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Résume. 2014 On 6tudie l’énergie des électrons de Bloch sous champ magnétique en fonction du
flux magnétique 03A6 et du taux de remplissage 03BD. On calcule l’énergie totale E(03A6, 03BD) à l’aide d’une
nouvelle méthode de quantification semi-classique. Le minimum absolu est atteint pour un choix
optimal d’un quantum de flux par particule. Ce phenomene se produit pour différents réseaux et
sous des conditions assez générales. Pour 03BD fixé, l’énergie est une ligne brisée en fonction de 03A6.
Toutefois, l’énergie du fondamental est une fonction régulière de 03BD. Les implications de ces
résultats pour la stabilisation des Anyons et les phases de flux sont discutées.

Abstract. - The energy of 2D Bloch electrons in a magnetic field is studied as a function of the
filling fraction 03BD and the magnetic flux 03A6. Using a new semi-classical quantization method the total
energy E(03A6, 03BD) is calculated and shown to have an absolute minimum which corresponds to one
flux quantum per particle. This optimal flux phenomenon is shown to occur under large
conditions and for different lattices. An explicit cusp-like behavior of E 03BDs. 03A6 at fixed 03BD is found
both for the absolute and for the relative minima of E. Furthermore, the ground state energy is
shown to be a smooth function of 03BD. The implications of our results for the stabilization of Anyons
and the flux states are discussed.
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1. Introduction.

Very recently, the search for a possible failure of the Fermi liquid theory in high
Tc superconductors was at the origin of a new piece of physics for the Landau levels of Bloch
electrons [1]. One of the consequences of the convoluted structure of the energy spectrum is
the possible stabilization of the Fermi sea by the gaps which appear at every rational magnetic
flux 0. Indeed, Anderson [1, 2] was the first to realize the possibility of an optimal flux
corresponding to one flux quantum per particle. More precisely, for a given filling fraction v
of fermions in a 2D lattice, the actual ground state is achieved for 0 = v. It turns out that this
relation is at the heart of the Anyon superconductivity [3], where it is called the
« fundamental relation ». Since, this conjecture has received a rather strong numerical
support from various authors and for different lattice structures [4, 5]. Furthermore, the plot
of the total energy at fixed v exhibits clearly a cusp-like structure with an absolute minimum at
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41 = v [5]. This numerical support has been facilitated by the present knowledge of the
energy spectrum. Indeed, the spectrum of tight-binding electrons on a 2D lattice in a magnetic
field has an extremely rich structure. The generic features of the single particle spectrum (self-
similarity, nesting properties, gap-labelling, etc.) are by now well studied [6, 7] for various 2D
lattices.

Actually, the complete absence of analytical or rigorous results for this very important
conjecture motivated the work presented in this paper. A summary of our results has already
been announced elsewhere [8]. A detailed exposition is the main purpose of this paper. The
method we used is a semi-classical approach for Bloch electrons in a magnetic field. A recent
powerful formulation of this problem is the object of reference [9]. Within the same algebraic
framework, we investigated the zero field limit as well the case of an arbitrary rational flux.
The present paper is a direct illustration of the results obtained in reference [9].
The paper is organized as follows. In section 2, we work out the case of zero magnetic flux,

where the property of optimal flux at 41 = v is explicitely obtained. Section 3 is devoted to the
case of an arbitrary rational flux 41. The detailed structure of the energy E ( 41, v ) as a function
of 41 and v is worked out in section 4 : cusps, symmetry, analyticity of the ground state energy,
etc. Concluding remarks are the object of section 5, where the possible extensions of our
results are briefly indicated.

2. Fermi sea energy : weak field limit.

In this section, we consider the Fermi sea energy of N spinless fermions on a 2D lattice
(Ns sites, Np plaquettes). At very weak magnetic field, the lowest Landau levels are given by
the standard expression : E,, = e 0 + 8 H n + 1 to first order in the magnetic flux. Here

2

eo denotes the lower edge of the zero field band (e. a. Eo = - 4 t for a square lattice) and /3 is

defined via f3H = 2 t y, y = 2 77- 0 . Each level admits a degeneracy D, which is equal to the
Oo

ratio of the total flux (magnetic field x system area) to the flux quantum 41 o. It turns out that
for vNs - N fermions, the appropriate variable for the energetics is

where v is the lattice filling factor and 0 is the reduced flux through each of the
Np plaquettes (.0 o = 1 is the sequel). The ratio N pl N is a geometrical factor equal to 1 (resp.
2 and 1/2) for a square (resp. triangular and honeycomb) lattice. Omitting the origin of energy
eo, the total energy E is given by

where o = 8 HX Lis the chemical potential at zero field.
As a function of X, E exhibits oscillations (Fig. 1) and assumes the same value

2 E / N (0 = 1 at X = 1, 2, 3, ... Each of these degenerate states corresponds to the complete
filling of only the first X = 1, 2, 3, ... Landau levels. Close to these degenerate minima, E has
a down cusp-like behavior. The cusps are symmetric and the oscillation of the corresponding
magnetization M = - dE/dH appears to correspond to the number of fermions in the

partially occupied levels, each having the same magnetic moment.
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Fig. 1. - Cusp-like structure of the Fermi sea energy E of Bloch electrons, with (a) and without (b) the
underlying lattice potential. Here v is the lattice filling fraction, 0 / 0 () the reduced flux per plaquette
and Co is the chemical potential at zero magnetic field.

The infinite degeneracy of the ground state energy E is lifted if the crystal potential is

considered. To see this consider the case of the simple square lattice, where to the second
order in y :

The same calculation can now be repeated, with the final result (n - X - n + 1 ) :

In particular, for X = n filled levels :

This implies that X = 1 is selected as the absolute minimum of E, the other minima are
reached at X = 2, 3, ... etc. Therefore the infinite degeneracy is lifted by the crystal potential.
Furthermore the symmetric cusp-like structure is preserved at X = n :

The above result thus provides a perturbative proof of the conjecture (k = v. However, two
questions are raised by this finding : how general is the behavior of E found here for the
square lattice ? Is the result thus obtained stable when further terms in equation (2.2) are
included ?
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In order to answer the first question, we consider the general case worked out in reference
[9], and corresponding to :

Here £ (k ) is the zero field dispersion relation, a - a/ak1 - ia/ak2, L1 = a2/akf+ a2/aki.
Using an obvious notation, we get as before a simple expression for E. In particular for
x= n:

where The

previous conclusion holds also in this general case. In particular, for the cases where

E (k) = e (- k) holds (i.e. lattice with inversion center symmetry), the last term in equation
(2.4) vanishes and one is reduced to the previous situation of the square lattice, the only
difference being the value of (&#x3E;0) and A2E (0). Therefore, for usual lattice structures

(square, triangular, honeycomb, generalized square, etc), the absolute minimum of the
Ns

ground state energy is reached for X = 1, i.e. for cp = N S 1). It is important to notice that this
Np

conclusion is true providing 41 0. For inversion-symmetric lattices, this appears as the only
condition for the validity of the obtained result. The geometrical factor TVg/Ap assumes the
values 1, 1/2 and 2 for square, triangular and honeycomb lattice respectively, and then the
numerical finding of reference [4] is recovered.

In order to answer the second question, we have considered the effect of the next order
perturbation calculation on En. In the case of the simple square lattice, we have [9]

valid to third order in y, where à = 64 t, à’ = 24 x 64 t 2and 8 H = 2 t Y. A simple
calculation leads to :

This shows that the absolute minimum is realized at n = 1. Furthermore, the cusp-like
behavior is preserved. However, at this order in y, the symmetry of the cusp is broken.

Indeed, at X = n the slopes are given by :

Therefore, in addition to the asymmetry of the cusp, an explicit dependence on n takes place
in equation (2.7). This general behavior of an asymmetric cusp is expected to be a generic
feature. Its validity is implied by the following general statement. Consider a discrete set of
energy levels : En = Ha n (H), each having a degeneracy Dn - gn H, n : 0. A necessary and
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sufficient condition for a symmetric cusp of the total energy of N fermions at H = Hn
corresponding to the filling of the first n levels, is

This condition, which is satisfied to second order in y, is violated at the next order, as can be
seen in equation (2.6).
Example 1 : Consider first the case of a filling factor v on the simple square lattice. To

second order in y, one has

If the next order corrections 0 ( y 3) to Landau levels are taken into account, one obtains :

Clearly, the minimum of E is always reached at X = 1. It is interesting to notice that the free
fermions limit is obtained from equation (2.9) by taking X = oo . Furthermore, we mention
the very high accuracy of our result (Eq. (2.9)) in comparison with available numerical data
[5].
Example 2: Let us mention the case of a generalized square lattice with long range

hopping : first (tl), second (t2) and third (t3) n.n. interactions. For this model, the Landau
levels are given by

For the total energy, and a filling factor

This result generalizes the previous one (Eq. (2.10)) and can be used to check numerical
results.

3. Fermi sea energy : arbitrary flux.

The previous result can actually be generalized to an arbitrary flux. Starting from the weak
field limit y - 0, a periodic potential splits the Landau levels into subbands and this results
into broadening and a very convoluted rich spectrum [7]. The situation becomes simpler at
rational flux 0 = p /q, where q subbands appear in the spectrum. Each subband has the same
spectral weight 1 lq. For instance, if the filling factor is v = 1 lq, then the lowest subband can
be completely filled. Unless accidental degeneracy, the q subbands are separated by
q - 1 gaps. Within each gap, the integrated density of states (IDS) is given by r-0 + s where r
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and s are relative integers labelling the different gaps in the spectrum (gap labelling theorem
[10]). The couple r = 1, s = 0 corresponds to the so-called main gap, where the IDS is exactly
equal to 0. The stabilization of the Fermi sea at the flux 0 = v is actually a consequence of
the following argument. Let us start with simple Landau levels et, each having the degeneracy
D. For a system of N fermions, if the flux assumes the value p n such that N = nD, then the
ground state of the system will have n lower levels completely filled and all higher ones empty.
For our purpose, it is important to realize that, when 0 = p n’ the ground state is isolated,
separated from the lowest excited states by a finite gap. At 0 = qb n, when the highest
occupied single particle level is not completely occupied, the ground state is degenerate.
Assume now 0 = 0 n for some n, and turns on the interaction with the periodic potential of

the lattice. We claim that, to any order in perturbation theory, the ground state remains non-
degenerate. The non-degeneracy of the ground state cannot be altered by the interactions,
even if the radius of convergence of the perturbation theory is zero. Having established that
the ground state is realized at n = 1 for weak flux, this result remains valid at on arbitrary
finite value of the flux.
Our argument is mainly based on the continuity as a function of the strength of the

interaction. The situation is somewhat similar to the stability of the shell structure of atoms
and nuclei. Another important ingredient of the argument is the special feature of 2D Landau
levels in the sense that their degeneracy is a topological data : the total flux through the
lattice. A possible improvement of our argument, using homotopy concepts, is under
consideration.

4. Analyticity and cusp-like structure.

As outlined in reference [9], the semi-classical approach allows for the calculation of the
Landau level structure near an arbitrary rational flux p /q. The expansion parameter is

0 -plq and explicit results have been obtained. In this section, we discuss some general
properties of the Fermi sea energy E(o, v ) as a function of the flux 0 and the filling fraction
v.

4.1 ANALYTICITY. - The following statement can be proved rigorously [11]. If

Eo ( i, ) =-= E (-0 = v, v ) is the ground state energy, then Eo is a smooth function of v except
possibly at v = 0 and at every rational value v = p /q for which the gap at the Fermi level
closes.

By smooth we mean differentiable at every order. This result does not exclude the

possibility that EO(t,) be analytic with respect to v. The proof of the analyticity property,
without being difficult, requires however an elaborate machinary of non-commutative
geometry. A detailed account will be published in a separate paper [11]. Let us give a hint on
the proof. The fundamental idea is the analytic form of the Hamiltonian when viewed as an
element of the rotation algebra A (a ), where a =- 0 / 0 0 in the notation of the present paper.
As recalled in reference [9], any element of .ae ( a) can be expanded as a Fourier series :

In the case of the Hamiltonian H, a - am ( a ) is a continuous application and am corresponds
to a_ m ( a ). Furthermore, -r (a) = ao ( a ) where r denotes the trace per unit volume. Take for
instance the case of the Harper problem : H = U + v + U* + V *. In this case, any
continuous function f (H) of H admits Fourier coefficients which are continuous in a.

Let us denote by PF = X (H:5 EF) the eigenprojector over energies below the Fermi
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energy EF- If Ep belongs to a gap, then PF can be written (Cauchy formula) as

But z - H is analytic in a. Therefore the Fourier coefficients of

PF are analytic and the Fermi sea energy ï(PF7:f) is also analytic.

4.2 EXISTENCE OF THE CUSPS (Figs 1 and 2). - In general, the following proposition holds.
For a rational value p /q of 11, the total energy E (0, v ) exhibits a cusp (as a function of ¢) in
the vicinity of a dense set = mq p of flux values (0 - 4&#x3E; - 1 ), m and n being the gaps

nq
labels. Furthermore, for = v the slope difference (aE+ /ao (aE- /ao ) is given by the
width of the gap labelled by m = 0, n = - l. Here we adopted the notation m - no for the
IDS with the gap (m, n ).
This proposition can be proved rigorously [11]. The following argument, valid at

rb = v, illustrates the heart of the proof (the extension to other cusps is immediate). The local
behavior of E(0, i, ) at 0 = v is controlled by the first Landau level at the subband edge we
consider. For c/J v, the IDS is bigger than v above the Ist Landau level, whereas it is smaller
below. In order that the IDS be equal to v (at 0 a v), the first Landau level at the top
e+ of the last filled subband (« valence subband ») must be partially filled. Similarly, at
0 -5 v, the same argument implies that the first Landau level at the bottom e- &#x3E; e + of the
next subband (« conduction subband ») is partially filled. So the local behaviour of

E (0, v ) is controlled by the formula giving the levels as a function of c/J -l!... In particular,
q

the slopes aE::!:- /04&#x3E; at 0 = v ± 0 are governed by the edge of the corresponding partially
filled subbands. This argument holds for every cusp due to a jump of the Fermi level (Fig. 1).
The calculation of the slopes can be performed as follows. Let us first assume that

rb = v + 8, where v is a fixed fraction and f3 « v. /3 = 0 corresponds to a Fermi level located

Fig. 2. - Picture of the Fermi level jump (a) at a = v between the filled subbands and the empty ones.
The associated cusp of the Fermi sea energy (b) is shown. Here a denotes the « magnetization » of the
filled subbands at « = v.
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at e’ (0 ), i.e. the top of the last filled subband. For Q ± 0, the Fermi level moves to the right
and the total energy becomes :

The first term in equation (4. 1) corresponds to the energy if the « valence » subbands are
completely filled at 0 = v + 8. The second contribution describes the deficit (- 6 ) in energy
due to the partial filling of the first Landau level at the right of e+ . The first order terms in 6
have been retained and then

The physical meaning of the coefficient a is that of the magnetization (to the right) of the
« valence » subbands at 0 == v (see below). Therefore,

Similarly, the behaviour of E (0, v ) at 8 s 0 is given by :

and then

This implies in particular that E(.O, v ) admits a cusp at 4&#x3E; == v . The difference between the
two slopes is given by : aE’laO - aE-la-0 = ?_ - e, which is the energy gap between the
« valence » and « conduction » subbands. This result is actually a particular case of a more
general formula. For a given v, assume 0 chosen such that the n lowest subbands are filled
(e.a. local minima of E). Therefore, 0 = zlm and :

(A further generalization of Eq. (4.7) will be found below).
More generally, if the ground state is defined by 0 = t, = p /q, then the other singularities

of E(o, i, ) are located at cP given by p /q = m - no. Here m and n are the gap labels.

Therefore, the cusps also occur at :

The constant 0 «-- q5 -- 1 restricts the allowed values of m to : 0 - m - n + E. for
q

n ::&#x3E; 0 and p lq :&#x3E; m :::. n + p /q for n « 0. This leaves us with a dense set of flux values, where
E admits a cusp behavior.
At this point two remarks are of order. First, the generic cusp is asymmetric :

aE+ /ao + aE - /ao :0 0. Explicit calculations at low fields (Eq. (2..7» agree with this
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conclusion. Secondly, our results have been obtained for a fixed number N of fermions and a
fixed unit cell area. This has to be compared with the pertinent discussion of reference [12]
relative to the analyticity of the energy under different conditions and for different problems.

4.3 EXPLICIT FORMULA FOR THE CUSPS. - The following formula is a generalization of
equation (4.7) (see proof below)

- -1 , .

where N(E, 0 ) refers to the IDS at flux 41. An immediate consequence of equation (4.8) is
the following :

However, for e’ :5 e :5 e -, i.e. within the gap, the gap labelling theorem implies that

2013 = integer independent of 0 or E. So,
a 4&#x3E;

The result, equation (4.8) leads to an explicit formula for the slopes, and can be used for
practical purposes. The proof is a simple matter of calculation. For this, starting from
equation (4.1) giving the definition of a :

a partial integration gives :

and then

The same calculation holds for aE- /a4J and this implies equation (4.8).
It is interesting to observe that equation (4.10) is somewhat the « dual » of the formula [ 13]

giving the compressibility of interacting fermions, restricted to the lowest Landau level :

The only difference is that, v in equation (4.11) refers to the filling the lowest Landau level,
whereas v in equation (4.10) is the lattice filling factor.
Remark. The analysis leading to the cusp structure can actually be repeated in the cases where
the gap closes. A typical example is provided by the simple square lattice at q5 = 1/2. In this
case the gap closure occurs at e = 0, and the (relativistic) Landau levels are : En = ± (8 n y )1/2
with y = 2 w (0 - 1/2) =- 2 irB. The same reasoning leads to (,6 a 0) :
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Thus, there is no more cusp and this is consistent with the absence of the gap.

4.4 MAGNETIZATION OF THE FILLED SUBBANDS. - In the calculation of the slopes, a new
quantity appeared : a. It turns out that a can be expressed simply, using the differential
calculus outlined in the Appendix. For the sake of simplicity, we consider the case where the
Hamiltonian does not depend explicitly on the flux a = 0 /0() (e.a. Harper problem). In this
case aH = 0. We are interested by a m JÙ = ar (PH) - a T (PH) where P is the eigen-

a«

projector on energies below the Fermi level and T is the trace per unit volum. Applying
equation (A.1 ) of the Appendix with A = P and B = H, one obtains

The first term can be calculated as shown in the appendix. Indeed, one has

and

This implies :

Further simplifications are obtained from :

and this leads to the final expression

This original expression for A can be interpreted as the difference

between the « magnetization » M- of the filled subbands (fermions) and that M’ of holes
occupying the empty subbands :

with

5. Conclusion.

Let us first summarize our main results. In this paper, we have presented a detailed study of
the energetics of a Fermi gas E ( l/J, v ) as a function of flux 0 and filling v. A non-regular
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behavior of E(o, v ) at fîxed v has been shown to take place. In particular, a cusp-like
structure is exhibited. We have calculated the associated slopes at 0 == 1, as well as the
relative minima of E(l/J, v). In general the cusps occur on a dense set of values of 0. The
procedure we used is based on semi-classical ideas, which we believe are the appropriate tools
to handle the singular perturbation problem at hand : selection of the lowest Landau level at
weak field in the infinitely degenerate case of free fermions.
The compressibility property of the Fermi gas in the ground state (i.e. at v) results

from general considerations leading to the analyticity of E(O = v, v ) as a function of v.

Finally, the asymmetry of the cusp at absolute or local minima of E (0, v ) vs. 0 is due to the
finite magnetization of Landau subbands at rational flux. An explicit and original expression
for this quantity has been derived here.
We conclude this paper with three remarks :

i) the possible analogy between the stabilization at v by the gaps and Peierls

instability has been noticed in reference [14]. In both cases, one is reduced to a 1 D problem
with a one particle spectrum having an infinite number of gaps. The interactions between
fermions mediated by the lattice are at the origin of the stabilization phenomenon in both
cases. Numerical support [15] for this picture in the 1 D Peierls problem is well known.

However, we believe that the Fermi gas problem in a magnetic field is more transparent
because of the absence of mean-field approximation for instance. Furthermore, beside a very
simplified model [16], there is no general proof for the existence of Peierls instability. For this
reason, we believe that some deep relation should be found between these two problems ;

ii) a more rigorous justification of our argument in favor of 0 = 1, as absolute minimum, is
called for. In some sense the situation is reminiscent of the proof of the labelling-gap theorem
[10]. Therefore, we believe that homotopy considerations are probably behind this general
result ;

iii) through this paper we have considered only the case of a uniform magnetic field. A
natural question arises : what happens if the flux distribution is not so regular ? Partial
answers in the case of a periodic flux are now available and will be published elsewhere.

Appendix.

In reference [17] a new type of differential calculus has been used. The purpose of this
appendix is to recall the derivation rules, for the elements of the family {A ( a )} of rotation
algebras. This allows us to manipulate algebraic quantities as a function of a ( == l/J / l/J 0 in the
notation of the present paper). Two principal rules are of importance for us :

(1) For A and B in the universal rotation algebra :

where a = v /va and ai£ = alak,,. The last term in equation (Al) stems from the non-
cummutative aspect of A(a).

(2) If A - 1 exists, then

These two formulas are the key point in proving important results, such as Streda’s formula,
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the Wilkinson-Rammal formula, etc. Here, we illustrate (Al) in the case : A = B = P, where
P is an eigenprojector. Using p 2 = P, , one deduces from (Al) :

Multiplying by P and taking the trace per unit volume leads to :

where C - [dlP, d2P] is the commutator of dlP and d2P. A similar result holds for

Then, using T (C) = 0, one deduces :

Stated otherwise,

where Ch (P ) is the Chern class of the projection P. Equation (A4) is the so-called Streda
formula [13].
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