosis and cure

+ What held most people back was

1. Differentiating. R_{x} : More boot camp needed! Go to MATH Lab and work every problem in Chapter 3 in front of a TA.
2. Algebra. No, $(a+b)^{1 / 2}$ isn't equal to $a^{1 / 2}+b^{1 / 2}$.
3. Trigonometry. Always, always look for $\sin ^{2} \theta+\cos ^{2} \theta=1!!!$

Diagnosis and cure

+ Math Lab weekday afternoons.
+ Office periods - you'll get a workout!
+ Tutorials (library, OMED, etc.)

Solutions

Solutions

$$
\begin{aligned}
& \frac{d^{\prime}}{d t}\left(\left(t^{2} \hat{\jmath}\right) \times\left(t \hat{i}-e^{-t} \hat{\jmath}+t \hat{k}\right)\right) \\
& =\frac{d}{d t}\left(\left(t^{2} \hat{\jmath}\right) \times(t \hat{i}+t \hat{k})\right)=
\end{aligned}
$$

Solutions

Surfaces - a new subject

arrow on out varcule

Sur aace arrow on in variabe। $n(\stackrel{\rightharpoonup}{\Gamma})$
scalan out

Whgcol, a graphis
 (vert linstest)

What is this?

How about this?

Or this?

$\frac{-1+8}{+5+8}$

Surfaces - the great examples

+ Sphere and ellipsoids

$$
+(x / a)^{2}+(y / b)^{2}+(z / c)^{2}=1
$$

+ Hyperboloid of one sheet
$+(x / a)^{2}+(y / b)^{2}-(z / c)^{2}=1$
+ Hyperboloid of two sheets
$+(x / a)^{2}+(y / b)^{2}-(z / c)^{2}=-1$

Surfaces - the great examples

+ Cone
$+(x / a)^{2}+(y / b)^{2}=z^{2}$
+ Paraboloid (elliptic)
$+(x / a)^{2}+(y / b)^{2}=z$
+ Hyperboloid of two sheets

$$
+(x / a)^{2}+(y / b)^{2}-(z / c)^{2}=-1
$$

+ Cylinders - no dependence on z
+ E.g., $x^{2}=4 y$

A surface requires two parameters or one equation.

Examples

1. Paraboloid.

ParametricPlot3D[\{ECos[th], $\left.\left.x \operatorname{Sin}[t h], 1-F^{\wedge} 2\right\},\{x, 0,1\},\{t h,-P i, P i\}\right]$

A surface requires two parameters or one equation. Examples

1. Paraboloid.

ParametricPlot3D[\{ECos[th], $\left.\left.x \operatorname{Sin}[t h], 1-w^{\wedge} 2\right\},\{x, 0,1\},\{t h,-P i, P i\}\right]$

2. Ellipsoid.

2. Ellipsoid.

$((2+\cos (\beta)) \cos (\alpha),(2+\cos (\beta)) \sin (\alpha), \sin (\beta))$

3. Torus.

ParametricPlot3D[f(2+Cos[bota]) Cos[alpha], $(2+\operatorname{Cos}[b e t a]) \sin [a l p h a], \sin [b o t a]\},\{a l p h a, 0,2 \mathrm{Pi}\}$, \{bota, $0,2 \mathrm{Pi}\}]$

4. Cone.

5. Hyperboloid.

ParametricPlot3D[\{Sqrt $\left.\left.\left[z^{\wedge} 2+1\right] \operatorname{Cos}[t h], \operatorname{Sqrt}\left[z^{\wedge} \mathbf{2}+1\right] \operatorname{Sin}[t h], z\right\},\left\{z_{z}=\mathbf{2}, 2\right\},\{t h, 0,2 \mathrm{Pi}\}\right]$

+ What if instead of

ParametricPlot3D[\{Sqrt[$\left[z^{\wedge} 2+1\right] \operatorname{Cos}[t h]$, Sqrt[$\left.\left.\left.z^{\wedge} 2+1\right] \operatorname{Sin}[t h], z\right\},\left\{z_{i}-2,2\right\},\{t h, 0,2 \mathrm{Pi}\}\right]$ + we had

```
ParametricPlot3D[{{E Cos[th], Sin[th], Sqrt[s^2+1]},{E Cos[th], Sin[th], - Sqrt[s^2+1]}},
```


5. Hyperboloid.

```
ParametricPlot3D[{{E Cos[th], Sin[th], Sqrt[\mp@subsup{w}{}{*}2+1]},{E Cos[th], S Sin[th], - Sqrt[F*2+1]}},
``` \((=, 2,2),\{T h, 0,2 \mathrm{Pi}\}]\)

Out[2] \(=\)

\section*{Surfaces as families of lines}
+"Level curves"
+"Contour plot"


```

