Module 46: Time Dependent Boundary Conditions
Consider the problem $\frac{\partial}{\partial t} w=\frac{\partial^{2}}{\partial x^{2}} w$ with

$$
\frac{\partial}{\partial x} w(t, 0)=-f(t)
$$

and

$$
\frac{\partial}{\partial x} w(t, 1)=g(t)
$$

To do this problem, create u and F so that

$$
\begin{gathered}
\frac{\partial}{\partial t} u=\frac{\partial^{2}}{\partial x^{2}} u+F(t, x) \\
\frac{\partial}{\partial x} u(t, 0)=0, \\
\frac{\partial}{\partial x} u(t, 1)=0
\end{gathered}
$$

and
u and w are related in a simple manner.

The w and u connection:

$$
\begin{aligned}
& w(t, x)=u(t, x)-f(t)\left(x-\frac{x^{2}}{2}\right)+g(t) \frac{x^{2}}{2} \\
& \frac{\partial}{\partial t} w=\frac{\partial}{\partial t} u-f^{\prime}(t)\left(x-\frac{x^{2}}{2}\right)+g^{\prime}(t) \frac{x^{2}}{2} \\
& \frac{\partial^{2}}{\partial x^{2}} w=\frac{\partial^{2}}{\partial x^{2}} u+f(t)+g(t)
\end{aligned}
$$

Thus, if the diffusion equation holds for w,

$$
\begin{gathered}
\frac{\partial}{\partial t} u=\frac{\partial^{2}}{\partial x^{2}} u+f(t)+f^{\prime}(t)\left(x-\frac{x^{2}}{2}\right)+ \\
g(t)-g^{\prime}(t) \frac{x^{2}}{2} \\
\frac{\partial}{\partial t} u=\frac{\partial^{2}}{\partial x^{2}} u+F(t, x) .
\end{gathered}
$$

What about the boundary conditions?

$$
\begin{aligned}
& w(t, x)=u(t, x)-f(t)\left(x-\frac{x^{2}}{2}\right)+g(t) \frac{x^{2}}{2} \\
& -f(t)=\frac{\partial}{\partial x} w(t, 0)=\frac{\partial}{\partial x} u(t, 0)-f(t) \\
& g(t)=\frac{\partial}{\partial x} w(t, 1)=\frac{\partial}{\partial x} u(t, 1)+g(t)
\end{aligned}
$$

Good News! We need to solve

$$
\begin{gathered}
\frac{\partial}{\partial t} u=\frac{\partial^{2}}{\partial x^{2}} u+F(t, x) \\
\frac{\partial}{\partial x} u(t, 0)=0, \frac{\partial}{\partial x} u(t, 1)=0 \\
w h e r e ~ w(0, x)= \\
u(0, x)-f(0)\left(x-\frac{x^{2}}{2}\right)+g(0) \frac{x^{2}}{2}
\end{gathered}
$$

BAD NEWS!

We need a worked out example.

$$
\begin{gathered}
\frac{\partial}{\partial t} w=\frac{\partial^{2}}{\partial x^{2}} w \text { with } \\
\frac{\partial}{\partial x} w(t, 0)=-\sin (2 \pi t)
\end{gathered}
$$

and

$$
\begin{aligned}
& \frac{\partial}{\partial x} w(t, 1)=\sin (2 \pi t) \\
& w(0, x)=0
\end{aligned}
$$

Be aware of the physical interpretation.

To use the method of separation of variables, we suppose that

$$
u(t, x)=\sum_{n} T_{n}(t) \cos (n \pi x)
$$

Break up that F to

$$
F(t, x)=\sum_{n} f_{n}(t) \cos (n \pi x)
$$

We are led to an infinite number of ordinary differential equations.

$$
T_{n} \quad(t)=-T_{n}(t)+f_{n}(t)
$$

$T_{n}(0)$ comes from the Fourier expansion for $u(0, x)$.

Graph of the solution.

Graph of $u(t, 0)$ and $u(t, 1 / 2)$

In the notes for this lecture, there is a numerical procedure for doing this same problem.

ADVANTAGE: The messy transformation is not necessary.

DISADVANTAGE: There is no analytic solution.

Be reminded that numerical solutions for PDE's is a part of a set of notes available on the web

SUMMARY:

(a) We considered the diffusion equation with time dependent boundary conditions.
(b) We set this problem in the context of a non homogeneous PDE with homogeneous boundary conditions.
(c) We also worked the problem using the built in numerical solver available in MAPLE.

