\qquad

Answer the following questions clearly and completely. Unless otherwise specified, you must provide work justifying your solution.

There are 3 questions plus one extra credit problem, on 6 pages. The exam is worth 40 points total, plus up to 3 points extra credit.

1. Let $A=\left[\begin{array}{rrrr}2 & 0 & 0 & 0 \\ 1 & 2 & -1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 2\end{array}\right]$.
(6 points) a. Find the characteristic polynomial of A.
(4 points) b. Find the eigenvalues of A and give their multiplicities.
(Problem 1 Continued)
(8 points) c. Find a basis for each eigenspace of A. Be sure to tell which basis goes with which eigenvalue, don't combine the different bases together.
(Problem 1 Continued)
(4 points) d. Is A diagonalizable? Why or why not?
2. Let $v_{1}=\left[\begin{array}{r}1 \\ 2 \\ 3 \\ -3\end{array}\right], v_{2}=\left[\begin{array}{r}1 \\ 1 \\ -1 \\ 0\end{array}\right], v_{3}=\left[\begin{array}{r}3 \\ -3 \\ 0 \\ -1\end{array}\right]$. Let $W=\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}$.
(3 points) a. Determine whether $\left\{v_{1}, v_{2}, v_{3}\right\}$ is an orthogonal set of vectors (show work).
(3 points) b. The vector $u=\left[\begin{array}{r}2 \\ 10 \\ 3 \\ -5\end{array}\right]$ lies in W (take that as given, you don't have to show that). Find scalars c_{1}, c_{2}, c_{3} such that $u=c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}$.
(4 points) c. Find the orthogonal projection of the vector $u=\left[\begin{array}{r}2 \\ 10 \\ 3 \\ -5\end{array}\right]$ onto the line through v_{2}.
(3 points) d. Find an ORTHONORMAL basis w_{1}, w_{2}, w_{3} for W.
(5 points) 3. For each part, circle T for True or F for False (no explanation required). Note: An answer of "sometimes true and sometimes false" or "cannot be determined" would count as False.
$\mathrm{T} \quad \mathrm{F} \quad$ a. If v_{1}, \ldots, v_{n} are nonzero orthogonal vectors in \mathbf{R}^{n}, then v_{1}, \ldots, v_{n} is a basis for \mathbf{R}^{n}.

T $\quad \mathrm{F} \quad \mathrm{b}$. If u is a vector in \mathbf{R}^{n} and c is a scalar, then $\|c u\|=c\|u\|$.

T F c. If λ is an eigenvalue of a matrix A, then there are infinitely many vectors x such that $A x=\lambda x$.

T $\quad \mathrm{F} \quad$ d. If A is an $n \times n$ diagonalizable matrix, then A is invertible.

T F e. A square matrix A is invertible if and only if 0 is an eigenvalue of A.
(3 points EXTRA CREDIT) Suppose that λ is an eigenvalue of an $n \times n$ matrix A. Prove that $\lambda+1$ is an eigenvalue of the matrix $A+I_{n}$.

