Answer the following questions clearly and completely. Unless otherwise specified, you must provide work justifying your solution.

There are 6 questions plus one extra credit problem, on 12 pages. The exam is worth 80 points total, plus up to 5 points extra credit.
(8 points) 1. Let $A=\left[\begin{array}{rrrr}2 & 1 & 6 & -4 \\ 0 & 2 & 0 & 0 \\ 3 & 1 & 1 & 5 \\ 1 & 1 & 3 & 0\end{array}\right]$. Compute $\operatorname{det}(A)$ by using row reduction. Do not use cofactors to compute the determinant.
2. Let $u_{1}=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right], u_{2}=\left[\begin{array}{l}1 \\ 0 \\ 2 \\ 1\end{array}\right], u_{3}=\left[\begin{array}{l}1 \\ 5 \\ 1 \\ 3\end{array}\right]$ and let $W=\operatorname{span}\left\{u_{1}, u_{2}, u_{3}\right\}$.
(8 points) a. Apply the Gram-Schmidt process to find orthogonal vectors v_{1}, v_{2}, v_{3} which have the same span as u_{1}, u_{2}, u_{3}.
(2 points) b. Show directly that your vectors v_{1}, v_{2}, v_{3} are orthogonal.
(4 points) c. Let $u=\left[\begin{array}{l}3 \\ 1 \\ 1 \\ -2\end{array}\right]$. Find unique vectors $w \in W$ and $z \in W^{\perp}$ such that $u=w+z$.
(2 points) d. Find the distance from u to W.
(2 points) e. Find a vector v_{4} so that $v_{1}, v_{2}, v_{3}, v_{4}$ is an orthogonal basis for \mathbf{R}^{4}.
3. Let $A=\left[\begin{array}{lll}2 & 0 & 0 \\ 2 & 0 & 2 \\ 0 & 0 & 2\end{array}\right]$.
(4 points) a. Find the characteristic polynomial of A.
(4 points) b. Find the eigenvalues of A and state the multiplicity of each.
(8 points) c. Find a basis for each eigenspace of A.
(8 points) d. If A is diagonalizable, write down a diagonal matrix D and an invertible matrix P such that $A=P D P^{-1}$. Use the Gauss-Jordan algorithm to find P^{-1}.
4. Let W be the set of all vectors $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ in \mathbf{R}^{3} which satisfy $2 x_{1}+x_{2}-3 x_{3}=0$.
(5 points) a. Determine, with proof, whether W is a subspace of \mathbf{R}^{3} or not.
(5 points) b. Find a basis for W^{\perp}, and find the dimension of W^{\perp}.
5. Let $v_{1}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right], v_{2}=\left[\begin{array}{l}3 \\ 1 \\ 7\end{array}\right], v_{3}=\left[\begin{array}{r}-3 \\ 4 \\ -11\end{array}\right]$. Let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be the linear transformation whose rule is

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=x_{1} v_{1}+x_{2} v_{2}+x_{3} v_{3}
$$

(4 points) a. Determine whether v_{1}, v_{2}, v_{3} are dependent or independent.
(4 points) b. Find the standard matrix for T.
(4 points) c. Determine whether T is 1-1 and whether T is onto.
(8 points) 6. For each part, circle T for True or F for False (no explanation required). Note: An answer of "sometimes true and sometimes false" or "cannot be determined" would count as False.
$\mathrm{T} \quad \mathrm{F} \quad$ a. If A is an $n \times n$ matrix and $A-3 I$ is invertible, then 3 is an eigenvalue of A.
$\mathrm{T} \quad \mathrm{F} \quad \mathrm{b}$. If λ is an eigenvalue of an $n \times n$ matrix A, then the multiplicity of λ is the dimension of $\operatorname{Null}(A-\lambda I)$.
$\mathrm{T} \quad \mathrm{F} \quad$ c. Three vectors v_{1}, v_{2}, v_{3} in \mathbf{R}^{4} are linearly independent if no one of them is a multiple of the others.

T F d. The eigenvalues of a lower triangular matrix are equal to the diagonal entries of the matrix.
$\mathrm{T} \quad \mathrm{F} \quad$ e. If A is a 4×4 matrix with rank 3 then 0 is an eigenvalue of A.

T F f. The row space of an $m \times n$ matrix A equals the row space of the row-reduced echelon form R of A.
$\mathrm{T} \quad \mathrm{F} \quad \mathrm{g}$. If $u_{1}, u_{2}, u_{3}, u_{4}$ are vectors in \mathbf{R}^{4} and $\operatorname{span}\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}=\mathbf{R}^{4}$, then $u_{1}, u_{2}, u_{3}, u_{4}$ are linearly independent.
$\mathrm{T} \quad \mathrm{F} \quad \mathrm{h}$. If an $n \times n$ matrix A is diagonalizable, then the eigenvalues of A are distinct, i.e., each eigenvalue has multiplicity 1.
(5 points EXTRA CREDIT) Let u_{1}, \ldots, u_{k} be k vectors in \mathbf{R}^{n}. Let $S=\left\{u_{1}, \ldots, u_{k}\right\}$. Use the definition of subspace to prove that S^{\perp} is a subspace of \mathbf{R}^{n}. (Use the back of the page if you need more space.)

