\qquad

Answer the following questions clearly and completely. Unless otherwise specified, you must provide work justifying your solution.

There are 5 questions plus one extra credit problem, on 8 pages. The exam is worth 40 points total, plus up to 3 points extra credit.

1. Let $A=\left[\begin{array}{rrrr}2 & 1 & 1 & -1 \\ 3 & 0 & 0 & 0 \\ 1 & -1 & 2 & 0 \\ 1 & 2 & 0 & 3\end{array}\right]$.
(6 points) a. Compute $\operatorname{det}(A)$ by using cofactors to reduce the 4×4 determinant to a sum of 3×3 determinants. You can then use any valid method you like to find those 3×3 determinants (if the scalar multiplying a particular 3×3 determinant is zero, you don't need to compute it).
(2 points) b. WITHOUT doing row reduction, give the reduced row echelon form for A. Hint: This follows immediately from part a. you do NOT need to do any more work to find it.
(2 points) c. What is $\operatorname{Col}(A)$? Hint: This follows immediately from part b.
(4 points) 2. Define $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ by $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}0 \\ x_{1} x_{2} \\ x_{1}+x_{2}\end{array}\right]$.
Determine (with proof) whether T is linear.
(4 points) 3. Let A be an $m \times n$ matrix and let B be an $n \times p$ matrix. Which one of the following statements is true, and why?
A. If x is in $\operatorname{Null}(A)$, then x is in $\operatorname{Null}(A B)$.
B. If x is in $\operatorname{Null}(B)$, then x is in $\operatorname{Null}(A B)$.
C. If x is in $\operatorname{Null}(A B)$, then x is in $\operatorname{Null}(A)$.
D. If x is in $\operatorname{Null}(A B)$, then x is in $\operatorname{Null}(B)$.
2. Let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{4}$ be the linear transformation defined by $T\left(\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right)=\left[\begin{array}{c}x_{1}+x_{2}+3 x_{3} \\ x_{2}+x_{3} \\ 0 \\ x_{1}+x_{2}+3 x_{3}\end{array}\right]$.
(2 points) a. Find the standard matrix for T (no explanation required).
(5 points) b. Find a basis for range (T).
(Problem 4 Continued)
(1 point) c. Find the dimension of range (T).
(5 points) d. Find a basis for $\operatorname{Null}(T)$.
(Problem 4 Continued)
(2 points) e. Is T 1-1? Why or why not?
(2 points) f. Is $\mathcal{B}=\left\{\left[\begin{array}{r}1 \\ -1 \\ 0\end{array}\right]\right\}$ a basis for $\operatorname{Null}(T)$? Why or why not?
(5 points) 5. For each part, circle T for True or F for False (no explanation required). Note: An answer of "sometimes true and sometimes false" or "cannot be determined" would count as False.

T $\quad \mathrm{F} \quad$ a. The column space of an $m \times n$ matrix equals the set $\left\{A x: x \in \mathbf{R}^{n}\right\}$.
$\mathrm{T} \quad \mathrm{F} \quad \mathrm{b}$. If A is an $m \times n$ matrix then $\operatorname{rank}\left(A^{\mathrm{T}}\right)=\operatorname{dim}(\operatorname{Col}(A))$.

T F c. The columns of an $m \times n$ matrix form a basis for its column space.

T F d. If W is a subspace of \mathbf{R}^{n} and u_{1}, \ldots, u_{k} is a spanning set for W, then there are vectors $u_{k+1}, \ldots, u_{\ell}$ in \mathbf{R}^{n} such that $u_{1}, \ldots, u_{k}, u_{k+1}, \ldots, u_{\ell}$ is a basis for W.

T F e. There is only one subspace of \mathbf{R}^{5} that has dimension 5.
(3 points EXTRA CREDIT) Suppose that A is an $m \times n$ matrix and B is an $n \times p$ matrix. Prove that $\operatorname{rank}(A B) \leq \operatorname{rank}(B)$. Hint: Use Problem 3 .

