\qquad
February 11, 2005
Answer the following questions clearly and completely. Unless otherwise specified, you must provide work justifying your solution.

There are 5 questions plus one extra credit problem, on 7 pages. The exam is worth 40 points total, plus up to 3 points extra credit.

1. Compute the following quantities if possible, otherwise mark them as "undefined" ("nonsense" is the same as "undefined").
(1 point) a. $\left[\begin{array}{rrr}2 & 1 & -1 \\ 1 & 2 & 3\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]=$
(1 point) b. $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{rrr}2 & 1 & -1 \\ 1 & 2 & 3\end{array}\right]=$
(1 point) c. $\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]^{\mathrm{T}}+\left[\begin{array}{rrr}2 & 1 & -1 \\ 1 & 2 & 3\end{array}\right]=$
(1 point) d. $\operatorname{span}\left(\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\right)=$
2. Let $A=\left[\begin{array}{rrrr}1 & 0 & 1 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & -3 & 1 & -1\end{array}\right]$ and $b=\left[\begin{array}{r}3 \\ 2 \\ -2\end{array}\right]$.
(4 points) a. Find the general solution to $A x=b$. Write your solution in parametric form.
(1 point) b. Give the reduced row echelon form R of A (no work required; you should have done it already in part a).
(2 points) c. Give elementary matrices E_{1}, \ldots, E_{k} (how many depends on how you do the problem) such that $R=E_{k} \cdots E_{1} A$.
(2 points) d. Do the columns of A span \mathbf{R}^{3} ? How do you know?
(2 points) e. Are the columns of A linearly independent? How do you know?
(2 points) f. What is the rank and nullity of A ?
(2 points) g. Is b a linear combination of the columns of A ? If so, give one specific linear combination of the columns that equals b.
(2 points) h. Is any column of A a linear combination of the other columns? If so, give the specific linear combination.
(2 points) i. Can you tell FROM THE WORK DONE SO FAR whether the equation $A x=\left[\begin{array}{c}12 \\ -43 \\ 8\end{array}\right]$ has a solution? Why or why not?
(4 points) 3. Suppose that A is an invertible $n \times n$ matrix. Let e_{1}, \ldots, e_{n} be the standard basis vectors in \mathbf{R}^{n}. Let u_{1}, \ldots, u_{n} be the columns of A^{-1}. If $1 \leq j \leq n$, show that u_{j} is a solution to the equation $A x=e_{j}$.
3. Let $A=\left[\begin{array}{rrr}-1 & 0 & 1 \\ 2 & 1 & 0 \\ 3 & 0 & -2\end{array}\right]$ and $b=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$.
(4 points) a. Find the inverse of A, if it exists.
(1 point) b. Use your answer from part a to solve the equation $A x=b$.
(8 points) 5. For each part, circle T for True or F for False (no explanation required). Note: An answer of "sometimes true and sometimes false" or "cannot be determined" would count as False.

T F a. If A is an $m \times n$ matrix and $n>m$ then $A x=0$ has infinitely many solutions.

T F b. If A is an $m \times n$ matrix and $n>m$ then for every $b \in \mathbf{R}^{m}$, the equation $A x=b$ has infinitely many solutions.

T F c. If A is an $m \times n$ matrix and $n<m$ then there is some $b \in \mathbf{R}^{m}$ such that the equation $A x=b$ has no solutions.

T F d. If A is an $m \times n$ matrix and $b \in \mathbf{R}^{m}$, then the equation $A x=b$ is consistent if and only if b is a linear combination of the columns of A.

T $\quad \mathrm{F} \quad$. If vectors $v_{1}, \ldots, v_{k} \in \mathbf{R}^{n}$ are linearly dependent, then at least one v_{j} must be a multiple of one of the others.

T F f. If E is an $n \times n$ elementary matrix, then the equation $E x=b$ has at most one solution for each $b \in \mathbf{R}^{n}$.
$\mathrm{T} \quad \mathrm{F} \quad$ g. If u, v, w are independent vectors in \mathbf{R}^{n} and if $x \in \operatorname{span}\{u, v, w\}$, then u, v, w, x are independent vectors in \mathbf{R}^{n}.
(3 points EXTRA CREDIT) Suppose that A is an $m \times n$ matrix and B is an $n \times m$ matrix, with $n>m$. Prove that $A B$ can never equal the $m \times m$ identity matrix I_{m}.

