Module 46: Time Dependent Boundary Conditions
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To do this problem, create u and F so that
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u and w are related in a simple manner.



The w and U connection:
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Thus, If the diffusion equation holds for w,
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What about the boundary conditions?
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w(t, X) = u(t, X) - 7(t) (X- 7)+9(t) Y
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Good News! We need to solve
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—u(t,0)=0, —u(,1)=0
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where w(0, X) =
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u(o, x) - 1(0) (x- 7) +g(0) Y

BAD NEWS!



We need a worked out example.
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—w =—"w Wwith
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—WwW(t,0)=-sin(2pt)
X

and

lw (t, 1) = sin(2p t)
X

w(0, x ) = 0.

Be aware of the physical interpretation.



To use the method of separation of variables, we
suppose that

u(t, x) = a T _(t) cos(n p x)
n
Break up that F to

F(t, X) = a f_(t) cos(n p x)
N
We are led to an infinite number of ordinary

differential equations.
T '®=-T_ @®+f (¥,

Tn(O) comes from the Fourier expansion for u(O, X).



Graph of the solution.




Graph of u(t, O) and u(t,1/2)
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In the notes for this lecture, there iIs a numerical
procedure for doing this same problem.
ADVANTAGE: The messy transformation is not

necessary.

DISADVANTAGE: There is no analytic solution.

Be reminded that numerical solutions for PDE's Is a

part of a set of notes available on the web
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SUMMARY::
(a) We considered the diffusion eqguation with time

dependent boundary conditions.
(b) We set this problem in the context of a non -
homogeneous PDE with homogeneous boundary

conditions.

(c) We also worked the problem using the built Iin

numerical solver available in MAPLE.
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