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Résumé. — Les méthodes algébriques que I'on a introduites récemment pour ’étude des électrons
de Bloch sous champ magnétique uniforme sont généralisées au cas des champs périodiques. En
utilisant une approche semi-classique, on étudie le cas ou la maille magnétique est commensurable
avec celle du réseau. En général et selon la valeur ¢ du flux magnétique moyen a travers la cellule
élémentaire, deux cas distincts semblent se distinguer. Le premier cas est ¢ # 0, ou la structure
en niveaux de Landau est retrouvée (cas non commutatif). Dans le second cas ¢ = 0, on obtient
une structure de bandes non triviale (cas commutatif). Nos résultats sont illustrés avec des
exemples simples. En particulier on montre, sous certaines conditions, que le mécanisme de
stabilisation de la mer de Fermi, avec un quantum de flux par fermion, se généralise au cas d’'un
champ magnétique périodique.

Abstract. — Algebraic methods recently introduced for 2D Bloch electrons in a uniform magnetic
field are extended to the case of periodic magnetic fields. Using a semiclassical approach, we
investigate the case where the magnetic unit cell is commensurate with the lattice unit cell. In
general and according to the value ¢ of the average flux through the magnetic unit cell, two
distinct cases take place. The first one corresponds to finite values of ¢, where the usual structure
of Landau levels is recovered (non commutative case). In the second case where ¢ = 0, a non
trivial band structure is obtained (commutative case). Our results are illustrated by simple
examples. In particular we show that, under certain conditions, the mechanism of stabilization of
the Fermi sea by the gaps (with one quantum flux per fermion) holds in the general case of
periodic magnetic fields.

1. Introduction.

In view of the fascinating behavior of two dimensional (2D) electron systems in a strong
magnetic field, it is natural to consider more general problems where the magnetic field is no
longer uniform. In this paper, the third in a series, we consider the case of periodic magnetic
fields acting on fermions moving on a discrete 2D lattice. The particular case of a uniform
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magnetic field has been the subject of various contributions during the past. Recent progress
and the state of the art have been summarized in references [1, 2]. Part of our motivation for
studying this general case comes from the recently developed methods in non commutative
geometry to investigate some properties of 2D electrons in a uniform magnetic field [1-5].
Among various aspects, let us mention some basic results obtained so far by this approach :
justification of Peierls substitution, new differential calculus which allowed the investigation
of the fine structure of the energy spectrum, semiclassical methods for the calculation of the
energy gap boundaries, rigorous proof of the Quantum Hall Effect, etc. On general physical
grounds, some of these results are expected to survive in more complicated situations such as
the periodic magnetic flux case. Another reason for working this kind of problem is the
spectacular result obtained by Novikov et al. [4] for the free-lattice case, where the ground
state has been fully characterized [6].
The questions we try to answer in this paper are two interrelated problems :

1) What are the appropriate algebraic tools to be used in the periodic flux case (generalized
rotation algebra, etc.) ?

2) How much different is the energy spectrum in that case in comparison with the uniform
flux case ?

The paper is organized around these two questions, and rather traditional aspects are left
out. In section 2, we summarize some of the known results for the problem at hand and give a
rather consistent set of notation and definitions. Section 3 is devoted to the treatment of two
simple examples : the strip problem and the checkerboard lattice. There, we work out the
algebraic formulation and the quantization procedure needed for semiclassical calculations.
In section 4, the stripped flux lattice is considered in general and the fully general problem is
worked out in section 5. Some applications of our results are given in section 6 : the increase
of the energy levels by the magnetic distorsion, the stabilization of the Fermi sea by the gaps.
Our concluding remarks are summarized in section 7.

2. Periodic magnetic fields.

The most important work on this class of problems is probably due to the soviet school. To
our knowledge, the spectrum of 2D electrons in a periodic magnetic field B(x, y) has been
investigated first by Novikov et al. [6]. Attention has been focused on the lowest Landau level
as well as its evolution under the action of a crystal potential considered as a perturbation. To
be self-contained, a brief summary of this work and its extension is described in section 2.1.
The general problem of a periodic crystal potential and a periodic magnetic field is defined in
section 2.2. In this respect, the same notation as in references [3, 4] will be used.

2.1 FREE PARTICLES IN A PERIODIC MAGNETIC FIELD. — The problem considered in
reference [6] is relative to a periodic magnetic field B(x, y), doubly periodic and directed
along the z-axis :

B(x+T,y)=B(x,y+T,) =B(x,y);

gy s
ax dy’
04, 04,
T4+ —2=0. 2.1
8x+ ay @

Here (4,, A,) is the vector potential, which can be chosen as :
__dF, 4 = oF

x _5’ y—a (2-2)
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F being a solution of
(02 +32) F(x,y) = B(x,y). (2.3)

One of the main results of reference [6] is relative to the degeneracy of the lowest Landau
level (LLL). In fact, it turns out that the addition of any doubly periodic increment to the
homogeneous field leaves the LLL fully degenerate in spite of the loss of symmetry.
Furthermore, the magnetic flux ¢ through the magnetic unit cell T, T, is the principal
topological characteristic. In particular, for integral or rational flux, the wave function of the
ground state can be obtained in terms of elliptic functions. Qualitative arguments have been
used [6] to describe the magnetic band structure resulting from a weak potential perturbation,
periodic with the same lattice.

These surprising results deserve some comments. First it is useful to recall that in the
presence of a magnetic field, wave functions exhibit nodal points rather than nodal lines, the
latter being a generic occurrence in systems with time reversal symmetry. The fact that the
LLL wave functions are completely determined by the locations of their nodes is due to
constraints of analyticity and periodicity [7]. Due to the double-periodicity of B(x, y), the
problem is equivalent to an electron on a torus and the number of nodes of the wave function
is now finite and given by the (integral) number of quantum flux ¢.

This description provides a totally general and gauge-independent characterization of any
state of the LLL. In particular this gives an opportunity to study the boundary condition
sensitivity in a rather unusual context. In fact if one defines a random potential over the torus,
the sensitivity of the wave function to changes in boundary conditions can be probed by
considering the « brainding » of the zeros. Such an idea has been exploited in reference [8] to
probe the sensitivity of LLL wave functions in disorder-broadened bands to changes in
boundary conditions. In particular a marked difference in behavior has been found between
localized and extended states.

2.2 2D LATTICES AND PERIODIC MAGNETIC FIELD. — In this paper we investigate the tight-
binding model, in a periodic magnetic field. More precisely, we are interested in the
eigenvalue problem :

ep(r)= 3y texp(iv,) ¥ (') 24

rkr

describing the hopping of electrons between nearest-neighbouring sites (r) on a lattice under
a magnetic field. Here ¢ (r) denotes the wave function amplitude at site r and ¢ is the hopping
matrix element.
Without loss of generality, the energy scale ¢ is fixed at ¢ = 1. In equation (2.4), the phase
factor vy, is
v =27 | ds-A(s) @2.5)
b0 J,

and describes the net effect of the vector potential A(s) on the hopping matrix elements.

For the sake of simplicity, we will consider the square lattice case. Extensions to other
lattices do not offer a major difficulty.

The periodic magnetic field is specified by a magnetic unit cell g, x ¢, (¢g;=1,
q, = 1) corresponding to a pattern of ¢, g, magnetic fluxes bs ., With 1 <o =g,
l=o0,=gq,

As will be shown below, this is all the information we need in order to solve equation (2.4).
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. . . 2
Using the notation of our previous papers, we have v, o = il ¢+, for the reduced

o
fluxes. Examples of periodic patterns are given in figures 1, 2. For example, ¢, = ¢, = 1,

describes the uniform field case ; g, = 1 and arbitrary g, corresponds to the stripped lattice,
etc.

n,
Yo Y1 Yo
Yo " Yo
e, T
ey n
(@)
)
‘YO Yl Yq—l
Yo T Yo-1
€2 LN I I N
€1 - n,
(b)

Fig. 1.— Notation used in the text for the magnetic fluxes: (a) simple stripped case with
q = 2, (b) generalized stripped case.

The main purpose of the next sections is to provide an algebraic formalism to handle the
present problem. Therefore well known properties such as: invariance under
b0, Poio,+ Pos Poo, > — Do oy etC., Will be left out. Also, special properties of the
spectrum (opening and closure of the gaps, nesting, hierarchical structure, gap labelling, etc.)
will not be addressed. The reason is simply that many of these properties, if they survive in the
periodic flux case, are natural consequences of the algebraic approach. Of course the same
remark holds for properties specific to the rational flux, commensurate effects, etc.
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Fig. 2.— (a) simple checkerboard lattice, (b) generalized case for arbitrary g, and g,.

It is important to notice that the problem worked here is somewhat different from the free-
lattice case. In this respect the tight-binding model must be viewed as the infinite coupling
limit of a lattice potential. Accordingly we limit our calculations below to the weak field limit,
where much can already be learnt. Specific extensions to other limits (e.a. rational flux, etc.)
can be investigated using the same machinary that we have developed in the uniform magnetic
case [3, 4].

Before going to examples let us specify some of our notations.

We consider the lattice of figure 2b.
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The wave function will be written as a vector value wave function in the following way :
errz(el,z2) =yl +r,q9:0,+1r) O<ri<g;-1 tez. (2.6)

Each component ¥, ,, can be interpreted as a wave function on a renormalized lattice whose
elementary plaquettes are given by the unit cell of periods with size ¢, and g5.

We can now rewrite the Schrédinger equation (2.4) as a matrix equation for the
components of ¥. This will be given in many details in the next sections.

However we remark that the Schrédinger equation (2.4) is easily expressed in term of the
magnetic translations U; and U, [9]

id, (8

p(gibi+r—1,9,0,+7ry)
v(g b+r,q,0+r,-1). 2.7

WU, 1,18 +r,q20,+71) =¢

i, (0

(U 1(q1 b+ 7,90, +1) =¢
Indeed equation (2.4) for a square lattice can be rewritten as :
U+ U+ U+ UF)y =Ey . 2.8)

For other lattices, similar expressions are found involving only polynomials with respect to
U, and U,.

Let us give the expression of these two operators in terms of the vector ¥. To do so we
introduce the ordinary translation operators 7, and 7, acting on wave functions as follows :

(T ¢)(n,ny) = ¢(n—1,n,)

(T ¥)(ny,ny) = g(n,ny— 1) (2.9)
then we get :
w, v, 0 =*@w _ @ r=1,2 g  —1
[0, %1, =P 19, 00 r=0
W, v, =" w __q ra=1,2, g ,— 1
[0, ¥1,,0) = ST ) r,=0. (2.10)

In the coming sections we will compute various gauge transformations by simplifying the
expression of the Schrodinger operator suitable for semiclassical expansion.
We also use finite Fourier transform :

L] 92

Z Z 7’1’2

¢
Y
< ) qlq2,l_1,2 1

a  » 2
7(51’32) - Z 2 ‘Vr,rzexpli

7 rzsz] . (2.11)
9192, 71,1

3. Two examples.

Before considering the general situation with arbitrary magnetic patterns, we will discuss first
two specific examples. The first one is the simplest stripped flux lattice where two values of y
are allowed : y, and y,. The next section will be devoted to extend this case to arbitrary
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g x 1 patterns. The second example is the so-called checkerboard or staggered flux lattice.
This is actually a special case of 2 x 2 patterns, which is generalized in section 5.

3.1 STRIPPED FLUX LATTICE.

3.1.1 Algebraic formulation. — The notation used is depicted in figure la.
Using formulae (2.10) we find immediately :

0 MM T. 0
U1= . 1 U2= (02 T ) (3.1)
emz 71 0 2

where 7i; i = 1,2 are the lattice position operators.
By the following gauge transformation

R - (1 0 ) 32)
0 e ™"

0 emz(YoJr Y1) T,

U =RU, R '= )

1 1 (1 0 )

T, 0

Uy =RU, R '= |2 (3.3)
0 eMrT

which allows us to see that, as far as the algebra is concerned, all operators of interest are
expressed as matrices with elements given by polynomials with respect to U and ¥ where :

U= eiﬁ2(70+ 71) T,
V=T,. (34
They are a pair of unitary operators satisfying

UV =e2"VU 2y=7y4+7,;- (3.5)

As shown in the previous paper [2] we can realize U and ¥V by means of two self-adjoint
operators K; and K, with :

a2 iy 12
K, Ky]=i, U=e 2V 5 p_ev & (3.6)

>
Let us introduce the new translation operator :
~iv,/ 'K,

u, =e r=20,1 3.7

thanks to the new non commutative gauge transformation given by :

w0
the magnetic translation operators are transformed into :
Ul =R U R'~' = (0 "")
u 0
Ul =R Us R/ = ((’)’ (I’/) (3.9)
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3.1.2 Quantization and semi-classical calculation. — Using the above notation, the Hamilto-
nian J¢ can be expressed as :

—X=4—(U+U*+ U +Uy*)=4—-H (3.10)

and in matrix representation H is:

V+V* u, + uf
H = . 3.11
(u0+u1* V+V* ( )

Classically, ¥, = v, = 0, the energy spectrum of H is easily calculated as : 2 (cos k, = cos k).

S 12 i 172,
The quantized version of His given by: ¥ =e'” %%, U, = e 7%/ 7% 1 _ 1, 2. Here we use
Weyl’s quantization scheme, with two operators K; and K, satisfying [K;, K,] = i.

Within this picture, H can be decomposed into a sum of two terms :
H =2cos (y'?K,) 1+ H, (3.12)

where 1 denotes the 2 x 2 identity matrix and H, is only function of K. It turns out that
H, is a Jacobi-like matrix (tri-diagonal) and a discrete Fourier transform is helpful to perform
practical calculations. In what follows, we outline these calculations in some detail. For a
given set {¢(r)}, 0 <r <g — 1, we define the discrete Fourier transform by :

P = T @YD), w=exp Qir/q)
oy @ (). (3.13)

Under this unitary transformation H; becomes :

3 1 —A—A* —A+A*)
H, =_— 1
! 2<—A+A* A+A* (3 4)

— iy iy . . .
where 4 = u; + uf = exp ( _T/z—l Kl) + exp < ——1702K1 ) , A* being the hermitian conjugate
Y Y

of A.
With this formulation H = H, + 2 cos (v /?K,). 1is easy to manipulate and particularly for

semiclassical calculations. In what follows, we limite our discussion to the lower edge of the
energy spectrum. More precisely we shall calculate the flux dependence of the Landau energy

levels of H close to E = 0. For this, we use the same procedure as for the uniform field case
[3]. Our starting point is Schur’s formula which can be written as :
Hq=PHP+PHO—1  0RP, (3.15)
E—-QHQ

here P and Q are the eigenprojectors,

=) e 8)

over the subspaces spanned by ¢ (0) and ¢ (1) respectively. The resulting effective
hamiltonian H,g is simply a 1 x 1 matrix and depends explicitly on the unknown energy E.
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The semiclassical result is obtained by expanding ﬂeff at low y,and y,. Simple calculations
lead to:

Hyg=v(Ki+ K} +0(v?) (3.16)

for first order in y and this is nothing else than the simple harmonic oscillator. The
quantization of H g gives E,=v(2n+1). The second order result is obtained through a
simple iteration of equation (3.15), with E = E, as an input value. The final result reads as :

- 1 .
Hy = y(Ki+ K3 + 3 (K} + K3) x

2 2

Yo+ 7i 5
+ (—76‘—71‘+70713+7173)+32—72(70—71)]

+—
12 2442 1242

2 4 4
Yo+ VY 1
x[z. ‘

- L K KK (o= 71+ o K= 71 (3.17)
Using the known results :
(n Kfmy =200+ @n+ 1))
(1] K K3K, |n) = £ [5+ @n+ 1))
(n| K2 lny =2 @n+ 1),

we obtain the energies :

2
E,=y@neD-X 1+ @ne 1P+ (-7 +0GH.  G19)

The physical meaning of this simple result will be discussed in section 6.1. Notice that
E, is invariant under the permutation y,« 7y; and reduces to the known result for
Yo= 71

3.2 CHECKERBOARD FLUX LATTICE. — The notation is depicted in figure 2a. Proceeding in a
similar fashion, the magnetic translation operators U, and U, (after gauge transformations)
can be written as :

. (0 U - 0 e My
e O we(8, ) ow
and the corresponding Hamiltonian is given by :

—K =4 (Ui +U*+U§+ Uj*) =4 —H. (3.20)

Equation (3.20) is actually a starting point for performing semiclassical calculations as will be
shown below.

We use the quantization rules : U = exp (i (v)?K;), V = exp (i (y)"* K,) in the Hamilto-
nian expression :

H = ( 0 U+ Utt+e 1 4e V*). (3.21)
U+U*+eVv*ie 'y 0
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At low fields, we expand as usual and use Schur’s formula, with the following spectral

projectors : _—_% (i i ), 0= % ( i “11 ) The effective Hamiltonian H. is then
obtained as :

2 _y,y
Heff=7(K12+K22)——(K + K} + 2 (K6+K26)+__ K2 —

8
_vg (K}-TK3+ E) (322

360

with
E=Qn+1), 2y =v4—7,.

This leads finally to the energies (n =0):

')’2 ,ylZ ,y,y:2
E,,=y(2n+1)_T6.[1+(2n+1)2]+m[n +(n+1)3]+T——32—(2n+1). (3.23)

up to order O(v}).

4. General strip case.

In this section, we generalize the strip case with g values 7y, of the flux (see Fig. 1b for the
notation).

4.1 FORMULATION. — As before the analysis sketched in section2 we get after gauge
transformations the magnetic translation operators U; and U, in the form :

0 0 u, 4
V
U
Ul = , Uj = vV 4.1
=1 ., ; ) CRY
0 Ug_1 0 V
with
s 12 . q
u, =e iv, [ K p_e” and y = % Z Ve Vrig=71)- 4.2)
As for g = 2 the Hamiltonian can be written as :
J =2cos y'"?K,1+ H, 4.3)
0 uf u,
U, 0
H, = U, . “4.4)
u;‘_l
uf u 0

The operator H, is tri-diagonal, so it is useful to use a discrete Fourier transform starting from
the action of H; on the wave function components ¢ (r) :

(HI'/,) (r)—ur+]'/l(r+1)+ur‘/’(r_1)9 Urqg = U, (r"_'O,'“sq_l ) (45)
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we define :

b)) =Y 0" e (),
q 5s=0

o(r) = qimqi 0 "Y(), w=expRim/q). (4.6)

This gives in particular

(H, ) (s) =Y H ¢ () 4.7)
t
where we have defined :
- q_ll
H(s, 1) = w(z_s)/zé » @D @ O+ 24y % o= 60/ 4.8)
r=0

This allow us to have simple matrix elements for H:

(t-s)/ 2q9-1
w Z wr(s—t)(urw(s+t)/2+ ur* w—(s+t)/ 2) i (49)

r=0

<s|ﬂ| t) =2cos y'?K,.8,+

4.2 QUANTIZATION AND SEMI-CLASSICAL EXPANSION.— As quantization rules we use

Yr . .
V =exp(ivy"*K,), u, = exp (i —1/2K1> ; [K;, K,] = i. For instance, we have
Y

y 19c) 19¢ Y,
Hi(0,0) ==Y (4, +u*)==Y 2cos <—1/2K1) . (4.10)
qr=0 q"=0 Y

Now the expansion close to y, = 0 can be performed as before. Up to second order (in
v,), the relevant matrix elements are obtained as :

- K3 K (1 K{
0|H| 0 =2—yK2+72—+2——(— y,2>+ -Vyl+royh, @11
<| l > 2 12 y q‘; 12,/2(12 (7)), (
. K K}
<s|H| 0) = ——11/219’5/252'y,a)"‘ZSin7,-7‘9—71(1)_5/2-;—Z'y,zw"'cos--q;;‘S
Y r r
K3 -sp2
y_s‘/_z%'_éz y3w"2 sinfq—s +0(vH (s#0) 4.12)

and

N _ K
(s|H| t) = (2— 'yK22+2cos¥ ) 83,—2sin-wé—gw(’“‘)/zézyrw'(s")—‘l/z
r Y

2
—Em"“)/zcos m(s+1)1

2 r(s—1) 3
—Ey,w +0 s#0,t#0).
Y q q (v 2) (

(4.13)
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Using now Schur’s formula, one obtains the expansion of the effective Hamiltonian in powers
of {v,}. It is convenient to use the following notation :

q
#(s) = 1 Z e2i™s/ 4 where [ is an integer . 4.14)
q,7

To first order in vy, one obtains :

Ki (1 Ki 4 sin’ 7s/
HA(E) = |4—- yK2—- _Z 2 — Y ¥ 2 q9 )
e (E) [ Y& Y (q ; 7r>]+ Y < 17 E—-2(1+cos2ms/q) @.15)

This expression can be reduced to a more simple form :

Hy=4-7(Ki+ K3+ 0y (4.16)

and this leads to the energy levels :

E,=4—-yQ2n+1)+0(y*H. 4.17)
The next order calculations are more involving. After a tedious algebra, one ends up with :

E,=4-yQn+1)+7 [1+(2n+1)1+ 4 @neyys-y 7L

. (4.18)
& 4sin? 7rs/q

Here S is a rather complicated expression, given by a sum of 15 different terms each involving
complicated sums over the moments of the {y,} distribution. The calculations are too lenghty
and tedious to be reproduced here. Careful examination shows that S vanishes for every
pattern {7y,} . Thus, the net result can simply be written as :

2
E,=4-y@n+ D)+ [1+Qn+1)]-5 4.19)

where & is a positive quantity given by :

_'e 17s)?
8= 2:] 2_-2cos 2ms/q)’

”

(4.20)

The meaning of 8 is very simple. ¥ (s) is somehow a « magnetic form factor », describing the
distorsion of the magnetic flux pattern, and vanishes in the uniform flux case y, =y
(r=0,1,..,9—1 ). The denominator in the expression of & is the spacing energy between
the ground state (s = 0) and the excited energy levels (s = 1) of a discrete 1D tight-binding
chain of length ¢g. This form of 6 allows for the prediction of its expression in the general case,
worked out in the next section.

5. The general case.

This section will be devoted to the calculation of various gauge transformations necessary to
simplify the matrix form of the magnetic translations U, and U,.

We choose here a Landau gauge where 4, = 0. Then the potential vector can be written as
follows :

A, .,(0) = —2—1 "dsAG) (5.1)
0

n'
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where n = ({,g,+r,l,9,+r;) and n' = gy +r - LEl,q,+ 1))

r 72-1
Ar,rz(e2) = Z Yr. s, + eZ Z Yrsy: (52)
sp=0 5p=0

The expression for U, and U, becomes (2.10) :
[0, ¥1,0) =P v, 0,
r = 1,2,...,q1—1

iAO, 72( 12)

[Ul ‘F]O, rz(l) =¢ T] qu— l,rz(l) >

r1=0

(U, ¥1,0) = ¢

Vv, 0,
r,=12,..,q,-1
0, ¥1,,0 =1, 0,
ry,=0.
We first consider the following gauge transformation R given by the g, g, X q; ¢, matrix :

R = ((“Rr, rz(ﬁh ﬁZ) 6rl,ri arz,rﬁ)) . (53)

Here O <r;,<gq; — 1 (i = 1,2) and #; denote the lattice position operators. Moreover :

Re, e, (1, 1’2)=exp[—i Y {')’sl,o"‘ez y y” (5.4)
s1=0

52=0

This matrix is computed in such a way that the new magnetic translations U; = RU; R~ ' be
given by :

(Ul)rr' = 6rz,ré ar,,r’l +1 {(1 - arl,O) + 6r1,0 A r U}

, (5.5)
(U2)rr' = arl,r'l 872,r§+ 1 {(1 - 6r2,0) + 6r2,0 A V}
with
1 i -1 rn
y = Yeir,s A, =expli Vs, .
q1 9> ,‘.go b & s,go szgo i

, rn q-1
A =exp (—i y ¥ 'ys],SZ).

51=0s5=0

This allows us to see that every operator of interest can be actually written as a
q, 9, matrix with coefficients depending polynomially upon the unitary operators U and V
which satisfy :

Uv =" py . (5.6)
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So, as before we will represent U and V in terms of operators K; and K, as follows :

Uze K i K .7)
Introducing the operators :
u’l yy = e-ia(fl)Kl , vrlrz — eiﬁ(’z) K (58)
q2-1 -1
a(r)=——7 Y Yy, Br)=——m7m Y 7
g, 7”232;, 1, 52 ,yl/z SIZ Sp T2
and the following non commutative gauge transformation R':
= ((:er rp Yr,r 81'2, r&)) (59)
. , . 2
with 5{,1,2=exp(zw,(],)2K2—w,(1,)2K|)
. a-1 nr 5 nog2-1
and wr(|r)2 = Z z Ysi,5p0 r(lr?z = Z z Ysi, sy
51=0s52=0 51=05=0
We get :
” ' ’ ’r— iy (r, ra)
Ul =R Ui R~ = ((u,,€""""™ 8, 11118,,1)) 5.10)
” ' ' ’r— iy(ry, 72) ’
Ui =R"Us; R = ((vrlrzel 2w arl,ri 872,r§+l))
with :
(r) 2
'/f1("1,"2)———25(t) v lsrisgq -1
—a(0
nor) = 22O 5 5
B( r) &
Ya(r,ry) = Y a(s) l=ry=<g,-1
s=0
0)-B &
¢2(r1,0)=g(—)2———3 Y a(s), a=8=1vy" (5.11)
s=0

Using this transformation we can perform the semiclassical expansion in much the same way
as in sections 3 and 4. The calculation is rather cumbersome and we postpone it to a forth
coming paper [10]. Nevertheless we conjecture that the Landau levels for the Hamiltonian :

=U'+U*+ Uj + Uj* (5.12)
are given by the following formula :
E,=4- (y) (2n+1)+<7> M+ Q2n+1)]-8 (5.13)
note! |7 (51, 2) |

(5.14)

1=092=04_ 2 + cos

where 6= Z Z 2 s, 2 s,
(cos )
91 q>
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q1 °
1

T i

and vy =
< > qlq2r|=|r2=l

1 91 2?2 ¢ 2
Flns) = v ¥ y,,,zexp[ rsy+

2im
992,72 1

q

w
ry S2:| .

6. Discussions and conclusions.

6.1 INCREASE OF THE MAGNETIC ENERGY. — Let us first discuss the physical content of the
general result equation (5.13) of the previous sections. Up to second order in the magnetic
flux, the Landau level energy E, contains two terms. The first one is the usual result [3, 4] for
the uniform magnetic field case with ¢ as magnetic flux. This contribution is expected on
general grounds. Indeed classical trajectories, which correspond to energies near the zero
field band edge (E = +4), have length scales much larger than that of the magnetic unit cell.
Accordingly, the quantization is controlled by the average flux ¢, rather than the detailed
structure ¢ ,, inside the magnetic unit cell. Similarly the degeneracy of E, is also preserved
for the same reasons. The second contribution 8 to E, is independent of the integer n, and
corresponds to the shift of the zero field band edge when ¢ = 0. The new term & is governed
by the magnetic « structure factor » ¥ as defined above and describes a narrowing of the zero
field band width because & is always positive. This also means that inhomogeneities in the flux
pattern increase the Landau level energy E,, the increment being independent of n. The
reason for this general trend can be outlined as follows. Consider the general case of the one-
electron Hamiltonian :

% ﬁ (p+ SA>2+ V() 6.1)

and compare the following two cases : the first one 3¢, describes a uniform magnetic flux ¢
and the second, X, corresponds to a non-uniform flux but having the same averaged ¢. The
Hamiltonian J can be expanded formally by writing :

eZ

J€=J€0+5de-8A~j+ zfdx-[b‘A(x)]z-p(x). 6.2)
c 2 mc

Here j (x) and p (x) are the electron current and density operators, and 8 A (x) is the change in
vector potential upon going from J¢, to J. For an infinite system 8A(x) increases without
limit as a function of x. Finite systems are therefore needed for practical calculations with
equation (6.2). However, for our purpose, it is sufficient to consider equation (6.2) as a
formal expansion. On a lattice, ¥ assumes the following form :

k=- Y ("C}Cj+he) (6.3)

i)
where we have used the standard notation. The local current density from node j to node i is
given by : 2 Im (e'Ai" (C,’r C j> ). Therefore in a uniform magnetic field, the current density
vanishes because e'*/ (C rc j> is nothing else than the energy per bond and then a translation

invariant. This remark implies that in equation (6.2), the linear terms in 84 give a vanishing
contribution to J¢. The only remaining terms are quadratic in 84 and therefore in-
homogeneities of the magnetic flux increase the magnetic energy.
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6.2 STABILIZATION OF THE FERMI SEA. — The general expression equation (5.13), for the
Landau levels, leads to some interesting consequences regarding the stabilization of the Fermi
sea by the gaps. This problem has already been discussed by us in the case of a uniform field.
Here we consider the same question but for a non uniform magnetic flux. Actually two cases
seem to appear: ¢ # 0 and ¢ = 0.

Case ¢ # 0: For non vanishing y =2 7 % , the Landau levels structure allows for an
0

extension of our previous result to the present case. More precisely consider N = xN;
fermions on a square lattice made of N, sites, and let us introduce 7 such that
8 = y2n?is the global shift in equation (5.13) :

E,,=—4+(2n+1)y—T1-672[1+(1+2n)2]+8. (6.4)

The energy per site can then be written as :

m-—1

; - Z 2_7_ (6.5)

when the m first Landau levels, each having a degeneracy f— are completely filled. Under

these conditions we have : my = 2 7x, and then

E w2 772x
=—4x+42max-Z X~

Fs . 5 s(1-247) +0(xY. (6.6)

_ As a consequence, m = 1 corresponds to the minimum of % as long as (1 —24 12) >0,
S

which is satisfied for n < 1, i.e. small fluctuations in the flux pattern.

This result remains true if the semiclassical expansion is extended to next orders. To see
this, we consider the case of the staggered lattice with two values of the flux:
vo and vy;. ,

In terms of : y = % (Yo+7v1) v = % (yo— 7v1)and & = -’);/— the energy E, can be written

(see Eq. (3.23)):

Eym—4+ @nel)y—Lolle (1420 1+ 2o n+ (n+ 1]+

16 192
242 2
+18i—”"f Qn+1) (6.7)
and for m field levels :
E £? s w3, 1r2x3( ™ 2
£ __ ST IS SN DA (AP 3
Te-dxram(1-5) - T T 5 (1-0x-347) . 6

Therefore m = 1 is stabilized as long as (1 - _781 x-3 §2) is positive. Therefore providing

some additional conditions on ¢ (¢ < 1), the situation is identical to that of the uniform flux :
cusps, metastable states... etc.).



N 19 2D BLOCH ELECTRONS IN PERIODIC MAGNETIC FIELDS 2183

In the opposite limit where ¢ > 1, m = oo is stabilized and this corresponds, for fixed x, to
v = 0 i.e. the vanishing flux limit where the discrete level structure disappears.

Case ¢ = 0: This is exemplified in the case v, = — 7y, of the staggered square lattice. With
the previous notation, this corresponds to ¥y = 0, £ = 00, and one obtains a band spectrum
(the corresponding density of states is given in the Appendix). For this particular value of v,
equation (6.6) reduces to :

2

En=—4+-78—+--- (6.9)

which is simply the new lower band edge. At low fermion densities x, it is sufficient to
2

consider the limiting density of states p (E), close to Ey = — 4 + YT . In this limit a simple
calculation gives : <a = Cos 77 )
E 1+a\12 l+a\!12 , w2 2 2 .
—=-4 2 - | — o . (6.10
N, (2>x+”(2)x 3(1+a)x+(x)( )

In particular for a = 1 we recover the known result in zero field. However, as a function of q,
% increases for y' # 0, i.e. at a < 1.

s

This example shows again that E increases with the field distorsions, even in the case when
the Fermi sea is stabilized at zero field.

7. Conclusion.

The content of this paper has been summarized in the introduction. Let us conclude with two
remarks.

i) In this paper we have introduced a new algebraic formalism which is the appropriate one
for solving the periodic flux problem. Evidently, the enlarged algebraic structure so
introduced, calls for further studies. In fact, for the sake of simplicity, we have limited our
attention to the semiclassical region. However, it is not difficult to consider other problems
where the methods and tools elaborated in our previous papers can be used. Similarly, for
purely mathematical purposes, a deep investigation of these new algebra is called for.

ii) As a direct consequence of our preliminary results, we were able to extend the range of
validity of the mechanism of Fermi sea stabilization. This sheds a new light on this concept,
which we believe is a result of very general importance. Furthermore, its extension to other
physical problems is certainly a valuable task.

Appendix.
Staggered flux lattice.

In the special case of a staggered lattice (Fig. 1b), with v, = y’', y, = — ¥’, the band
structure can be explicitly calculated. The eigenvalues reduce to two coupled sets of linear
equations :

epa(%p) =~ [p(x = Ly) + yp(x+ Ly) +e7 7/ 2yg(x,y - 1) + e 7/ 2 yp(x, y + 1)]

epp(x,¥) = — [Yalx = Ly) + dalx+ L)+ 2 gp(x,y = 1) + &7/ 2 gl y + 1)] .
(AD)
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Here we have adopted an alternate Landau gauge in order to have a simple expression for the
coupling between the two sublattices A and B. Periodic solutions

¢A(x) = ‘pA eikx s wB(x) = VIB eikx, X = (xay)7 k= (kx’ ky)

lead to a 2 x 2 determinant. The solution of the secular equation is (a = cos % )

£? = 4(cos’ k, + cos? k,+2acosk,cosk,) = ek, k,) (A2)

where v' =0 (i.e. a=1) and y’' = # (i.e. a = 0) reproduce two known limiting cases. The
density of states p(E) corresponding to the above dispersion relation is given by
(E<0):

p(E)= Y 8{E-e(kok))}, p(-E)=p(E) (A3)
keky

<
where the sum is taken over the first Brillouin zone. Making the change of variables
u=k,+ky, v=k,—k, one obtains:

I 2 (E*__ 2
p(E)_E4_772L du Re [(cosu+a) (4 1 acosu)]. (Ad)

The calculation of p (E) in the general case is rather cumbersome. Let us first consider the
12 C
1+a ) . In this limit one has :

case k,~ 0, k, ~ 0, i.e. close to the lower band edge — 4 (

e’ 1 /2, ;2 4+a 4, L4 a ;2,2
& _1_:Z _-r4a L 6).
80+ a) 2 et B b gty () F g ik + 0 Gy)
12
This allows for a simple calculation of p (E) to first order in E + E,, E, = 4 ( I _5 a ) .
p (E) assumes the following form :
1 1

p(E) = (E+Ey) +O[(E+ Eg)’]. (AS5)

+
7mEy 87 (1+a)’

In the general case, p (E) = p (— E) can be %alculated explicitly starting from equation (A4).
2
Letting x; = 1 — 4—(11—!;":—21—) , Xp=—1+ Rl_E-l-_a) , one obtains three regions :

* For 8(1 —a) <E?’<8(1 + a),

(A6)

__E _.-1n N2 (I—x) (1—x)\'”
P(E)—4—772(1 a?)” " 2[2(0 - x1)] K[( TR .

* For 4(1 —a?®) < E*<8(1 —a),

_ E o212 _ -1/2 (1_x2) (1+X|) 12
p(E)—4—Tr2(1 a?)” LAl = x) (1 + x)] K[((l—xl)(l+x2) (A7)
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and finally,
* For0<E’<4(1 —a?),

- E q_omn _ _1p (I=x) (1+x) \ 12
P(E)—47T2(1 a®)” #4101 - x) (1 + x))] K[((l—xz)(l+xl) (A8)

ka

2
Here K (k) = J de (1 — k2sin® @) "2 and K'(k) = K[(1 — k'] are the usual elliptic
0

integrals. One notices the following properties of p (E) for a# 1:
i) p(E)=0at E=0; close to E=0, p(E) has a cusp and takes the form :

1
E)=|E| ————;,
p(E) = | |477(1—az)l/2

which becomes singular at a < 1.
ii) There is a logarithmic divergence of p(E) at E = +2(1 — a®)'1?,

iii) For E = [8(1 — a)]"% p (E) has a jump, corresponding to the complete filling of one of
the two Fermi « pockets », present at a # 1. Indeed the Fermi surface is made of two
disconnected pieces, and this as long as a # 1.

As a final remark notice that for a = 1, x; = — o0 and one recovers the zero field result :

- e (5).

Similarly, for a = 0, one obtains the known expression :

1 , [ E?
p(E)_z—TrZEK (7—1).
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