FINAL EXAM

Answer the following questions clearly and completely. Unless otherwise specified, you must provide work justifying your solution.

There are 6 questions plus one extra credit problem, on 12 pages. The exam is worth 80 points total, plus up to 5 points extra credit.

(8 points) 1. Let $A = \begin{bmatrix} 2 & 1 & 6 & -4 \\ 0 & 2 & 0 & 0 \\ 3 & 1 & 1 & 5 \\ 1 & 1 & 3 & 0 \end{bmatrix}$. Compute det(A) by using row reduction. Do not use cofactors to

compute the determinant.

2. Let
$$u_1 = \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix}$$
, $u_2 = \begin{bmatrix} 1\\0\\2\\1 \end{bmatrix}$, $u_3 = \begin{bmatrix} 1\\5\\1\\3 \end{bmatrix}$ and let $W = \operatorname{span}\{u_1, u_2, u_3\}$.

(8 points) a. Apply the Gram–Schmidt process to find orthogonal vectors v_1, v_2, v_3 which have the same span as u_1, u_2, u_3 .

(2 points) b. Show directly that your vectors v_1, v_2, v_3 are orthogonal.

(4 points) c. Let
$$u = \begin{bmatrix} 3\\1\\1\\-2 \end{bmatrix}$$
. Find unique vectors $w \in W$ and $z \in W^{\perp}$ such that $u = w + z$.

(2 points) d. Find the distance from u to W.

(2 points) e. Find a vector v_4 so that v_1, v_2, v_3, v_4 is an orthogonal basis for \mathbf{R}^4 .

3. Let
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 2 & 0 & 2 \\ 0 & 0 & 2 \end{bmatrix}$$
.

(4 points) a. Find the characteristic polynomial of A.

(4 points) b. Find the eigenvalues of A and state the multiplicity of each.

(8 points) c. Find a basis for each eigenspace of A.

(8 points) d. If A is diagonalizable, write down a diagonal matrix D and an invertible matrix P such that $A = PDP^{-1}$. Use the Gauss-Jordan algorithm to find P^{-1} .

4. Let W be the set of all vectors
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 in \mathbf{R}^3 which satisfy $2x_1 + x_2 - 3x_3 = 0$.

(5 points) a. Determine, with proof, whether W is a subspace of \mathbb{R}^3 or not.

(5 points) b. Find a basis for W^{\perp} , and find the dimension of W^{\perp} .

5. Let
$$v_1 = \begin{bmatrix} 1\\2\\1 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 3\\1\\7 \end{bmatrix}$, $v_3 = \begin{bmatrix} -3\\4\\-11 \end{bmatrix}$. Let $T: \mathbf{R}^3 \to \mathbf{R}^3$ be the linear transformation whose rule is
$$T\left(\begin{bmatrix} x_1\\x_2\\x_3 \end{bmatrix} \right) = x_1v_1 + x_2v_2 + x_3v_3.$$

- (4 points) a. Determine whether v_1, v_2, v_3 are dependent or independent.
- (4 points) b. Find the standard matrix for T.
- (4 points) c. Determine whether T is 1-1 and whether T is onto.

(8 points) 6. For each part, circle T for True or F for False (no explanation required). Note: An answer of "sometimes true and sometimes false" or "cannot be determined" would count as False.

ΤF	a. If A is an $n \times n$ matrix and $A - 3I$ is invertible, then 3 is an eigenvalue of A.
T F	b. If λ is an eigenvalue of an $n \times n$ matrix A , then the multiplicity of λ is the dimension of Null $(A - \lambda I)$.
Т F	c. Three vectors v_1, v_2, v_3 in \mathbf{R}^4 are linearly independent if no one of them is a multiple of the others.
T F	d. The eigenvalues of a lower triangular matrix are equal to the diagonal entries of the matrix.
T F	e. If A is a 4×4 matrix with rank 3 then 0 is an eigenvalue of A.
T F	f. The row space of an $m \times n$ matrix A equals the row space of the row-reduced echelon form R of A.
T F	g. If u_1, u_2, u_3, u_4 are vectors in \mathbf{R}^4 and span $\{u_1, u_2, u_3, u_4\} = \mathbf{R}^4$, then u_1, u_2, u_3, u_4 are linearly independent.
Т F	h. If an $n \times n$ matrix A is diagonalizable, then the eigenvalues of A are distinct, i.e., each eigenvalue has multiplicity 1.

(5 points EXTRA CREDIT) Let u_1, \ldots, u_k be k vectors in \mathbf{R}^n . Let $S = \{u_1, \ldots, u_k\}$. Use the definition of subspace to prove that S^{\perp} is a subspace of \mathbf{R}^n . (Use the back of the page if you need more space.)