MATH 2401 - Harrell

Partial to partials

Lecture 8

Copyright 2008 by Evans M. Harrell II.

Cool shapes, like Möbius strips

Cool shapes, like Möbius strips

I can really get in to some of these shapes!

The view from inside the hyperboloid.

What is the derivative, really?

In KG calculus, it was the slope of the tangent line at a point.

 For a vector function (same as curve), it still gave the direction of the tangent line at a point.

+ It tells us how to straighten

out something that is curved, with the least error.

Extrapolating with the ideal gas law

Ideal gas law. PV = nRT, so V(P,T) = nRT/P.

If we fix P and change T to T+ \triangle T, V(P,T+ \triangle T) \cong V(P,T) + (nR/P) \triangle T \cong V(P,T) (1 + \triangle T/T)

Extrapolating with the ideal gas law

Ideal gas law. PV = nRT, so V(P,T) = nRT/P.

If we fix T and change P to P+ \triangle P, V(P + \triangle P,T) \cong V(P,T) - (nRT/P²) \triangle P \cong V(P,T) (1 - \triangle P/P).

Extrapolating with the ideal gas law Ideal gas law. PV = nRT, so V(P,T) = nRT/P.

What if both T and P change? Estimate the volume. We might guess $V(P + \triangle P,T + \triangle T) \cong V(P,T) (1 + \triangle T/T - \triangle P/P).$

Is this right?

The partial derivative

Just pretend y is a constant and differentiate with respect to x. Call this $\partial F/\partial x$.

If you pretend x is a constant and differentiate with respect to y, that's $\partial F/\partial y$.

Anatomy of the partial derivative

We write $F_x(x, y)$ or $\frac{\partial F}{\partial x}$

"F sub x" "Dee F by dee x"

Why do we calculate partials?

Sometimes only interested in one variable. Example: If we only care how the concentration c(x,y) varies when we move in the x-direction, we want $\partial c/\partial x$. This function still depends on y as well as x.

Why do we calculate partials?

1 Sometimes only interested in one variable.

- 2 Nature *loves* partial derivatives: a Heat equation
 - **b** Wave equation

$$\begin{split} u(t,x), & \frac{\partial u}{\partial t} = \kappa \frac{\partial^2 u}{\partial x^2} \\ u(t,x), & \frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \end{split}$$

c Potential equation

 $u(x, y, z), \qquad \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = \frac{4\pi\rho(x, y, z)}{\epsilon_0}$

Why do we calculate partials?

- 1 Sometimes only interested in one variable.
- 2 Nature *loves* partial derivatives:
- 3 All the Calculus I stuff (max-min, slopes, tangent *planes* rather than lines) will use partial derivatives when there is more than one variable.

The partial derivative

Important! $\partial F/\partial x$ and $\partial F/\partial y$ are still functions of 2 variables. Let's do an example or two.

(something mathematicians are obsessed with)

Sets

- Neighborhood of a point
- Interior, boundary
- •Open
- •Closed
- •Neither open nor closed

(something mathematicians are obsessed with)

- •Neighborhood of a point
- Interior, boundary
- Open
- Closed
- Neither open nor closed

Sets

Limits for scalar fields

 $\lim_{\mathbf{r}\to\mathbf{r}_0}f(\mathbf{r})=L$

 $\lim_{t \to t_0} \mathbf{F}(t) = \mathbf{L}$

Compare and contrast.

Curves

+scalar (time) in, vector (position) out

Scalar fields vector (position) in, scalar out

Limits for scalar fields

 $\lim_{\mathbf{r}\to\mathbf{r}_0}f(\mathbf{r})=L$

What does it mean?

This kind of limit can depend on *how* you get where you are going.

Second partial derivatives

Since $f_x(x,y)$ and $f_y(x,y)$ still depend on both variables, it makes sense to calculate

 $f_{xx}(x,y), f_{yy}(x,y), f_{xy}(x,y), f_{yx}(x,y)$

Anatomy of the *second* partial derivative

We write $F_{xy}(x, y)$ or $\frac{\partial^2 F}{\partial y \partial x}$

Isn't there something funny about the x-y order?

 $(F_x)_y(x,y)$ or $\frac{\partial}{\partial y}\frac{\partial F}{\partial x}$

A strange example

in[1]= F[x_, y_] := xy(x^2 - y^2)/(x^2 + y^2)
in[14]= D[F[x, y], x]

F

F

 $\mathsf{Out}[14] = -\frac{2 x^2 y (x^2 - y^2)}{(x^2 + y^2)^2} + \frac{2 x^2 y}{x^2 + y^2} + \frac{y (x^2 - y^2)}{x^2 + y^2}$

```
ln[15]:= Limit[X, x → 0]
```

Out[15]= -Y

```
ln[16]:= D[%, y]
```

```
Out[16]= -1
```

Therefore $F_{xy}[0,0] = -1$. Meanwhile,

$$Out[14] = -\frac{2x^2y(x^2 - y)}{(x^2 + y^2)^2} + \frac{2x^2y}{x^2 + y^2} + \frac{y(x^2 - y)}{x^2 + y^2}$$

7

7

h[15]:= Limit[X, x → 0]

Out[15]+ +y

ln[16]:= **D[X**, **Y**]

Qut[16]= -1

Therefore $F_{xy}[0,0] = -1$. Meanwhile,

In[17]:= D[F[x, y], y]

Out[17]= $-\frac{2 x y^2 (x^2 - y^2)}{(x^2 + y^2)^2} - \frac{2 x y^2}{x^2 + y^2} + \frac{x (x^2 - y^2)}{x^2 + y^2}$

ln[18]:= Limit[X, y → 0]

Out[18]= X

ln[19]:= **D[%, x]**

Out[19]= 1

Therefore $F_{yx}[0,0] = +1$.

If we stay away from
$$x = y = 0$$
, then

$$M(20) = D[F[x, y], x, y]$$

$$M(20) = \frac{8x^2y^2(x^2 - y^2)}{(x^2 + y^2)^3} - \frac{2x^2(x^2 - y^2)}{(x^2 + y^2)^2} - \frac{2y^2(x^2 - y^2)}{(x^2 + y^2)^2} + \frac{2x^2}{x^2 + y^2} - \frac{2y^2}{x^2 + y^2} + \frac{x^2 - y^2}{x^2 + y^2}$$

$$M[21] = D[F[x, y], y, x]$$

$$M(21) = \frac{8x^2y^2(x^2 - y^2)}{(x^2 + y^2)^3} - \frac{2x^2(x^2 - y^2)}{(x^2 + y^2)^2} - \frac{2y^2(x^2 - y^2)}{(x^2 + y^2)^2} + \frac{2x^2}{x^2 + y^2} - \frac{2y^2}{x^2 + y^2} + \frac{x^2 - y^2}{x^2 + y^2}$$

which are the same, as usual. What went wrong at the origin?

٦