MATH 2401 - Harrell

Partial to partials

Lecture 8

Recollections of last week

+Cool shapes, like Möbius strips

Recollections of last week

+ Cool shapes, like Möbius strips

Recollections of last week

+1 can really get in to some of these shapes!

Recollect

 inside the hyperboloid.

What is the derivative, really?

+ In KG calculus, it was the slope of the tangent line at a point.
+ For a vector function (same as curve), it still gave the direction of the tangent line at a point.
+ It tells us how to straighten out something that is curved, with the least error.

Extrapolating with the ideal gas law

Ideal gas law. $\mathrm{PV}=\mathrm{nRT}$, so

$$
V(P, T)=n R T / P .
$$

If we fix P and change T to $T+\Delta T$,

$$
\begin{aligned}
V(P, T+\Delta T) & \cong V(P, T)+(n R / P) \Delta T \\
& \cong V(P, T)(1+\Delta T / T)
\end{aligned}
$$

Extrapolating with the ideal gas law

Ideal gas law. $\mathrm{PV}=\mathrm{nRT}$, so

$$
V(P, T)=n R T / P .
$$

If we fix T and change P to $P+\Delta P$,

$$
\begin{aligned}
V(P+\Delta P, T) & \cong V(P, T)-\left(n R T / P^{2}\right) \Delta P \\
& \cong V(P, T)(1-\Delta P / P) .
\end{aligned}
$$

Extrapolating with the ideal gas law

Ideal gas law. $\mathrm{PV}=\mathrm{nRT}$, so

$$
V(P, T)=n R T / P .
$$

What if both T and P change? Estimate the volume. We might guess

$$
V(P+\Delta P, T+\Delta T) \cong V(P, T)(1+\Delta T / T-\Delta P / P) .
$$

Is this right?

The partial derivative

Just pretend y is a constant and differentiate with respect to x . Call this $\partial \mathrm{F} / \partial \mathrm{x}$.

If you pretend x is a constant and differentiate with respect to y , that's $\partial \mathrm{F} / \partial \mathrm{y}$.

Anatomy of the partial derivative

We write $F_{x}(x, y)$ or $\frac{\partial F}{\partial x}$
"F sub x" "Dee F by dee x"

Why do we calculate partials?

1 Sometimes only interested in one variable. Example: If we only care how the concentration $c(x, y)$ varies when we move in the x-direction, we want $\partial \mathrm{c} / \partial \mathrm{x}$. This function still depends on y as well as x.

Why do we calculate partials?

1. Sometimes only interested in one variable.
2 Nature loves partial derivatives:
a Heat equation

$$
u(t, x), \quad \frac{\partial u}{\partial t}=\kappa \frac{\partial^{2} u}{\partial x^{2}}
$$

b Wave equation

$$
u(t, x), \quad \frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

c Potential equation

$$
u(x, y, z), \quad \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=\frac{4 \pi \rho(x, y, z)}{\epsilon_{0}}
$$

Why do we calculate partials?

1 Sometimes only interested in one variable.
2 Nature loves partial derivatives:

3 All the Calculus I stuff (max-min, slopes, tangent planes rather than lines) will use partial derivatives when there is more than one variable.

The partial derivative

Important! $\partial \mathrm{F} / \partial \mathrm{x}$ and $\partial \mathrm{F} / \partial \mathrm{y}$ are still functions of 2
variables. Let's do an example or two.

Examples of partial derivatives
(Let's play Stump the

Examples of partial derivatives

Sets

(something mathematicians are obsessed with)
-Neighborhood of a point
-Interior, boundary

- Open
-Closed
-Neither open nor closed

Sets

(something mathematicians are obsessed with)

- Neighborhood of a point
- Interior, boundary
- Open
-Closed
-Neither open nor closed

$$
\begin{gathered}
\left\{\vec{x}:\left|\vec{x}-\vec{x}_{0}\right|<\delta\right\} \\
\vdots
\end{gathered}
$$

How about some examples?

How about some examples?

A set of wildebeest

Limits for scalar fields

$$
\begin{aligned}
& \lim _{\mathbf{r} \rightarrow \mathbf{r}_{0}} f(\mathbf{r})=L \\
& \lim _{t \rightarrow t_{0}} \mathbf{F}(t)=\mathbf{L}
\end{aligned}
$$

Compare and contrast.

+ Curves
+scalar (time) in, vector (position) out
+Scalar fields
+ vector (position) in, scalar out

Limits for scalar fields

$$
\lim _{\mathbf{r} \rightarrow \mathbf{r}_{0}} f(\mathbf{r})=L
$$

What does it mean?

$$
\begin{aligned}
& \text { Limits for scalar fields } \\
& \text { 甘E>0 } 7870 \text { st. if }\left|\vec{r}-\vec{r}_{0}\right|<\delta \text {, then } \\
& \lim _{\mathbf{r} \rightarrow \mathbf{r}_{0}} f(\mathbf{r})=L \quad \text { for) }-\ll \varepsilon \\
& \lim _{t \rightarrow t_{0}} \mathbf{F}(t)=\mathbf{L}
\end{aligned}
$$

Compare and contrast．

This kind of limit can depend on how you get where you are going.

Example: What is

$$
\lim _{\mathbf{r} \rightarrow \mathbf{0}} \frac{x^{2}-y^{2}}{x^{2}+y^{2}} ?
$$

Try this. First set $y=0$ and $\operatorname{let} x \rightarrow 0$. You get the limit 1 .
But if you first set $\mathrm{x}=0$ and let $\mathrm{y} \rightarrow 0$. You get the limit -1 .
Weird. We don't consider this function continuous.

Second partial derivatives

1 Since $f_{x}(x, y)$ and $f_{y}(x, y)$ still depend on both variables, it makes sense to calculate

$$
f_{x x}(x, y), f_{y y}(x, y), f_{x y}(x, y), f_{y x}(x, y)
$$

Anatomy of the second partial derivative
 We write $F_{x y}(x, y)$ or $\frac{\partial^{2} F}{\partial y \partial x}$

Isn't there something funny about the x - y order?

$$
\left(F_{x}\right)_{y}(x, y) \text { or } \frac{\partial}{\partial y} \frac{\partial F}{\partial x}
$$

Examples

$$
\begin{aligned}
F(x, y)=e^{x} \cos (\pi y) \Rightarrow F_{x} & =e^{x}(\cos (\pi y)
\end{aligned} \Rightarrow \begin{aligned}
& F_{x x}=e^{x} \cos (\pi y) \\
& F_{x y}=-\pi e^{\prime} \sin (\pi y) \\
& F_{y}=-\pi e^{x} \sin \pi y \\
& F_{y y}=-\pi e^{x} \sin (\pi y) \\
& \\
& \Rightarrow \\
& F_{y y}=-\pi^{2} e^{x}(\cos (\pi y)
\end{aligned}
$$

Examples

$$
\begin{aligned}
& G(x, y)=\ln \left(x^{2}+y^{2}\right) \Rightarrow G_{x}=\frac{2 x}{x^{2}+y^{2}} \Rightarrow G_{x x}=\frac{2\left(y^{2}-x^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} \\
& G_{x y}=\frac{-4 x y}{\left(x^{2}+y^{2}\right)^{2}} \\
& G_{y}=\frac{2 y}{x^{2}+y^{2}} \Rightarrow G_{y x}=\frac{-4 x y}{\left(x^{2}+y^{2}\right)^{2}} \\
& G_{y y}=\frac{2\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

A strange example

$\operatorname{tn}[1]: F\left[Y_{-}, Y_{-}\right]:=Y\left(X^{\wedge} 2-Y^{\wedge} 2\right) /\left(X^{\wedge} 2+Y^{\wedge} 2\right)$
自14]: $=D[F[X, Y], X]$
Out [14] $=-\frac{2 x^{2} y\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}+\frac{2 x^{2} y}{x^{2}+y^{2}}+\frac{Y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}$
$\ln [15]:=$ Linit $[\mathbf{X}, \quad \mathbf{x} \rightarrow \mathbf{0}]$
Out[15] $=-\mathrm{Y}$
$\ln [16]:=\mathbf{D}[\mathbf{X}, \mathbf{Y}]$
Out $[16]=-1$
Therefore $\mathrm{F}_{x y}[0,0]=-1$. Meanwhile,

Out[14] $=-\frac{1}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{2}}+\frac{\mathrm{x}^{2}+\mathrm{y}^{2}}{}+\frac{2}{\mathrm{x}^{2}+\mathrm{y}^{2}}$
$\ln [151:=$ Linit $[\mathbf{x}, \quad \mathbf{x}]$
Out $[15]=-Y$
$\ln [16]:=\mathbf{D}[\boldsymbol{X}, 7]$
Out $[16]=-1$
Therefore $\mathrm{F}_{\mathrm{xy}}[0,0]=-1$. Meanwhile,
$\ln [17]:=\mathbf{D}[\mathbf{F}[\mathbf{x}, \mathbf{Y}], \mathbf{Y}]$
Out[17] $=-\frac{2 x y^{2}\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}-\frac{2 x y^{2}}{x^{2}+y^{2}}+\frac{x\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}$
$\ln [18]:=\operatorname{Limit}[\mathbf{X}, \mathbf{Y} \rightarrow \mathbf{0}]$
Out[18]= x
$\ln [19]:=\mathbf{D}[\mathbf{X}, \mathbf{x}]$
Out[19]= 1
Therefore $\mathrm{F}_{\mathrm{yx}}[0,0]=+1$.

If we stay away from $x=y=0$, then

$$
|n| 20 \mid=\mathbf{D}[\mathbf{F}[\mathbf{X}, \mathbf{Y}], \mathbf{X}, \mathbf{Y}]
$$

$$
\begin{aligned}
\text { Qut } 20)= & \frac{8 x^{2} y^{2}\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{3}}-\frac{2 x^{2}\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}- \\
& \frac{2 y^{2}\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}+\frac{2 x^{2}}{x^{2}+y^{2}}-\frac{2 y^{2}}{x^{2}+y^{2}}+\frac{x^{2}-y^{2}}{x^{2}+y^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \ln [21]:=\mathrm{D}[\mathbf{F}[\mathbf{X}, \mathbf{Y}], \mathbf{Y}, \mathbf{X}] \\
& \text { Out[21] }=\frac{8 x^{2} y^{2}\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{3}}-\frac{2 x^{2}\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}- \\
& \frac{2 y^{2}\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}+\frac{2 x^{2}}{x^{2}+y^{2}}-\frac{2 y^{2}}{x^{2}+y^{2}}+\frac{x^{2}-y^{2}}{x^{2}+y^{2}}
\end{aligned}
$$

which are the same, as usual. What went wrong at the origin?

