Surfaces - on the level

Lecture 7

Congratulations to...

Jacob Schloss - Contest 1
$(\sinh (4 t), \cos (t), \sin (t) \cos (t))$
N

Surfaces - the great examples

+ Cone
$+(x / a)^{2}+(y / b)^{2}=z^{2}$
+ Paraboloid (elliptic)
$+(x / a)^{2}+(y / b)^{2}=z$
+ Hyperboloid of two sheets
$+(\mathrm{x} / \mathrm{a})^{2}+(\mathrm{y} / \mathrm{b})^{2}-(\mathrm{z} / \mathrm{c})^{2}=-1$
+ Cylinders - no dependence on one of the variables
+ E.g., $x^{2}=y$

Surfaces as families of curves

+"Level curves"
+"Contour plot"
+"Traces"
+"Sections"

"Level curves" = "contours"

+ Topographic contours

+ Isobars: See

+ http://www.srh.noaa.gov/ohx/educate/VATHENA_2/weather/hsweathr/isobar.html

+ Isotherms: See

+ http://www.srh.noaa.gov/ohx/educate/VATHENA_2/weather/hsweathr/isotherm.html

Working out some level curves

Working out some level curves

Mathematica, how are we doing?

Contourplot $\left[(1 / 2)\left(x^{\wedge} 2-y^{\wedge} 2\right),\left\{\begin{array}{lll}x_{f} & -1,3\end{array}\right\},\left\{Y_{\theta}-1,3\right\}\right]$

Mathematica, how are we doing?

Horizontal and vertical "sections"

$$
+z^{2}=\left(x^{2}+y^{2}\right)
$$

ContourPlot [Sqret $\left.\left[x^{\wedge} 2+\Psi^{\wedge} 2\right],\left\{x_{f}-1,3\right\},\left\{\begin{array}{lll}f & -1,3\end{array}\right\}\right]$

Distinguishing the quadrics

$+A x^{2}+B y^{2}+C z^{2}+D x y+E x z+F y z+H x+I y+J z+K=0$

+ Is

$$
\begin{aligned}
& 1 x^{2}-2 y^{2}+3 z^{2}-4 x+5 y-6 z+7=0 \\
& \text { an ellipse, a cone, a hyperboloid...? }
\end{aligned}
$$

+ (There are only 9 possibilities)

Distinguishing the quadrics

$+A x^{2}+B y^{2}+C z^{2}+D x y+E x z+F y z+H x+I y+J z+K=0$

+ Is
$1 x^{2}-2 y^{2}+3 z^{2}-4 x+5 y-6 z+7=0$ an ellipse, a cone, a hyperboloid...?
+(There are only 9 possibilities)

Distinguishing the quadrics

1. Ellipsoid
2. Hyperboloid of one sheet
3. Hyperboloid of two sheets
4. Elliptic cone
5. Elliptic paraboloid
6. Hyperbolic paraboloid
7. Parabolic cylinder
8. Elliptic cylinder
9. Hyperbolic cylinder

Check for:

1. Intercepts (with coordinate axes).
2. Traces (intersections with coordinate planes).
3. Sections (intersections with general planes).
4. Symmetries, if any.
5. Center, if that makes sense.
6. Boundedness/unboundedness.

A few examples

$$
+z=(1 / 2)\left(y^{2}-x^{2}\right)
$$

(hyperbolic paraboloid)

A few examples

$$
+z=x^{2}+y / 4
$$

(parabolic cylinder)

$$
\begin{aligned}
& \text { + Why is this a cylinder? - I see } \\
& \text { all three variables! }
\end{aligned}
$$

A few examples

$+z=x^{2}+y / 4 \quad$ (parabolic cylinder)

```
Plot3D[\mp@subsup{x}{}{\wedge}2+\Psi/4, {\mp@subsup{x}{f}{\prime}-2;2},{\mp@subsup{Y}{t}{\prime}-4,4}]
```


A few examples

$+z=x^{2}+y / 4$
 (parabolic cylinder)

$$
\pi \cap=x^{2}
$$

$$
P \operatorname{lot} 3 \mathrm{D}\left[x^{\wedge} 2+y / 4,\{x,-2,2\},\{y,-4,4\}\right]
$$

A few examples

$+x^{2}+4 y^{2}+z^{2} / 4+2 x y-z / 2=100$

A few examples

$$
\begin{gathered}
+x^{2}+4 y^{2}+z^{2} / 4+2 x y-z / 2=100 \\
(x+y)^{2}+3 y^{2}+\left(\frac{0}{2} y\right)^{2} \\
\left(\frac{z}{2}-\frac{1}{2}\right)^{2}-\frac{1}{4} \\
(\cdots \cdot)^{2}+(\cdots)^{2}+(. .-)^{2}=100.25
\end{gathered}
$$

Not every surface is quadric

Not every surface is quadric

MATH 2401 - Harrell

Partial to partials

Anatomy of the partial derivative

We write $F_{x}(x, y)$ or $\frac{\partial F}{\partial x}$

Anatomy of the partial derivative

We write $F_{x}(x, y)$ or $\frac{\partial F}{\partial x}$ "F sub x"

Anatomy of the partial derivative

We write $F_{x}(x, y)$ or $\frac{\partial F}{\partial x}$
"Dee F by dee x"

Why do we calculate partials?

1 Sometimes only interested in one variable. Example: If we only care how the concentration $c(x, y)$ varies when we move in the x-direction, we want $\quad \partial c / \partial x$. This function still depends on y as well as x.

Why do we calculate partials?

1. Sometimes only interested in one variable.
2 Nature loves partial derivatives:
a Heat equation

$$
u(t, x), \quad \frac{\partial u}{\partial t}=\kappa \frac{\partial^{2} u}{\partial x^{2}}
$$

b Wave equation

$$
u(t, x), \quad \frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

c Potential equation

$$
u(x, y, z), \quad \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=\frac{4 \pi \rho(x, y, z)}{\epsilon_{0}}
$$

