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PACS. 72.15 - Electron conduction in metals and alloys. 

Abstract. - The ground-state energy E(+, v )  of spinless noninteracting fermions in two- 
dimensional crystal lattices is studied as a function of the particle density v and the magnetic flux +. Using a semi-classical quantization method, E(+, v )  is calculated and shown to have an 
absolute minimum which corresponds to one flux quantum per particle. Explicit cusplike 
behaviour of E(+, v )  at fixed v is found on a dense set of + values and the analyticity of the 
ground-state energy in v is precised. 

The motion of an electron in a crystal lattice in the presence of an external magnetic field 
is one of the classical problems in solid-state physics. Recently there has been a renewal of 
interest on this subject because of its importance in various 2D physical interesting 
problems: quantized Hall effect [l], Anyon superconductivity [23, flux state model for high- 
temperature superconductivity [3], quasi-1D conductors, etc. Already, the spectrum of 
tight-binding electrons on a 2D lattice in a magnetic field has an extremely rich structure. 
The generic feature of this single-particle spectrum (self-similarity, nesting properties, gap 
labelling, etc.) are well studied[4,5] for various 2D lattices. 

Very recently [6], the search for a possible failure of the Fermi-liquid theory for high-T, 
superconductors was at the origin of a new piece of physics for the Landau levels (LL) of 
Bloch electrons. 

One of the consequences of the convoluted structure of the spectrum is the stabilization of 
the Femi sea by the gaps which appears at every rational flux #. Indeed, Anderson [3,61 
was probably the first to realize the possibility of an optimal flux corresponding to one 
quantum flux per particle. More precisely, for a given particle density v of fermions, the 

(#) Permanent address: Centre de Recherches sur les Tr&s Basses Tempkratures, CNRS, BP 

(**I Laboratoire Propre, Centre National de la Recherche Scientifique. 
166X, 25, av. des Martyrs, F-38042 Grenoble Cedex, France. 



206 EUROPHYSICS LETTERS 

actual ground state is achieved for $ = U. This relation is at the heart of the Anyon 
superconductivity [2] (where it is called the fundamental relation). Since then, this 
conjecture has received a strong numerical support from various authors and for different 
lattice structures [7,81. Furthermore, the plot of the total energy at fixed v exhibits clearly a 
cusplike structure with an absolute minimum at $ = U [SI. The complete absence of analytical 
or rigorous results for this very important conjecture motivated the work presented here. 

In this letter, we report upon a summary of our results for this problem. The method we 
used is a semi-classical approach for Bloch electrons in a magnetic field [9]. Within the same 
algebraic framework, we were able to investigate the zero-field limit as well as the case of an 
arbitrary rational flux. A complete account of this systematic approach will be published 
elsewhere [lo]. 

1. Low flux limit. 

Let us consider the case of a 2D square lattice with lattice spacing a in a magnetic field H. 
The Hamiltonian of free fermions is given by X= - t + h.c., where 

(ij) refers to nearest-neighbour sites and $ij = (2d9,) I A dl. In Landau's gauge A = (0, Hx) 
one obtains the eigenvalue equation 

c ]  cj exp 
j (U) 

1 

In eq. (11, y = Z X $ / $ ~  and $ = Ha2 is the flux through the elementary cell, whereas $o is the 
flux quantum. For the sake of simplicity, we will assume $o = 1 and a = 1. Assuming plane 
waves in the y-direction, $(x, y) = exp [ik,y] $(j7, x =ja, eq. (1) reduces to a 1D form known 
as Harper's equation: 

Near the lowest band-edge of the zero-field limit, E&,, k,) = - 2t(cos k ,  + cos k,) and one 
recorvers, at first order in y, the known free fermions LL: E,/t = - 4 + (2% + 1) y (n 2 0). 
One way to get this result is to use y j  as a continuous variable and expanding both the 
difference and the potential terms in eq. (2). For a finite particle density v and a given flux $, 
the ground-state energy corresponding to a complete filling of a finite number of LL is 
known to be the same whatever the number of filled LL. The cause of this behaviour is the 
interplay between the energy cm and the degeneracy of each LL. Lifting this .degeneracy. 
of E(+, U) by the lattice potential is therefore a highly nontrivial problem (singular 
perturbation). We found that a semi-classical approach is an appropriate tool for the 
asymptotic expansion of E, to an arbitrary order in y. The method, which for y 2: 0 is 
equivalent to the so-called Peierls substitution [9], can be outlined as follows. Expand the 
dispersion relation ~(k,, k,) near the bottom of the band at y = 0 and then substitute k ,  by 
ylnK1 and k, by ylMK2.  Here Kl and K2 are magnetic translation operators with [Kl, K21 = i. 
In the present case one gets the following Hamiltonian: 

The first-order term in eq. (3) describes a simple harmonic oscillator, whereas the second 
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term is a perturbation. The final result is 

cn/t = - 4 + (2n + 1)  y - ((2n + 112 + l }  y2/16 + O(y3), n 3 0 (4) 

with the multiplicity D = (H Area)/$o. 
Consider now N fermions on a lattice of N ,  sites, so that v = N/N,,  and N p  plaquettes. It 

turns out that the appropriate variable to be considered is the ratio (called the filling factor) 
x = N/D = (NJN,) v/$. Using a standard argument [ l l ] ,  the total energy is given by (n is 
fixed here by the filling factor x)  

n-  1 
E = D  E , . + ( N - ~ D ) E , ,  n < x < n + l .  (5) 

r = O  

Taking 40) = - 4t as the origin of energies, one obtains 

2-=- ( Z n + l ) - n ( n + l ) -  -- - 
NCO E x ' I  X '} x i A ( ! T  

(6) I x((2n + 1)2 + 1 )  --n(n 4 + 1)(2n + 1 )  , n s  x < n  + 1 ,  
3 

where CO is the chemical potential at zero field and d = 64t. The second term in eq. (6) comes 
from the lattice contribution, whereas the first one is the standard Fermi sea energy in the 
continuum. In the absence of the lattice term, E assumes the same minimum value at an 
infinite number of different filling factors: x = 1 ,2 ,3 ,  ... corresponding to cusps. The cusps 
are symmetric and each minimum describes a state with the n-lowest levels completely filled 
the others being empty. Now, if the second term in eq. (6) is included, the following 
properties hold: 

i) the equality of the ground-state energy at different values of x is lifted out: the state 
corresponding to x = 1, is selected as the absolute minimum of E, whereas at x = n one gets 
%'/NCO = 1 - (2 + l/n2>4Co/3A, and local cusplike minima appear at x = 2,3, ... etc.; 

ii) the symmetry of the cusp of E vs. $ at x = n is preserved for 1/N, 8E'/a$ = k COB . 
* ( 1  - 8Co/d) independently of n. 

Result i) provides a perturbative proof for the conjecture v = $. Two questions arise from 
this finding: how general is the behaviour of E($, v )  found here for the square lattice? Is 
result i) stable when further terms in eq. (4) are included? The first question is simply 
answered by the following generalization of eq. (4) to arbitrary periodic lattice: 

Proposition 1. Suppose that near its minimum, E(kz, k,) assume the Taylor expansion in 

Then for y=O 
k = (kz,  k,), E(kz, k,) = 40) + w(ki + ki)/2 + O(lk18) (where o > 0). 

en=s(0)+-(2n+1)+-A2E(0){(2n+1)2+ w r  r2 l }  -... 
2 64 

where a = a m ,  - i alak, and A = a2/akf + a2/aky2. 0 
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If the lattice admits an inversion centre, namely if ~(k,, k,) = E ( -  k,, - kY), the last term 
in eq. (7) vanishes and one is reduced to the previous case, with a possible modification of w 
and A2c(0).  Therefore for usual lattice structures (square, triangular, honeycomb, 
generalized square, etc.), the absolute minimum of the ground-state energy is reached for 
x = 1, namely for + = vN,/Np. This results holds in general, provided the second-order term 
has the correct sign. Remark that the Hamiltonian need not admit only nearest-neighbours 
interaction to satisfy this result. The geometrical factor NJN, assumes the values 1, 1/2, and 
2 for square, triangular and honeycomb lattices, respectively, and the numerical finding of 
ref. [7] is recovered. In order to answer the second question, we have performed the next- 
order calculation of E,. A new term appears in eq. (4)  which can be written as 
y3{n3+(n+ 1)3}/192. In particular, for x = n  one gets the following expression for the 
energy per fermion (incorporating ~(0) = - 4): 

EItN, = - 4v + 2m2 - z2 v3/3 + 2 v4/48 - z2 v3/6n2(1 - m/8) . . . . (8) 

Here again the absolute minimum is realized for n = 1 (compare with @I). Similarly, the 
cusplike behaviour is preserved. However at this order in y, the symmetry of the cusps is 
broken. Indeed the slopes are given by 

where A = at, A'/A = 24t. In addition to the asymmetry of the cusp, an explicit dependence 
upon n takes place in eq. (9). 

2. Arbitrary fluxes. 

The previous result should actually apply to an arbitrary flux as long as the gap 
separating the LL does not close. Starting from the limit y = 0, a periodic potential splits the 
LL into subbands and this results in broadening and a very intricated rich spectrum. The 
situation becomes simpler at rational fluxes $=p/q,  where q subbands appear in the 
spectrum [4] .  Then each subband has the same spectral weight l/q. For instance if v = l/q, 
only the first subband is filled. Unless accidental degeneracy, the q subbands are separated 
by q - 1 gaps and within each gap the integrated density of states (IDS) is given by T -  + + s, 
where T,  s are integers labelling the various gaps in the spectrum [4] .  The couple T = 1, s = 0, 
corresponds to the main gap where the IDS is exactly equal to +. 

The stabilization of the Fermi sea at  + = v can be seen as follows, even though this is not 
yet supported by a rigorous proof. Let us start with simple LL, each having the degeneracy 
D. For N fermions, if the flux assumes the value +n such that nD = N ,  the ground state of 
the system will have the n-lowest levels completely filled, whereas the others will be empty. 
For our purpose, it is important to realize that whenever + = +n, the ground state is isolated 
and separated from the first excited state by a finite gap equal to the gap between the n-th 
and the (n + 1)-th LL of the one-particle Hamiltonian. At + # +,, when the highest occupied 
single-particle level is not completely filled, the ground state is degenerate and is not 
separated by a gap from the excitation spectrum. 

Assume now + = +, for some n, and let us turn on the interaction with the periodic 
potential of the lattice. As long as the gap between LL survives, the ground state remains 
nondegenerate and isolated from the rest of the spectrum. Having established that the 
ground state corresponds to n = 1 for low fields, this result remains valid for arbitrary 
values of the flux. Our argument is mainly based upon the continuity of the one-particle 
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spectrum with respect to $ and the strength of the interaction. This simply means that if the 
gap at x = 1 persists, x = 1 will continue to be stabilized. The situation is similar to the 
opening of a gap at the Fermi level in the Peierls instability of 1D chains, and is reminiscent 
to mode-locking in dynamical systems. A possible improvement of our argument, using 
homotopy concepts is under consideration. 

3. Cusplike structure. 

A semi-classical approach near an arbitrary rational flux pIq can be developed 
similarly [5,10]. One can prove rigorously 

Proposition 2. For a given rational value plq of v ,  the plot of the total energy E($, v )  as a 
function of $ exhibits cusps at q5 = (q - p) /nq  of flux values (0 < $ < 11, i.e. a dense set 
indexed by the integers m, n (gaps labels). Furthermore, at $ = v ,  the slope difference 
{aE+/a$ - aE-/a$} is given by the width of the gap labelled by m = 0, n = - 1. (Here we 

0 have adopted the notation m - n$ for the IDS inside the gap (m, n).) 

Proposition 3. Let E,(v) =E($ = v ,  v )  be the ground-state energy; it is a smooth function 
of v (namely differentiable at every order) except possibly at v = 0 and at every rational 

0 values v = p / q  for which the gap at the Fermi level closes. 

The proof of proposition 3, without being difficult, requires however an elaborate 
machinery of noncommutative geometry [12]. 

Regarding proposition 2, the following argument, valid at $ = p / q ,  illustrates the heart of 
the proof (the extension to  other cusps is immediate). Let us denote by (,U+($), ,U-($)), the 
gap corresponding to  an IDS equal to $ in the vicinity of $ = v .  At $ = v ,  ,U+($) (respectively, 
,U-($)) is the top (respectively, the bottom) of the subband below (respectively, above) this 
gap. Thus for $ > v ,  but $ = v, the IDS is bigger than v ,  whereas it is smaller for $ < v. In 
order that the IDS be equal to v (at $ > v),  the first LL at the top ,U+ of the last filled subband 
(the *valence band.) must be partially filled. Similarly at 9 < v ,  the same argument implies 
that the first LL at the bottom ,u->,u+ of the next subband (the *conduction band.) is 
partially filled. In particular, for $ > v ,  we get 

for the first LL at ,U+ corresponds to the energy { p + + O ( $ - p l q ) } ,  whereas ( v - $ )  
corresponds to the fraction of it which is empty. Thus, the slopes aE%$ at $ = v + O  are 
governed by the edge of the corresponding partially filled subband. This argument holds for 
every cusps corresponding to a jump of the Fermi energy, at absolute or local minima of E.  
In general we found the following simple result: 

where N(E, $) refers for the IDS at energy E and flux $. A direct consequence of eq. (10) is 
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Here aNB$ is the integer labelling the gap just above p+. At this point two remarks are 
of order. Firstly, the general situation corresponds to asymmetric cusps: aE'/a$ + 
+ aE-/a$ # 0 (see eq. (9)). Secondly, this result has been obtained for fixed N and fixed cell 
area. This has to be contrasted with the relevant discussion of ref. [13], relative to the 
analyticity of the energy under different conditions and for different problems. 

To summarize, we have proved perturbatively the validity of the stabilization of the 
Fermi sea by the gaps, with an optimal flux corresponding to one flux quantum per fermion. 
The explicit cusplike structure (asymmetry, dense set of singularities, ... > of the energy as 
well as the smoothness of the ground-state energy have been made precise. Our method 
allows for the investigation of other problems (i.e. staggered flux, periodic flux, etc.). 
Results pertaining to this class of problems will be reported in the near future. 
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