Which way is up?

Lecture 9

Copyright 2008 by Evans M. Harrell II.

A set does not necessarily have boundaries

If it does have boundaries...

Are the boundaries part of
 the set or not?

Sets

(something mathematicians are obsessed with)

- Neighborhood of a point
- Interior, boundary
- Open - every point is interior
-Closed - contains all of its boundary
- Neither open nor closed

Open, closed, or neither?

+ Closed rectangle:

$$
+\{(x, y): 0 \leq x \leq 1,0 \leq y \leq 2\}
$$

+ Open rectangle:

$$
+\{(x, y): 0<x<1,0<y<2\}
$$

+ Neither one:

$$
+\{(x, y): 0 \leq x<1,0 \leq y \leq 2\}
$$

Does Connecticut have a highest point?

+ At http://geology.com/state-high-points.shtml it states that Connecticut's highest point is "Mt. Frissell--S slope, CT"
+ But the top of Mt. Frissell is in Massachusetts!
Who owns the boundary - CT or MA?

Does Connecticut have a highest point?

+ If MA owns the boundary, from any point in Connecticut you can get higher without leaving the state.

There is no highest point.

An important theorem

+ A continuous function on a closed and bounded set always has a maximum value and a minimum value.
+Might or might not be true if the set is unbounded or not closed.

Point uphill

How to determine the gradient from a topographic map

+ At a point on the Escalante map, we can move uphill by __ contours, separated by 40 feet, over a distance ___ mile,
+ rise = \qquad
+ run = \qquad
+ slope $=$ \qquad

How to determine the gradient from a topographic map

+ At a point on the Escalante map, we can move uphill by $41 / 2$ contours, separated by 40 feet, over a distance mile,

$$
\begin{aligned}
& \text { + rise }=\frac{4 \frac{1}{2} *}{2}+40=180 \\
& \text { + run }=\frac{6040}{90} \\
& \text { + slope }=.36
\end{aligned}
$$

"Uphill" as a vector

+ Direction
+Magnitude = the slope in that direction, e.g., 5\% grade.
+If it happens that "uphill" is along the positive x-axis, then the slope is

дf/дx.

Directional derivative

+ Choose a direction, by taking a unit vector u.
+ Measure rise/run over a small distance in the direction \mathbf{u}.

Directional derivative

+ What is the d.d. if the vector \mathbf{u} is tangent to a level curve?
+ What is the d.d. if the vector \mathbf{u} is normal (perpendicular) to a level curve?
+ Of all directions \mathbf{u}, which one gives the greatest d.d.?

Partial derivatives as a vector

$+\ln 2$ dimensions, we have 2 partials, $\partial \mathrm{F} / \partial \mathrm{x}$ and $\partial \mathrm{F} / \partial \mathrm{y}$

+ In 3 dimensions we have 3
$\partial \mathrm{F} / \partial \mathrm{x}, \partial \mathrm{F} / \partial \mathrm{y}$, and $\partial \mathrm{F} / \partial \mathrm{z}$
+ Same number as components of a vector, hmmmmm.

True vectorial differentiability

You can't divide by a vector, so you can't make sense of

True vectorial differentiability

But you could hope that the function can be "linearized" in a neighborhood of \mathbf{x} :

$$
f(\mathbf{x}+\mathbf{h})-f(\mathbf{x})=\mathbf{y} \cdot \mathbf{h}+o(\mathbf{h})
$$

Differentiation as a three -dimensional concept

+ Since you can't divide by a vector,
+ We say f is differentiable iff

$$
f(x+h)-f(x)=y \cdot h+o(h)
$$

for some vector \mathbf{y} (which will depend on \mathbf{x}).

+ This is like the 1-D formula of a tangent line,

$$
f(x+h)-f(x)=f^{\prime}(x) h+o(h)
$$

Differentiation as a three -dimensional concept

+ Since you can't divide by a vector,
+ We say f is differentiable iff

$$
f(x+h)-f(x)=y \bullet h+o(h),
$$

$+y$ is called the gradient of f at x, and denoted $\nabla f(\mathbf{x})$.

+ The gradient $\nabla \mathrm{f}(\mathbf{x})$ of a scalar function is a vector-valued function of a vector variable!

Some good news:

t It is easy to calculate the gradient.

+ With the gradient you can easily calculate directional derivatives.
+ "Uphill" is nothing other than the gradient!
+ Tangent planes are also not hard to work out.

Now let's do some examples

+ Let's consider $\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{e}^{\mathrm{x}} \cos \mathrm{y}$. (You might see this function in a thermodynamics class, since it is a possible equilibrium temperature distribution in a homogeneous solid.)

Example: $f(x, y)=e^{x} \cos y$

Show gradient on contour plot (first with no calculations)

Example: $f(x, y)=e^{x} \cos y$

$\nabla f=e^{\mathrm{x}} \cos \mathrm{y} \mathbf{i}-\mathrm{e}^{\mathrm{x}} \sin \mathrm{y} \mathbf{j}$ Magnitude is e^{x}.

Example: $f(x, y)=e^{x} \cos y$

Find the directional derivative in the "northeast" direction $\mathbf{i}+\mathbf{j}$, at $P=(1, \pi)$.

1. Calculate the gradient
2. Identify a unit vector in the direction you want: $\quad 2^{-1 / 2} \mathbf{i}+2^{-1 / 2} \mathbf{j}$.
3. Take dot product

ANSWER: $\quad 2^{-1 / 2} e^{1}(\cos \pi-\sin \pi)=-e / 2^{1 / 2}$.

How to determine the gradient from a topographic map

+ Direction - perpendicular to the "contour" (= level curve) passing through the position of interest.
+ Calculate slope by measuring off a short distance and counting the contours crossed in that distance.
+Given a direction and a magnitude, you have the vector.

A problem from an old final exam:

A topographic map such as the one shown here, of the Chattahoochee National Recreation Area in Sandy Springs, is a contour plot for a function $f(x, y)$. The contours are level sets for values of $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$. Contours are separated by heights of 10 feet (every fifth contour is

The point P
Annotate the contour map as follows:
a) Find the top of a hill and label it with the letter \mathbf{T}
b) Find a saddle point and label it with the letter \mathbf{S}.
c) There are several cliffs in the park. Find a cliff on this map and label it with the letter C.
d) In the lower left part of the map you will find a small arrow. Estimate the gradient at the point of the arrow. By the way, the arrow drawn is not meant to indicate the gradient at its base.) Draw a vector on the map with the same direction as the gradient, and estimate the magnitude of the gradient here:

