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Abstract. Let (A,H, D) be a spectral triple, namely: A is a separable C∗-algebra, H is a
Hilbert space on which A acts and D is a selfadjoint operator with compact resolvent such that
the set of elements of A having a bounded commutator with D is dense. A spectral metric
space, the noncommutative analog of a complete metric space, is a spectral triple (A,H, D)
with additional properties which guarantee that the Connes metric induces the weak∗-topology
on the state space of A. A “quasi-isometric” ∗-automorphism defines a dynamical system. This
article gives various answers to the question: Is there a canonical spectral triple based upon the
crossed product algebra Aoα Z, characterizing the metric properties of the dynamical system ?
If α is equivalent to the noncommutative analog of an isometry the answer is yes. Otherwise, the
metric bundle construction of Connes and Moscovici is used to replace (A, α) by an equivalent
dynamical system that acts isometrically. The difficulties related to the noncompactness of this
new system are discussed. Applications, in number theory and coding theory are given at the
end.
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1. Introduction

Let X = (A,H, D) be a spectral triple [19] (also called a K-cycle), namely A is a separable
C∗-algebra, H is a Hilbert space on which A is represented and D is a selfadjoint operator with
compact resolvent such that C1(X) = {a ∈ A ; ‖[D, a]‖ < ∞} is a dense subset of A. The
condition ‖[D, a]‖ < ∞ means that D admits a core invariant by multiplication by a and that
the operator [D, a] = Da−aD extends as a bounded operator on H. Unless otherwise stated, A
will be identified with the image subalgebra of B(H) by the representation. In some cases (see
Section 4.1 Example 2) it will be necessary to specify the representation, justifying the notation
(A,H, π,D), when π denotes the representation.
In view of the Gelfand Theorem, a C∗-algebra can be seen as the noncommutative analog of
the space of continuous functions on a locally compact space, vanishing at infinity. Spectral
triples, under the name of Fredholm modules [4], have been used initially to encode the cyclic
cohomology of the noncommutative space defined by A [19]. Eventually, Connes [19] realized
that they can also encode metric structures on this space. Such a structure extends as a metric
on the state space of A. It is remarkable that the extension of a metric from a space to its set
of probability measures had been defined and studied for a long time before, starting with the
work of Kantorovich and Rubinstein [41] for compact metric spaces, in the context of the mass
transportation problem. It was later extended by Wasserstein [67] and Dobrushin [28] to non
compact complete metric spaces. Dobrushin proposed the name Wasserstein distance to such
metrics, and the name has been used since then. In the present paper, though, we will refer
to it as the Connes distance in the context of noncommutative metric spaces. It will be seen
in Section 1.1 what conditions on a spectral triple are needed to encode a structure of locally
compact complete metric space. The main problem investigated in this paper is the following

Problem 1. Let A be unital and α be a ∗-automorphism of A. Given a spectral triple X =
(A,H, D), is there a canonical way of defining a spectral triple Y = (A oα Z,K, D̃) induced by
(A,H, D), for the crossed product of the original algebra A by the action of Z defined by α ? If
so, what are the metric properties encoded by this triple ? 2
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It will be shown in this work, that the answer is not always positive: actually, it is positive if and
only if (A,H, D) represents the noncommutative analog of a metric space for which the group
generated by α is an equicontinuous family of quasi-isometries. In particular, for uniformly
hyperbolic actions on a compact metric space, such a construction is not possible. However,
the present work offers a way to deal with this problem: following the philosophy introduced
by Connes and Moscovici in the nineties [21], it is proposed to extend the algebra A to an
algebra B representing the noncommutative analog of the set of continuous functions on the
metric bundle, on which such action becomes isometric, so equicontinuous. This will permit to
construct a spectral triple for the crossed product Boα Z, in which Aoα Z acts as a multiplier
algebra. While it is possible to extend the construction to more general group actions, this work
will deal only with the case of a single automorphism.
The metric bundle construction comes with a price: it addresses the problem of spectral triples
on non unital C∗-algebras. This question was studied in particular by Latrémolière [45]. The
main difficulty in this case is that the state space is not closed for the weak∗ topology. Thanks
to the notion of weak-uniform topology on A it became possible to characterizes those Connes
metrics on the state space giving rise to the weak∗ topology. Because of the importance of
this result for the purpose of the present work, it will be stated explicitly (see Result 3, in
Section 1.1).
It will be seen, however, that the work by Latrémolière does not solve all problems encountered
with the present construction. For indeed, while it is sufficient whenever the metric is bounded,
namely when the state space has a finite diameter in the Connes metric, it turns out to be
insufficient for the examples that will be presented here at the end of this paper. Something
analogous occurs with the Wasserstein distance when the metric space is complete but not
compact and the metric is unbounded. In the latter case this distance encodes the w∗-topology
on the set of probabilities only on compact subsets of finite diameters. Such subsets generate
a dense subset of the probability space. For a spectral triple, this situation occurs whenever
the Lipschitz ball, namely the set of a ∈ A for which ‖[D, a]‖ ≤ 1, is unbounded. If so, it is
expected that indeed there are, in the state space, enough compact subsets with finite diameter
in the Connes metric on which this metric generates the w∗-topology. This problem will not be
addressed in the present work though.

1.1. Definitions and Previous Results. Given a spectral triple (A,H, D), let dC be the
Connes pseudo-distance defined on the state space of A as follows [19]:

dC(ρ, ω) = sup{|ρ(a)− ω(a)| ; ‖[D, a]‖ ≤ 1} ρ, ω ∈ M1(A) .
Here, M1(A) will denote the state space of A, using a notation coming from probability theory.
The first problem is to decide whether this is a metric on M1(A) and whether this metric defines
the w∗-topology. The present answers to these questions are described here.

Result 1 ([59]). Let (A,H, D) be a spectral triple with A unital. The Connes pseudo-metric is
a metric on the state space if the following two conditions hold
(i) the representation of A in H is non-degenerate, namely that AH = H,
(ii) the metric commutant A′D = {a ∈ A ; [D, a] = 0} is trivial, namely it is reduced to multiples
of the unit.

In particular this condition requires that the representation of A on the Hilbert space H be
faithful.
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Result 2 ([53, 61, 62, 63, 52]). Let X = (A,H, D) be a spectral triple with A unital. In addition,
let X be such that the representation of A in H is non-degenerate and the metric commutant is
trivial. Then the Connes metric defines the w∗-topology if and only if the Lipschitz ball, defined
by

BLip = BLip(X) = {a ∈ A ; ‖[D, a]‖ ≤ 1} ,
is pre-compact in the quotient space A/A′D. Equivalently, Ker(φ) ∩ BLip is pre-compact in A,
for some (hence for all) φ ∈ M1(A).

As proved in Lemma 3 below, BLip is closed in norm. If A is not unital, but separable, and if
the Lipschitz ball is norm bounded, the main result of Latrémolière is the following (see [45] Th.
2.6 & 4.1)

Result 3 ([45]). Let X = (A,H, D) be a spectral triple with A a nonunital, separable C∗-algebra.
If the D-commutant is trivial and the representation of A is nondegenerate, the Connes distance
defines the w∗-topology on the state space if and only if there is a strictly positive element h ∈ A
such that hBLiph is compact. In such a case the Connes metric is a path metric and the state
space is complete for this metric.

It is worth reminding the reader that a strictly positive element h is a positive element such that
hAh is norm dense in A. This leads to the following definition, used in the present paper

Definition 1. A bounded spectral metric space is a spectral triple X = (A,H, D) such that
(i) the representation of A on H is non-degenerate,
(ii) the metric commutant A′D = {a ∈ A ; [D, a] = 0} is trivial,
(iii) there is a strictly positive element h ∈ A such that the h-compressed Lipschitz Ball hBLiph

has precompact image in the normed space A/A′D.
A spectral metric space X = (A,H, D) will be called compact if A is unital.

The term spectral metric space is appropriate since it is based on a spectral triple1. The previous
definition is a bit more restrictive than the term quantum metric space defined by Rieffel [63].
For indeed, here A is restricted to be a C∗-algebra instead of an order-unit space.
It will be seen in Sections 5 & 7, that there are important examples of spectral triple that do not
satisfy the criterion of Result 3. This is because the corresponding Lipschitz balls are unbounded
in norm. The problem of extending Result 3 to the unbounded case will not be addressed in the
present work. But partial results can be found in Section 4.3 in which the following important
elementary example is considered: let Z be endowed with a metric dZ. Then let c0(Z) be the
algebra of complex valued sequences vanishing at infinity. It is not unital. It acts on the Hilbert
space H = `2(Z) by pointwise multiplication. In Section 4.3, several Dirac operators will be
proposed to describe this metric. Each construction requires to enlarge H by tensoring it with
some finite dimensional Hilbert space E on which some Clifford algebra acts. It will be shown
that the corresponding spectral triple is a compact metric spectral space if and only if the
distance dZ is summable, namely

∑
n dZ(n, n+1) <∞. A second construction allows to include

translation invariant metrics (thus nonsummable): then it satisfies the criterion of Result 3 if
and only if the metric dZ is bounded. Both results exclude the usual metric on Z. This is
because the usual metric gives Z an infinite diameter. Therefore the Connes metric associated
with it is unbounded on the state space. However, the following result, valid in the commutative
case, applies

1The authors thank M.Rieffel for suggesting this name.
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Result 4 ([28]). Let (X, d) be a complete separable metric space and let M1(X) be the set of
probability measures on X. A subset F ⊂ M1(X) is called d-tight if there is x0 ∈ X such that
for all ε > 0 there is r > 0 for which

∫
d(x0,x)≥r µ(dx) d(x0, x) ≤ ε for all µ ∈ F . Then the

Wasserstein distance generates the w∗-topology on each weak∗-closed d-tight set.

The extension of such a result to noncommutative spectral triple is an interesting but difficult
open problem. It will not be considered in the present work.

1.2. Main Results. The set Aut(A) of ∗-automorphisms of A will be endowed with the norm
pointwise topology, namely a basis of neighborhoods of an element α ∈ Aut(A) is the family of
sets of the form U(α; a, ε) = {β ∈ Aut(A) ; ‖β(a)− α(a)‖ < ε}, where a ∈ A and ε > 0.

Definition 2. For X = (A,H, D) a spectral metric space, a ∗-automorphism α ∈ Aut(A) will
be called a quasi-isometry if a ∈ C1(X) ⇔ α(a) ∈ C1(X).

For G a subgroup of Aut(A), C1(G,X) will denote the set of elements a ∈ A such that (i)
‖[D, g(a)]‖ <∞ for all g ∈ G and (ii) the map g ∈ G 7→ [D, g(a)] ∈ B(H) is continuous in norm.
In particular C1(G,X) ⊂ C1(X). Similarly, C1

b (G,X) ⊂ C1(G,X) will denote the set of elements
a ∈ A such that supg∈G ‖[D, g(a)]‖ < ∞. It is easy to check that C1(X), C1(G,X), C1

b (G,X)
are ∗-subalgebras of A invariant by holomorphic functional calculus (see Lemma 1 for instance).
Transposed in the classical world, the algebra C1(G,X) contains C1(X) if and only if G acts
by bi-Lipschitz transformations, namely by quasi-isometries. Similarly, if C1

b (G,X) contains
C1(X) means that G is an equicontinuous family of quasi-isometries. This justifies the following
definitions used in the present work

Definition 3. Let X = (A,H, D) be a spectral metric space. Then a subgroup G ⊂ Aut(A)
will be called quasi-isometric, if C1(X) = C1(G,X). It will be called equicontinuous if C1(X) =
C1

b (G,X). It will be called isometric if it is quasi-isometric and ‖[D, g(a)]‖ = ‖[D, a]‖ for all
g ∈ G and a ∈ C1(X) = C1(G,X). The same definition applies to a single automorphism
provided G is the group it generates. The pair (X,G) will be called a spectral dynamical system.

Remark 1. A quasi-isometric automorphism of a compact spectral metric space X = (A,H, D)
is an isometry if and only if it preserves the Connes distance on the state space M1(A) of A.
For indeed the “if” part follows from the fact that a 7→ ‖[D, a]‖ defines a lower semicontinuous
Lipschitz seminorm on C1(X) ([62], Proposition 3.7), therefore, following [62], Theorem 4.1, it
can be recovered via Connes distance by

‖[D, a]‖ = sup
{
|ρ(a)− ω(a)|
dC(ρ, ω)

; ρ 6= ω ∈ M1(A)
}
.

The ”only if” part is obvious from the definition of an isometry. 2

In the classical world, equicontinuity implies compactness through the Arzelà-Ascoli theorem.
An extension was considered in [1] in the noncommutative world, for discrete groups of rapid
decay. The result in [1] leads to

Theorem 1 (Arzelà-Ascoli theorem). Let X = (A,H, D) be a compact spectral metric space.
Let G ⊂ Aut(A) be a quasi-isometric subgroup. Then G is equicontinuous if and only if it has
a compact closure.

In a compact metric space, given a compact group of quasi-isometries, it is possible to find an
equivalent metric that is invariant by the group. Such is the case also for spectral metric spaces,
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as shown by the next result. To express it, the simplest case is considered, namely the group
generated by a single automorphism α ∈ Aut(A). This group defines a Z-action on the spectral
metric space. Let Aoα Z denote the crossed-product algebra, namely the universal C∗-algebra
generated by the elements of A and by a unitary u such that uau−1 = α(a). The crossed product
is an algebraic version of the existence of a unitary operator implementing the automorphism α
in a representation. In addition, the dual group T of Z acts on the crossed product [17, 66, 65] in
the following way: ηk(a) = a if a ∈ A and ηk(u) = eıku for k ∈ T. In such a case, the following
holds

Theorem 2. Let A be a unital, separable C∗-algebra and α ∈ Aut(A). Let u denote the unitary
implementing α in the crossed product algebra Aoα Z. Then there is a compact spectral metric
space X = (A,H, D) based on A with α implementing an equicontinuous Z-action if and only
if there is a compact spectral metric space Y = (A oα Z,K, D̂), based on the crossed product
algebra, such that

(i) the dual action on Aoα Z is quasi-isometric,
(ii) u−1[D̂, u] is bounded and commutes with the elements of A,
(iii) the Connes metrics induced on the state space of A associated with the two spectral metric

spaces X and Y are equivalent.

The dual action is required to identify u within the algebra A oα Z. It will be proved that it
acts isometrically on Y . If u satisfies the condition (ii), then [D,αn(a)] = un[D, a]u−n, meaning
that the Connes metric defined by the spectral triple X = (A,K, D̂), obtained by restricting Y
to A, is α-invariant. Conversely the construction of the spectral metric space Y involves the use
of the socalled left regular representation of (A, α).

Even in the commutative case there are examples of spectral metric spaces for which certain
actions are quasi-isometric in the previous sense without being equicontinuous. A simple example
is provided by the Arnold cat map (see Section 4.1). More generally, this is the case for uniformly
hyperbolic actions. In such a case, building a spectral triple on the crossed product algebra
becomes impossible using the construction leading to the proof of the Theorem 2. Thanks to
the seminal work of Connes and Moscovici [21], it is possible to overcome this difficulty. The
main idea is the noncommutative analog of replacing the manifold by its metric bundle. As
it turns out, in the classical case, this metric bundle is a quotient of the frame bundle that
allows to build a diffeomorphism invariant measure on any manifold. The extension of such
a construction to the noncommutative case is not yet available for spectral metric spaces in
general. The automorphism groups might be too big for such a construction to be available in
general. However, if G is a subgroup of Aut(A), as the image of a locally compact group by a
continuous group homomorphism, it is sufficient to restrict this bundle to an orbit of the group,
so that the fiber can be replaced by the group itself. In the case of a Z-action, this gives the
following construction

Theorem 3. Let X = (A,H, D) be a spectral metric space and let α ∈ Aut(A) be quasi-
isometric. If α is not equicontinuous, there is a spectral metric space Y based on A ⊗ c0(Z),
induced by X, such that

(i) A acts as a multiplier algebra on Y
(ii) α implements an equicontinuous action α∗ on Y
(iii) there is a spectral metric space based on A ⊗ c0(Z) oα∗ Z, on which A oα Z acts as a

multiplier algebra.
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It is important to note that, even ifX is compact, namelyA is unital, the space Y is non-compact
in general. In the present paper, it will not be investigated whether the construction leads to a
spectral triple that generates the w∗-topology on the noncommutative analog of d-tight subsets
of the state space.
To illustrate the potentiality of this construction, three examples have been added at the end
of the present paper. The metric bundle construction permits to complete prior results. The
first example concerns an interpretation of some number theoretic quantities, the Shimizu L-
functions, occurring as topological invariant through the Index Theorem in computing the sig-
nature of Hilbert’s modular surfaces associated with totally real number fields [5]. It was shown
that the only contribution was coming from cusps that are seen as the boundary of a manifold,
which turns out to be a solvmanifold, namely it comes from a quotient of a Lie algebra, all
element of which are strictly hyperbolic. In a previous work [49], these L-functions were shown
to comes from a spectral triple over a non-commutative torus, in the case of a real quadratic
number field. The corresponding solvmanifold, can be interpreted, modulo homotopy, as the
crossed product of the noncommutative torus by the group of totally positive units of the num-
ber field. Due to the hyperbolicity of the action, building a spectral triple representing the
metric on the solvmanifold was a problem that the present paper helps to solve. The other
example, the algebro-geometric codes [48], is coming form coding theory in Computer Science.
This example is actually very close to the problem of finding a spectral triple on a tiling space
and is a sophisticated extension of the example of a two-sided shift acting on the Cantor set and
treated in Section 4.1, Example 2. In both cases, however, the natural metric that is behind
the construction corresponds to a noncompact unbounded metric space. This is an incentive to
extend the theory of unbounded complete metric spaces to the noncommutative world.

1.3. A Bit of History. The notion of spectral triple, in view of representing the noncommuta-
tive analog of Riemannian manifolds, was proposed by Connes in the eighties [19] (see Chapter
6). It came out of the construction of Fredholm modules used in the construction of cyclic coho-
mology. Immediately after understanding the conceptual foundation in this part of the theory
[18] Connes gave few important examples: the case of Riemannian manifolds, the Cantor set
and the Julia sets [19]. He also addressed the inverse problem, namely, when is a spectral triple
coming from a smooth Riemannian manifold [20]. However, the subject did not develop until
the late nineties when several authors proposed using them for different purposes. The earliest
work recorded in the literature came in 1994, when Lapidus proposed to extend the Connes
example of the Cantor set to fractals [43, 44]. Then several works appeared, like the important
contributions of Buyalo [10, 11] or the ones by Guido & Isola [34, 35, 36] in the analysis of metric
spaces and fractals. On the more conceptual side were the works by Pavlović [53] and by Rieffel
[61, 62, 63] and the extension to noncompact metric spaces by Latrémolière [45] that are at
the origin of the Definition 1 in the present paper. The reconstruction problem for Riemannian
manifold has been considered by Rennie [58], Rennie and Varilly [59] and Connes [23]. Several
important classes of noncommutative spectral triples have been constructed by Rieffel [63] and
by Christensen, Antonescu-Ivan and various collaborators [13, 14, 15, 16]. Recently, the Rie-
mannian geometry of ultrametric Cantor sets was described in [55] leading to the definition of
an analog to the Laplace-Beltrami operator and some developments in the theory of tilings [39].
Very recently the extension to compact metric space has been considered. In [30] the author
use a Christensen-Ivan spectral triple to encode various metric invariant on a multifractal space.
In [54] an extension of [55] to all compact spaces is treated. The problem of group actions on
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noncommutative metric spaces was considered by Connes in the context of gauge theory and
the notion of Yang-Mills action principle in [19]. However, the notion developed in the present
paper have not been considered so far, in a systematic way. The present paper is therefore an
introduction to this topic.

1.4. Organization of the Paper. The rest of the paper is organized as follows. In Section 2,
the case of equicontinuous action is studied and is shown to correspond to almost periodicity in
the sense of H. Bohr. Then Section 3 is dedicated to the construction of a canonical spectral
metric space over the crossed product algebra whenever the action is equicontinuous. As it
turns out there are some non trivial technicalities, in particular, the proof of the Proposition 3,
concerning the compactness of the Lipschitz ball, which is postponed to the Appendix 8. Then
the Section 4 is dedicated to the notion of spectral metric bundle. Two examples are given
of non equicontinuous actions, the Arnold cat map acting on the 2-torus and the shift acting
on {0, 1}Z, the most elementary model of a Smale space. The study of the space of Euclidean
metrics on a linear space gives a clue to build the spectral metric bundle. Then a long subsection
is dedicated to the study of various metric structures on Z, the most elementary model of
noncompact metric space, leading to introduce various technicalities like the wu-topology [45].
The last three Sections, 5, 6 and 7, treat examples already developed previously by one of the
present authors, but which were not completely treated before by lack of the notion of spectral
metric bundle.

Acknowledgments: This work was supported in part by NSF Grant No. 0901514 (J.B.),
DMS-0651925 and DMS-1007207 (M.M). J.B. thanks the SFB 701 (Universität Bielefeld, Ger-
many) and the MAPMO and the Fédération Denis Poisson (Orléans University, France), for
providing office space during the writing of this paper. He also wants to thank Jean Savinien
and Ian Palmer for discussions and for providing references used in this work. K.R. thanks Marc
Rieffel for various comments and for pointing the reference [45].

2. Compactness and Almost Periodicity

This section is devoted to the notion of almost periodicity and to proving Theorem 1. The
standard references for the theory of almost periodic functions are the books by H. Bohr [9],
Besicovich [6], and the extension to all groups in the articles by von Neumann [51, 8].

2.1. The Lipschitz Algebra. Some technical tools, presented here will be useful. In this
Section A is a separable C∗-algebra but it is not required to be unital.

Lemma 1. Let X = (A,H, D) be a spectral metric space. The space C1(X), endowed with the
norm

‖a‖1 = ‖a‖+ ‖[D, a]‖ ,
is a Banach ∗-algebra invariant by holomorphic functional calculus. The injection map i :
C1(X) → A is a compact homomorphism of Banach ∗-algebras.

Proof: (i) That ‖ · ‖1 defines a seminorm is obvious. Since ‖a‖1 = 0 ⇒ ‖a‖ = 0 ⇒ a = 0,
it is a norm. That this norm is ∗-invariant is also clear, since D is selfadjoint. Thanks to the
Leibniz formula, [D, ab] = [D, a]b+ a[D, b] it follows that
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‖ab‖1 ≤ ‖a‖‖b‖+ ‖[D, a]‖‖b‖+ ‖a‖‖[D, b]‖ ≤ ‖a‖1 ‖b‖1 ,

showing that this is an algebraic norm.
(ii) Let now (an)n∈N be a Cauchy sequence in C1(X). Then it is Cauchy for the norm in A
and therefore there is a ∈ A such that limn→∞ ‖a − an‖ = 0. Moreover it follows that, for
all n ∈ N, the sequence (‖an − am‖)m∈N is Cauchy and thus converges in C to a limit cn that
converges to zero as n → ∞. Let now f, g ∈ H belonging to the domain of D. It follows that
〈Df |(a− an)g〉 − 〈f |(a− an)Dg〉 converges to zero as n→∞. Moreover

|〈Df |(a− an)g〉 − 〈f |(a− an)Dg〉| = lim
m→∞

|〈Df |(am − an)g〉 − 〈f |(am − an)Dg〉|

≤ ‖f‖‖g‖ lim sup
m→∞

‖am − an‖1

Hence ‖a − an‖1 is finite and limn→∞ ‖a − an‖1 = 0, showing that a ∈ C1(X) and that an

converges to a in C1(X). Therefore C1(X) is a Banach ∗-algebra.
(iii) Let a ∈ C1(X). Then, its resolvent (z1 − a)−1 either belongs to A, if A is unital, or
(z1− a)−1 − 1/z ∈ A if not. Moreover, thanks to the Leibniz rule,

[D, (z1− a)−1 − 1/z] = (z1− a)−1[D, a](z1− a)−1 ,

so that (z1− a)−1 − 1/z ∈ C1(X). In addition

‖[D, (z1− a)−1 − 1/z]‖1 ≤
{
‖(z1− a)−1 − 1/z‖+ 1/|z|

}2 ‖a‖1

This implies that for any function F (z) holomorphic in a neighborhood U of the spectrum of
a (and vanishing at z = 0 whenever A is not unital), and any Jordan path γ contained in U ,
surrounding the spectrum of a, the Cauchy integral

∮
γ F (z){(z1− a)−1− 1/z}dz/2ıπ converges

in C1(X) showing that F (a) ∈ C1(X). Hence, C1(X) is invariant by holomorphic functional
calculus.
(iv) Since the unit ball of C1(X) maps to BLip in the quotient space A/C1, it follows that it
is compact in the norm topology of A (see Section 8.4). Hence the canonical injection maps
bounded sets into compact ones, meaning it is compact. 2

A very similar proof leads to

Corollary 1. Let X = (A,H, D) be a spectral metric space and let G ⊂ Aut(A) be an equicon-
tinuous group of automorphisms. Then the space C1

b (G,X) endowed with the norm

‖a‖1,G = ‖a‖+ sup
g∈G

‖[D, ga]‖

is a Banach ∗-algebra, invariant by holomorphic functional calculus and the canonical injection
i : C1

b (G,X) → A is compact.

The only additional property needed in the proof is the continuity of the maps g ∈ G 7→ [D, ga] ∈
B(H) for each a ∈ C1

b (G,X). But the uniformity of the norm over G implies that the limit of a
Cauchy sequence is necessarily continuous.

Lemma 2. Let X = (A,H, D) be a spectral metric space. A ∗-automorphism α ∈ Aut(A) is
quasi-isometric if and only if one of the two following conditions hold

(i) it defines a bounded ∗-automorphism of C1(X),
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(ii) the action of α on the state space of A is bi-Lipschitz for the Connes metric.

Proof: (i) If α : C1(X) → C1(X) is bounded, it follows, from the Definition 2, that α is
quasi-isometric. Conversely if α is quasi-isometric, it is a linear map α : C1(X) → C1(X) which
is defined everywhere. By the closed graph theorem it is bounded. That it is a ∗-homomorphism
is obvious from the definition. The same can be said for α−1 since α is one-to-one and since,
thanks to Definition 2, it is onto as well.
(ii) Let α ∈ Aut(A) be quasi-isometric. Then by the previous argument, α : C1(X) → C1(X) is
a bounded ∗-isomorphism. Then, if ρ, ω are two states on A

dC(ρ ◦ α, ω ◦ α) = sup{|ρ(a)− ω(a)| ; ‖[D,α−1(a)]‖ ≤ 1}
Since α is bounded on C1(X) it follows that there is K > 0 such that ‖[D,α−1(a)]‖ ≤ 1 ⇒
‖[D, a]‖ ≤ K. Therefore dC(ρ ◦ α, ω ◦ α) ≤ KdC(ρ, ω). Replacing α by its inverse leads to

(1)
1
K
dC(ρ, ω) ≤ dC(ρ ◦ α, ω ◦ α) ≤ KdC(ρ, ω) .

Conversely, if eq. (1) holds, it follows that both α, α−1 leaves C1(X) invariant, showing that α
is quasi-isometric. 2

2.2. Almost Periodicity: Definitions.

Definition 4. If α ∈ Aut(A) an element a ∈ A is called α-almost periodic if the norm closure
Hull(a) of its orbit Orb(a) = {αn(a) ; n ∈ Z} is compact. A subset F ⊂ A is called α-almost
periodic if any of its elements are α-almost periodic. A ∗-automorphism α ∈ Aut(A) is called
almost periodic whenever any a ∈ A is α-almost periodic.

An equivalent way of defining almost periodicity is the following

Corollary 2. Let A be a C∗-algebra. A ∗-automorphism α ∈ Aut(A) is almost periodic if and
only if the norm pointwise closure of the group it generates is compact.

The proof will be left to the reader since it consists only of using the definition of the norm-
pointwise convergence. In much the same way, if F ⊂ A is α-almost periodic, then let AF be
the C∗-algebra generated by the elements of the form αn(a) for n ∈ Z and a ∈ F . Then α
is an almost periodic ∗-automorphism of AF . In particular it generates a compact group of
automorphisms. However, this group may not be contained in Aut(A).

2.3. Almost Periodicity: Bohr’s Approach. In this section, a more classical approach to
almost periodicity, close to Bohr’s original one, will be presented for the sake of the reader. Let
a ∈ A be α-almost periodic. Then, its hull is α-invariant and (Hull(a), α) becomes a topological
dynamical system. An α-periodic element is an a ∈ A such that there is p ∈ N (p 6= 0), called a
period, such that αp(a) = a. The orbit of a periodic element is finite thus compact. In particular
if a is periodic then it is almost periodic.

Proposition 1. If a ∈ A is α-almost periodic, Hull(a) inherits a canonical structure of compact
abelian group in which Orb(a) is a dense subgroup isomorphic to Z.

Proof: If a is periodic, the result is elementary. Let a be non periodic then. Let S(a) be
the set of infinite sequences ξ = (xk)k∈N such that (i) xk ∈ Z for all k’s and (ii) limk→∞ αxk(a)
exists in Hull(a). By definition S(a) is non-empty: if n ∈ Z, then the constant sequence
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n̂ = (nk)k∈Z is defined by nk = n for all k and is obviously in S(a). Then given two such
sequences ξ = (xk)k∈N, η = (yk)k∈N, their sum is defined by ξ + η = (xk + yk)k∈N. It follows
that ξ + η belongs to S(a). For indeed, if k, l are two integers, ‖αxk+yk(a) − αxl+yl(a)‖ ≤
‖αxk{αyk(a)− αyl(a)}‖+ ‖αxk(αyl(a))− αxl(αyl(a))‖ = ‖αyk(a)− αyl(a)‖+ ‖αxk(a)− αxl(a)‖.
Hence the sequence (αxk+yk(a))k∈N is Cauchy in A and therefore it converges to an element of
Hull(a). In much the same way, the opposite of ξ is defined by −ξ = (−xk)k∈Z. Then again, it
follows that ‖α−xk(a)−α−xl(a)‖ = ‖α−xk−xl{αxl(a)−αxk(a)}‖ = ‖αxk(a)−αxl(a)‖. Hence by
the same argument −ξ ∈ S(a). This gives S(a) the structure of a an abelian group.

It is easy to check that the relation ξ
a∼ η defined by limk→∞ ‖αxk(a) − αyk(a)‖ = 0 is an

equivalence relation compatible with the group structure. Thus, S(a)/ a∼= Ωa is also an abelian
group. Then, the function d(ξ, η) = limk→∞ ‖αxk(a)− αyk(a)‖, defined on S(a)× S(a) satisfies
(i) d(ξ, η) ≥ 0, (ii) d(ξ, η) = d(η, ξ), (iii) d(ξ, η) ≤ d(ξ, ζ)+d(ζ, η) for all ζ ∈ S(a), (iv) d(ξ, η) = 0
if and only if ξ a∼ η. In particular, d defines a metric on Ωa.
The map φ : S(a) → Hull(a) defined by φ(ξ) = limk→∞ αxk(a) satisfies (i) it is onto, by definition
of the Hull, (ii) φ(ξ) = φ(η) if and only if ξ a∼ η, (iii) ‖φ(ξ)−φ(η)‖ = d(ξ, η). Hence φ defines an
isometry from Ωa onto Hull(a), showing that Ωa is compact indeed. Moreover, if n ∈ Z it follows
from the definition that φ(ξ+ n̂) = αn(φ(ξ)). In particular d(ξ+ n̂, η+ n̂) = d(ξ, η) for all n ∈ Z.
In addition if η = (yk)k∈N ∈ S(a) it follows that d(η, ŷk) → 0 as k → ∞. Consequently the
metric d is invariant by translation on Ωa so that the addition in Ωa is continuous. Moreover,
it is simple to show that d(−ξ,−η) = d(ξ, η). Hence (Ωa, d) is a topological compact abelian
group. Then the equivalence class of n̂ for n = 1 defines an element ω0 ∈ Ωa such that the set
{nω0 ; n ∈ Z} is dense in Ωa. At last, the relation φ(ξ + n̂) = αn(φ(ξ)) shows that the map
n ∈ Z 7→ αn(a) ∈ Hull(a) can be continued in a unique way as a map ω ∈ Ωa 7→ αω(a) ∈ Hull(a)
throughout the quotient map defined by φ. 2

Corollary 3. If F ∈ A is a finite subset of α-almost periodic elements. Then there is compact
abelian group ΩF with an element ωF , called the unit, such that (i) the Z-action defined by
ω ∈ ΩF 7→ ω + ωF ∈ ΩF is minimal, (ii) for any a ∈ F , the map n ∈ Z 7→ αn(a) ∈ A can be
continued in a unique way as a continuous surjective map φF,a : ω ∈ ΩF 7→ αω(a) ∈ Hull(a)
such that φF,a(ωF ) = α(a). Moreover, if F ⊂ G there is a canonical surjective continuous group
homomorphism φG,F : ΩG 7→ ΩF which sends ωG onto ωF .

Proof: The same construction can be done if S(a) is replaced by S(F ) =
⋂

a∈F S(a). Since
F is finite this intersection is not empty. For indeed, let choose a, b ∈ F and ξa ∈ S(a). Then
the sequence αxk(a) converges in Hull(a). Since Hull(b) is compact there is a subsequence ξa,b

of ξa such that αxkl (b) is convergent, namely ξa,b ∈ S(a) ∩ S(b). By recursion on the set F ,
this leads to the existence of elements in S(F ). The rest of the proof is similar to the proof of
Proposition 1 and can be done by inspection. 2

Remark 2. If F is infinite but countable, the set S(F ) can be shown to be nonempty by using
a diagonal procedure to extract subsequences. If F is infinite, the same construction works
provided the sets S(F ) are replaced by a family of nets. 2

Proposition 2. The set of α-almost periodic elements of A is norm closed.

Proof: If a = limj aj with aj α-almost periodic for all j’s. Then ‖αn(a)−αn(aj)‖ = ‖a− aj‖.
Let ε > 0 and let j be such that ‖a − aj‖ ≤ ε/3. The family of open balls Bn = {b ∈
A ; ‖b − αn(aj)‖ < ε/3} cover the orbit of aj thus they cover Hull(aj). Since aj is almost
periodic, it follows that there is a finite subset Jj ⊂ Z such that the balls (Bk)k∈Jj

cover
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Hull(aj) as well. In particular, infk∈Jj
‖αn(aj) − αk(aj)‖ ≤ ε/3 for all n ∈ Z. It follows that

infk∈Jj
‖αn(a) − αk(a)‖ ≤ ε for all n ∈ Z. Therefore, the balls Cn = {b ∈ A ; ‖b − αn(a)‖ < ε

with n ∈ Jj cover Hull(a) as well, showing that Hull(a) is compact, namely that a is α-almost
periodic. 2

Corollary 4. Let A be a separable C∗-algebra and let α ∈ Aut(A) be almost periodic. Then
there is an abelian compact group Ωα with an element ωα, called the unit, such that (i) the Z-
action defined by ωα ∈ Ωα 7→ ω + ωα ∈ Ωα is minimal, (ii) for any finite subset F ⊂ A there is
a surjective continuous group homomorphism φF : Ωα 7→ ΩF preserving the units, such that, if
F ⊂ G then φG ◦ φG,F = φF . In particular for all a ∈ A, the map φ{a} is the unique continuous
extension of n ∈ Z 7→ αn(a) ∈ A.

Proof: Since A is separable, there is a countable dense subset F∞. The family of groups
{ΩF ; F ⊂ F∞ finite} defines an inverse limit, thanks to the restriction maps φG,F . Set Ωα =
proj limF (ΩF , φG,F ). Using the Proposition 2 this group does not depend on the choice of F∞.
The rest can be proved by inspection, using the properties of projective limits. 2

2.4. Proof of Theorem 1. The following result will be helpful

Lemma 3. Let X = (A,H, D) be a spectral triple. Then the Lipschitz ball is norm closed.

Proof: Let I be the set of unit vectors in the domain of D. For f, g ∈ I, let pf,g be the
semi-norm on A defined by

pf,g(a) = |〈Df, ag〉 − 〈f, aDg〉|
Clearly pf,g is norm-continuous. Thus Bf,g = {a ∈ A ; pf,g(a) ≤ 1} is norm-closed. Since the
domain of D is dense, it follows that

p(a) = ‖[D, a]‖ = sup
f,g∈I

pf,g(a) .

Hence p is a lower semi-continuous function for the norm topology. Since BLip =
⋂

f,g∈I Bf,g it
is also norm-closed. 2

The proof of Theorem 1 goes as follows. Let G ⊂ Aut(A) have a compact closure. Then,
by definition, it is quasi-isometric. In particular, for any a ∈ C1(G,X) the map g ∈ G 7→
‖[D, g(a)]‖ ∈ R+ is continuous. Thus it is bounded. This shows that C1(G,X) = C1

b (G,X) and
that G is equicontinuous.
Conversely, let G ⊂ Aut(A) be equicontinuous. Then let BLip(G,X) be defined by

BLip(G,X) = {a ∈ C1
b (G,X) ; sup

g∈G
‖[D, g(a)]‖ ≤ 1} .

It follows that BLip(G,X) is G-invariant. By an argument similar to the proof of Lemma 3
above, it follows that it is norm-closed as well. By construction, for any element a ∈ C1

b (G,X)
there is λ > 0 such that λa ∈ BLip(G,X). In particular, by density, BLip(G,X) is total in
A. If B = BLip(G,X) let BB be equipped with the product topology. By definition of the
norm-pointwise convergence, the map φ : g ∈ G 7→ (g(a))a∈BLip(G,X) ∈ BB is a homeomorphism
from G onto its image. For g ∈ G let Sg : BB 7→ BB be the shift defined by

(Sgξ)(a) = g(ξ(a)) , ξ ∈ BB, a ∈ B = BLip(G,X) .
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For indeed such a ξ satisfies ξ(a) ∈ B for all a ∈ BLip(G,X), therefore any automorphism
g ∈ G transforms B into itself, so that Sg is well defined and continuous. Then, by construction
φ(gg′) = Sg ◦ φ(g′) whenever g, g′ ∈ G.
Let θ : A 7→ A/A′D be the quotient map. If A′D is trivial, it is left invariant by G, so that G also
acts by isometries on A/A′D. In particular θ maps B into a closed subset K of θ(BLip), which,
since X = (A,H, D) is a spectral metric space, is compact in A/A′D. Let then θ̂ be the map
induced by θ on the product space BB, that is

θ̂(ξ)(a) = θ(ξ(a)) , ξ ∈ BB, a ∈ B = BLip(G,X) .

This map is continuous. Therefore, the map ψ = θ̂ ◦ φ : G→ KB is continuous. Thanks to the
Tychonov Theorem, KB is compact. In addition, it will be proved that ψ is one-to-one. If so,
ψ defines a homeomorphism from G into its image and its closure is compact.
Thanks to the group property, it is enough to show that ψ(g) = ψ(id) implies that g = id. Now
ψ(g) = ψ(id) if and only if g(a) = a mod C1A, namely if and only if there is η(a) ∈ C such
that g(a) = a + η(a)1A for all a ∈ BLip(G,X). Since the map a 7→ (g(a) − a) is linear and
bounded from A into A, it follows that η is a bounded linear form on A. Since any g ∈ G is a
∗-automorphism of A, it follows that η(a∗) = η(a). In addition, g(1A) = 1A implies η(1A) = 0.
Moreover, g(a∗a) = g(a)∗g(a) implies that

η(a)a∗ + η(a)a = {η(a∗a)− |η(a)|2}1A
Applying η on both sides shows that 2|η(a)|2 = 0 so that η = 0 and g = id.

3. Spectral Triples for Equicontinuous Group Actions

This Section is devoted to the proof of Theorem 2. As in the statement of this Theorem, A is
a unital separable C∗-algebra and α ∈ Aut(A). Moreover, u will denote the generator of the
Z-action defined by α in the crossed product algebra A oα Z. For convenience, Cc(Z,A) will
denote the dense subalgebra of the crossed product Aoα Z of elements of the form

∑
n∈Z bnu

n

with only finitely many nonzero bn’s.

3.1. The Dual Action. The dual action on a crossed product was defined by Connes [17] and
Takesaki [66], in the case of von Neumann algebras, and by Takai [64, 65], for C∗-algebras. Let
T = R/2πZ denote the dual group of Z. For k ∈ T, let ηk ∈ Aut(Aoα Z) be the dual action of
T, defined by

(2) ηk(a) = a , for a ∈ A , ηk(u) = eık u .

It will be convenient to introduce extra tools of calculations at this point. The generator of the
dual action is defined, for b ∈ Cc(Z,A), by

∂b =
dηk(b)
dk

�k=0=
∑
l∈Z

ıl bl u
l .

Thanks to the group property of the dual action this is a ∗-derivation, in particular, it satisfies
the Leibniz rule ∂(bc) = ∂(b)c+b∂(c) and ∂(b∗) = (∂b)∗. Another important tool is the canonical
conditional expectation E : Aoα Z 7→ A defined by
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(3) E(b) =
∫

T

dk

2π
ηk(b) = b0 .

It is a completely positive linear map such that ‖E(b)‖ ≤ ‖b‖ and satisfies E(aba′) = aE(b)a′

if both a, a′ ∈ A. It follows immediately from the inverse Fourier transform formula, that, if
b ∈ Cc(Z,A) then

bl = E(bu−l) .

This latter formula shows that bl is defined for any element in A oα Z, thanks to eq. (3).
Additional important tools, such as the use of the Fejer kernel, can be found in the Appendix
(Section 8).

3.2. A Perturbation Result. Let Y = (A oα Z,K, D) be a (compact) spectral metric space
based on the crossed product algebra Aoα Z. As it is well-known the crossed product Aoα Z is
not a total invariant characterizing the conjugacy class of α. For instance, if C is the Cantor set
and if φ is a minimal homeomorphism of C, then, modulo isomorphism, the algebra C(C) oφ Z
only gives the Z-actions orbit equivalent to φ [32, 33]. In a similar way, there is no reason why
this spectral metric space could distinguish the unitary u from other elements of Aoα Z. So, in
general, it cannot be expected that u ∈ C1(Y ) (see Definition 3). However, the following result
shows that, provided the dual action is quasi-isometric and at the cost of perturbing α by an
inner automorphism, it is possible to assume that u ∈ C1(Y )

Lemma 4. Let Y = (Aoα Z,K, D) be a spectral metric space based on Aoα Z so that u denotes
the generator of α in Aoα Z. Let Y be such that the dual action is quasi-isometric. Then
(i) for every 0 < ε < 1 there is a unitary element w ∈ A such that ‖w − 1‖ < O(ε) and such
that wu ∈ C1(T, Y );
(ii) if β = Ad(w) ◦ α then β is quasi-isometric in X = (A,K, ρ,D).
(iii) in particular, the two Banach spaces Aoα Z and Aoβ Z coincide and they are isomorphic
as C∗-algebras. Moreover, Y ′ = (Aoβ Z,K, D) is a spectral metric space.

Proof: (i) Since C1 = C1(T, Y ) is dense, by hypothesis, it follows that, given any 0 < ε < 1,
there is b ∈ C1 such that ‖b− u‖ ≤ ε. In particular, b is invertible in Aoα Z. Therefore

(b1 − 1)u =
∫

T

dk

2π
e−ık ηk(b− u)

showing that ‖b1u − u‖ = ‖b1 − 1‖ ≤ ε. Hence b1 is invertible in A. Moreover, b ∈ C1 implies
b1u ∈ C1, since the dual action is quasi-isometric. In particular b1b∗1 = b1uu

∗b∗1 is a positive
invertible element of A in C1, thus in C1(X). Thanks to the invariance of C1 by holomorphic
functional calculus, it follows that w = (b1b∗1)

−1/2b1 is a unitary in A and that ‖w− 1‖ ≤ Cε for
some C > 0. In addition, wu ∈ C1 by construction.
(ii) Define β ∈ Aut(A) by β(a) = wα(a)w−1. Hence wua(wu)−1 = wα(a)w−1 = β(a) for a ∈ A.
Then, a dense subalgebra of A oβ Z is the set of elements of the form b =

∑
|n|≤N an(wu)n,

for some N ∈ N, with an ∈ C1(X). Since (wu)n = wα(w) · · ·αn−1(w)un, it follows that such
elements belong to A oα Z. Since w is invertible, the same argument shows that the two C∗-
algebras Aoα Z and Aoβ Z are equal as a set and as a Banach space. Since wu ∈ C1(T, Y ) it
follows that such b’s are all in C1 so that β leaves C1(X) invariant.
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(iii) Let φ : Aoβ Z → Aoα Z be defined by φ(a)n = anwα(w) · · ·αn−1(w). Then an elementary
calculation shows that φ(a∗β b) = φ(a)∗αφ(b) for a, b ∈ Aoβ Z, where ∗α, ∗β denote the product
in each of these algebras. Similarly, φ(a∗) = φ(a)∗. Thus φ is a ∗-homomorphism. Exchanging
the roles of α and β shows that φ is also a ∗-isomorphism, thus an isometry. Since, as sets, the
two algebras are the same, the spectral triple Y ′ = (Aoβ,K, D) is also a spectral metric space,
but now, the generator of the Z action belongs to C1(Y ′). 2

3.3. Invariant Metrics. In this Section, Y = (A oα Z,K, D) is a (compact) spectral metric
space based on the crossed product algebra A oα Z. It is assumed that (i) the dual action is
quasi-isometric, (ii) u−1[D,u] is bounded and commutes with the elements of A. Then

Lemma 5. The family X = (A,K, D) defines a compact spectral metric space.

Proof: (i) Since the dual action is equicontinuous, it follows that, for b ∈ C1(T, Y ), the integral∫
T[D, ρ ◦ ηk(b)]dk converges in norm, leading to ‖[D, ρ ◦ E(b)]‖ < ∞. Namely the projection of

the dense subalgebra C1(T, Y ) ⊂ A oα Z onto A, which is dense, is contained in the algebra
C1(A, D). Hence X = (A,K, D) is a spectral triple.
(ii) If a ∈ A belongs to the D-commutant for A it belongs to the D-commutant for Aoα Z, and
thus it is a multiple of the unit. Since the D-commutants are the same, the Lipschitz ball for
A is contained in the Lipschitz ball for Aoα Z, so that it is compact when seen in the quotient
space A/A′bD. 2

Lemma 6. The automorphism group generated by α is equicontinuous.

Proof: Since γu = u−1[D,u] is bounded it follows that u ∈ C1(Y ). Therefore, u−1Du is well
defined and equal toD+γu. Thus, since γu commutes with the elements ofA, [u−1Du, a] = [D, a]
for a ∈ C1(X). Therefore, [D,α−1(a)] = u−1[D, a]u. By recursion on n ∈ N, it follows that
[D,α−n(a)] = u−n[D, a]un for all n ∈ N. In much the same way, γu−1 = u[D,u−1] = uγuu

−1

also commutes with the elements of A, since [γu−1 , a] = u[γu, α
−1(a)]u−1 = 0. Therefore,

[D,α−n(a)] = u−n[D, a]un for all n ∈ Z. Hence ‖[D,α−n(a)]‖ = ‖[D, a]‖ for all n ∈ N and α
defines an isometric action of Z on X. Hence it is equicontinuous. 2

3.4. The Regular Representation on Aoα Z. In this section the direct part of Theorem 2
is considered. Let X = (A,H, D) be a compact spectral metric space. Let α ∈ Aut(A) generate
an equicontinuous group. In particular, C1

b (Z, X) = {a ∈ A ; supn∈N ‖[D,αn(a)]‖ <∞} is dense
in A. Then let K = H ⊗ `2(Z) ⊗ C2. Hence, an element f ∈ K can be written as f = (fn)n∈Z
with fn = (fn+, fn−) where fn,± ∈ H. It will be convenient to introduce the Pauli matrices

(4) σ1 =
[

0 1
1 0

]
, σ2 =

[
0 −ı
ı 0

]
, σ3 =

[
1 0
0 −1

]
.

For the purpose of this work, the main property of these matrices is their anticommutation rule

σiσj + σjσi = 2δij
The left regular representation π̂ of A induced by α is defined by

(5) (π̂(a)f)n = α−n(a)fn , (ûf)n = fn−1 .



16 Dynamical Systems on Spectral Metric Spaces

Hence û is a unitary operator on K which satisfies ûπ̂(a)û−1 = π̂ ◦ α(a). In particular this
representation extends to the crossed product Aoα Z by setting π̂(

∑
n anu

n) =
∑

n π̂(an)ûn. A
new Dirac operator is defined as follows

(6)
(
D̂f

)
n

=
[

0 D − ın
D + ın 0

]
fn = (D ⊗ σ1 + n1H ⊗ σ2) fn ,

This operator is selfadjoint by construction. Moreover it has compact resolvent, because if D is
written in its spectral decomposition as D =

∑
k∈Z λkΠk where {· · · , < λk < λk+1 < · · · } is the

set of eigenvalues and Πk is the corresponding eigenprojection, then

D̂ �n=
∑
k∈Z

[
0 (λk − ın)Πk

(λk + ın)Πk 0

]
,

so that the eigenvalues of D̂ are given by the ±
√
λ2

k + n2 and the eigenprojections by

Π±k,n =
1
2

 Πk ± (λk−ın)√
λ2

k+n2
Πk

± (λk−ın)√
λ2

k+n2
Πk Πk

⊗ Pn ,

if Pn denotes the rank one projection acting on `2(Z) which selects the n-th component. The
eigenprojections are indeed finite dimensional and the inverse of the eigenvalues converge to
zero as either k or n go to infinity. Hence D̂ has compact resolvent. Consequently, D̂ is a Dirac
operator on K. On the other hand

(7)
(
[D̂, û]f

)
n

=
[

0 −ı
ı 0

]
(ûf)n ,

(
[D̂, π̂(a)]f

)
n

=
[

0 1
1 0

]
[D,α−n(a)]fn .

It follows that ‖[D̂, π̂(a)]‖ < ∞ for a ∈ C1
b (Z, X). Let Bc be the subalgebra of A oα Z made

of elements of the form
∑

n anu
n where an ∈ C1

b (Z, X) and an = 0 but for a finite number of
indices. Then, since C1

b (Z, X) is dense in A, Bc is dense in the crossed product and, thanks to
eq. (7), b ∈ Bc ⇒ ‖[D̂, π̂(b)]‖ <∞. Hence Y = (Aoα Z,K, D̂) is a spectral triple.

Definition 5. The spectral triple Y = (A oα Z,K, D̂) will be called the regular representation
of the metric dynamical system (X,α). It will be denoted by Y = X oα Z.

Lemma 7. The regular representation Y = X oα Z has the following properties
(i) the dual action is isometric,
(ii) û−1[D̂, û] commutes with the elements of A.

Proof: For k ∈ T, let vk be the unitary operator defined on K by

(vkf)n = eınk fn , f ∈ K .
It is a standard result that k ∈ T 7→ vk ∈ B(K) defines a strongly continuous unitary represen-
tation of the torus T. Moreover, an elementary calculation shows that

vkπ̂(a)v−1
k = π̂(a) , a ∈ A , vkûv

−1
k = eık û , vkD̂v

−1
k = D̂ .

It follows immediately that vk implements the dual action on A oα Z and that it defines an
isometry on Y .
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An elementary calculation gives

û−1[D̂, û] = 1K ⊗ 1`2(Z) ⊗ σ2 ,

showing that it commutes with the representation of Aoα Z, thus with the elements of A. 2

3.5. A oα Z as a Spectral Metric Space. It remains to prove that Y is a spectral metric
space. Namely, it requires to prove that the D̂-commutant of A oα Z is trivial and that its
Lipschitz ball is pre-compact. It is worth reminding [56] that, if A is unital with unit 1A, then
so is Aoα Z and its unit is given by 1AoαZ =

∑
blu

l with bl = δl,01A. On the other hand, if A
is nonunital, then so is Aoα Z.

Lemma 8. The D̂-commutant of Aoα Z is trivial.

Proof: Let b be an element of C1
b (T, Y ). Thanks to Lemma 7, it follows that [D̂, π̂(b)] = 0 if

and only if [D̂, π̂ ◦ ηk(b)] = 0 for all k ∈ T. Therefore, using the Fourier decomposition w.r.t. k
gives

[D̂, π̂(bl)] + lπ̂(bl)1H ⊗ σ2 = 0 ∀l ∈ Z .
Using eq. (7), this implies

[D,α−n(bl)]⊗ σ1 + l α−n(bl)1H ⊗ σ2 = 0 ∀l, n ∈ Z .
Since the matrices 12, σ1, σ2, σ3 ∈M2(C) are linearly independent, it follows that

α−n(bl) = 0 , if l 6= 0 [D,α−n(b0)] = 0 ∀n ∈ Z .
Since X = (A,H, π,D) is a spectral metric space, it follows that bl = 0 for l 6= 0 and b0 ∈ AD,
namely b is a multiple of the identity in Aoα Z. 2

Lemma 9. The Connes metric on the original spectral metric space X and the one induced on
X by Y are equivalent.

Proof: Since α generates an equicontinuous group, it follows that the Connes metric associated
with X = (A,H, D), denoted here by dX , satisfies eq. 1 uniformly, namely, there is K > 0 such
that, for any pair of states ρ, ω on A,

1
K
dX(ρ, ω) ≤ dX(ρ ◦ αn, ω ◦ αn) ≤ KdX(ρ, ω) , ∀n ∈ Z .

On the other hand the Connes metric dY on the state space of A induced by the regular
representation is given by

dY (ρ, ω) = sup{ρ(a)− ω(a) ; sup
n∈Z

‖[D,αn(a)]‖ ≤ 1} .

It follows that dY (ρ, ω) ≤ dX(ρ, ω). By equicontinuity there is K > 0 such that ‖[D, a]‖ ≤ 1 ⇒
supn ‖[D,αn(a)]‖ ≤ K, showing that dX(ρ, ω) ≤ K dY (ρ, ω). 2

At last, the following holds, finishing the proof of Theorem 2

Proposition 3. The Lipschitz ball of the spectral triple Y = (AoαZ,K, π̂, D̂) is compact modulo
the D̂-commutant.

The proof of this Proposition is technically demanding and is the subject of Section 8.
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4. The Spectral Metric Bundle

This Section is devoted to the construction of a spectral metric bundle over the crossed product
algebra A oα Z whenever the automorphism α is not equicontinuous. Some examples of such
situations are described in Section 4.1. To do so, the construction of Connes-Moscovici will be
the main intuitive guideline [21]. Namely, let M be a compact manifold of dimension d. If G is a
group of diffeomorphisms of M , if G is not amenable, there may not be any G-invariant measure
on M . This can be cured if M is replaced by its frame bundle P, because there is always on P
a measure that is invariant by all diffeomorphisms. Then if the concept of measure is replaced by
the one of Riemannian metric, something similar happens, namely there may be no G-invariant
Riemannian metric on M . However if M is replaced by the metric bundle M , made of pairs
(x, g) where x ∈ M and g is a Euclidean metric on the tangent space TxM , then the group
of diffeomorphisms of M acts on M and there is an invariant Riemannian metric on it. The
construction of the Riemannian metric is tautological, provided the set of Euclidean metrics on
Rd is endowed itself with a Riemannian metric as well. In Section 4.2 below, this problem is
described in more details. If now the group G is smaller than the family of all diffeomorphisms,
and if M is endowed with a Riemannian metric, it is sufficient to restrict the metric bundle to
the G-orbit of this metric.
When passing from a manifold to a noncommutative one, the manifold is replaced by a C∗-
algebra A. If the manifold is Riemannian, the metric will be described by a spectral triple
(A,H, D). Let G be a group of ∗-automorphism of A. The first step will be to identify a new C∗-
algebra B which is liable to play the role of the set of continuous functions on the metric bundle,
vanishing at infinity. Since the metric bundle admits itself a metric, the spectral triple over A
should induce a spectral triple over B. The construction will be made in Section 4.5. It should
be such that G acts on this new spectral triple in a way such that the regular representation
described in Section 3.4 should work.

4.1. Examples of Non-Equicontinuous Actions.

Example 1 (Arnold’s cat map [2] and a parabolic map). Let A = C(T2) and let A1 =
C1(T2) be the dense ∗-subalgebra of continuously differentiable functions on the two-torus. The
Hilbert space will be L2(T2)⊗C2. A acts by multiplication on the diagonal. The Dirac operator
is given by

D =
[

0 −ı∂1 − ∂2

−ı∂1 + ∂2 0

]
.

Then D2 = −(∂2
1 + ∂2

2) is the Laplacian and so the resolvent of D is compact. The commutant
of D in A are the constant function. The norm ‖a‖+‖[D, a]‖ is nothing but the Lipschitz norm
on A1 and the Lipschitz ball is indeed compact in A by the Arzelà-Ascoli theorem. Thus α is
an automorphism of A such that supn ‖[D,αn(a)‖ < ∞ if and only if {αn(a) ; n ∈ Z} has a
compact uniform closure, namely if and only if α is almost periodic. In particular, if

(8) M =
[

2 1
1 1

]
,

then the automorphism α(a)(x) = a(M−1x) is the Arnold cat map which is uniformly hyperbolic.
Then M can be decomposed into
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M =
√

5 + 1
2

π+ +
√

5− 1
2

π− ,

where π± are two orthogonal one-dimensional projections in the set of 2×2 matrices, orthogonal
to each other. Then ∇a ◦M−n = M−n∇(a) ◦M−n. It follows that, if σ = (σ1, σ2),

[D,αn(a)] =
√

5 + 1
2

σ · π+α
n(∇(a)) +

√
5− 1
2

σ · π−αn(∇(a))

so that ‖[D,αn(a)]‖ diverges as |n| → ∞, because (
√

5 − 1)/2 = ((
√

5 + 1)/2)−1. If now M is
replaced by

(9) N =
[

1 1
0 1

]
,

it gives a parabolic diffeomorphism of the torus. This map occurs in some problems related
to the discrete Heisenberg group. Similarly Nn is unbounded, even though it increases only
linearly in n. But the corresponding automorphism is not equicontinuous. 2

Example 2 (Bilateral shift). This example is illustrative of what happens for tiling spaces
[55]. Let Ξ = {0, 1}Z be the Cantor set2, represented as the set of sequences of 0’s and 1’s
indexed by the integers Z. The bilateral shift is the map S : Ξ → Ξ defined by

(Sx)n = xn−1 , x = (xn)n∈Z ∈ Ξ .
The construction of a metric and of a spectral triple follows the strategy in [55] that is appropriate
for tiling spaces as well. Namely, let Wn = {0, 1}2n+1 denote the set of words of length 2n + 1
and let W denote the dictionary, namely, the disjoint union of the Wn’s. Given w ∈ Wn then
2n + 1 = |w| is called the length of the word w. Then Ξ(w) denotes the acceptance zone of w,
namely, the set of sequences x = (xn)n∈Z with middle word coinciding with w

x−n+k = wk , k = 0, 1, · · · , 2n
An ultrametric d is defined by demanding that the distance between two sequences x, y be given
by 2−|w| if w is the longest middle word common to x and y. This metric can be recovered
from the following continuous family of spectral metric spaces Xτ = (C(Ξ),H, πτ , D), where
H = `2(W )⊗ C2 and D is defined by

Dψ(w) = 2|w|
[

0 1
1 0

]
ψ(w) , ψ = (ψ(w))w∈W ∈ H , ψ(w) ∈ C2 .

A family of representations of A = C(Ξ) should be used instead of only one, in order to recover
the metric from the Connes procedure [55]. Namely, a choice is a map τ : W → Ξ× Ξ with the
following property: (i) if τ(w) = (xw, yw) then both xw, yw belong to Ξ(w), (ii) d(xw, yw) = 2−|w|,
namely w is the largest middle word common to xw, yw. The set of choices is also a Cantor set
denoted by Υ. Given a choice τ , a representation can be defined by

πτ (f)ψ(w) =
[
f(xw) 0

0 f(yw)

]
ψ(w) , ψ ∈ H .

2The disconnected Greek letter Ξ is an appropriate choice to denote a completely disconnected set.
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The Connes metric of the field Xτ of such spectral triples coincides with the previous metric
[55], namely

dC(x, y) = sup
{
|f(x)− f(y)| ; sup

τ∈Υ
‖[D,πτ (f)]‖ ≤ 1

}
= d(x, y) .

Here, the family X = (Xτ )τ∈Υ, not the individual element, defines a spectral metric space. As a
matter of fact, the bilateral shift is not equicontinuous, especially because the metric d defined
above is not shift invariant. This model is the fundamental model in ergodic theory describing
what is called today a Smale space.
A similar conclusion holds if Ξ is replaced by the tiling space of the Fibonacci sequence, obtained
from the substitution 0 7→ 01 , 1 7→ 0. The tiling space is the set of all sequences sharing the
same dictionary as the Fibonacci sequence. A similar construction for a metric and a spectral
triple can be made and leads to a same conclusion for the shift. 2

4.2. The Space of Euclidean Metrics. A Euclidean metric on Rd is given by a d×d positive
invertible matrix Q will real coefficients. Namely, the corresponding metric is given by g(x, y) =
〈x|Qy〉 if 〈x|y〉 =

∑d
i=1 xiyi denotes the usual dot product. Hence the space of metrics Md on

Rd is the interior of the positive cone on Md(R). Such a matrix Q can be parametrized by an
element of GLd as follows

Λ ∈ GLd(R) 7→ Λ Λt ∈ Md .

This map is onto, but not one-to-one, because the stabilizer of the metric Q = 1 is the subgroup
Od ⊂ GLd so that the previous map becomes one-to-one if seen as defined on the symmetric
space GLd/Od. Hence Md can be seen as the manifold GLd/Od. The advantage of such an
identification is that, since it is a symmetric space, the action of GLd defines a Riemannian
metric on Md once an Od-invariant Euclidean metric is defined on the tangent space to Md at
Q = 1. This tangent space is nothing but the set of d × d real symmetric matrices on which
the Hilbert-Schmidt inner product defines a canonical metric. The transport of the metric on
the tangent space at Q can be made as follows: if Q = Λ Λt then dQ = ΛH Λt for some
H = Ht ∈Md(R). Thus

(10) ds2 =
1
d
Tr (H2) =

1
d
Tr

(
Q−1dQQ−1dQ

)
.

The following result is straightforward and the proof will be left to the reader

Proposition 4. Let Md be endowed with the Riemannian metric given by eq. (10). Then a
geodesic is given by a map s ∈ [0, 1] 7→ Q(s) as a solution of the equation

(11)
d2Q

ds2
=
dQ

ds
Q−1dQ

ds
+

Tr
((

Q−1 dQ
ds

)3
)
− Tr

(
Q−1 dQ

ds Q
−1 d2Q

ds2

)
Tr

((
Q−1 dQ

ds

)2
) dQ

ds
.

A special case is provided by the curve γH given by s ∈ [s0, s1] 7→ Q(s) = esH ∈ Md for H = Ht.
Since Q−1dQ/ds = H and since H commutes with Q(s), a simple calculation shows that this
curve satisfies the geodesic equation (11). Moreover
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dL2 =
1
d
Tr

(
Q−1dQQ−1dQ

)
=

1
d
Tr

(
H2

)
ds2 .

In particular,

L(γH) = |s1 − s0|
1√
d

(
Tr

(
H2

))1/2
.

An example of such a situation consists in evaluating the Riemannian distance between the two
metrics given by Qm and Qn whenever m 6= n. Writing Q = eH this gives

(12) d(Qm, Qn) = |m− n| 1√
d

(
Tr

(
lnQ2

))1/2
.

This case corresponds to the situation for the Arnold cat map (see eq. 8), namely, along the
orbit, Q(n) = (M∗)nMn = M2n so that the previous formula applies with Q = M2.

4.3. Spectral Metric Spaces Based on Z. Since the orbit of the original metric in the metric
bundle is identified with Z it makes sense to consider first the possible structures of spectral
metric spaces based on Z. The natural C∗-algebra associated with this space is c0(Z), namely
the set of sequences of complex numbers, vanishing at infinity, endowed with the uniform norm

a ∈ c0(Z) a = (an)n∈Z ⇒ lim
n→∞

an = 0 , ‖a‖ = sup
n∈Z

|an| .

The main feature of this algebra is that it is not unital. Characterizing the metrics equivalent to
the weak∗ topology on the state space of c0(Z) can be done by using the results obtained in [45]
(see Result 3). In this case it is well known that the dual space of c0(Z) can be identified with the
space `1(Z) of absolutely summable sequences η = (ηn)n∈Z with ‖η‖`1 =

∑
n∈Z |ηn| <∞. Then

η ∈ `1(Z) is positive if and only ηn ≥ 0 for all n’s. If C1 denotes the set of positive elements
with norm less than or equal to one, then C1 is weak∗ closed and compact (Banach-Alaoglu
Theorem). A positive linear form η is a state if and only if

∑
n∈Z ηn = 1, so that the state space

is nothing but the set M1(Z) of probability measures on Z equipped with the weak∗ topology.
It is well-known, and easy to prove, that M1(Z) is a weak∗ dense Gδ subset of C1. In addition,
the Prokhorov Theorem [57] gives a characterization of compact subsets in M1(Z): a weak∗

closed subset K ⊂ M1(Z) is compact if and only if, for all ε > 0, there is an integer N such
that

∑
|n|>N ηn ≤ ε for all η ∈ K. This condition is called tightness in probability theory [7] and

expresses the fact that a sequence in K cannot escape at infinity.
In order to characterize the metrics on M1(Z) defining the weak∗ topology, the notion of weak-
uniform topology (wu) on c0(Z) will be used. It was introduced by Latrémolière [45] on separable
C∗-algebras with or without units. Namely, if K denotes the set of compact subsets in M1(Z),
given any compact subset K ∈ K, let pK be the seminorm on c0 defined by

pK(a) = sup
ω∈K

|ω(a)| .

The wu-topology is the locally convex topology defined by the family of seminorms (pK)K∈K (if
c0(Z) where unital, this topology would be the same as the norm topology). A subset F ⊂ c0(Z)
is called totally bounded whenever, for any ε > 0 and any compact subset K ⊂ M1(Z), there is
a finite set A ⊂ F such that the open pK-balls centered at the elements of A with radius ε cover
F . A crucial result in [45] is that F is totally bounded if and only if there is a strictly positive
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element h ∈ c0(Z) such that hFh is pre-compact (see Result 3). Note that here c0 is abelian so
that hFh = Fh2. It follows that there is a need to characterize the compact subsets of c0(Z).
The following Lemma shows that they are exactly the bounded closed subsets equicontinuous at
infinity, more precisely

Lemma 10. A closed subset F ⊂ c0(Z) is compact if and only if (i) it is bounded, (ii) for all
ε > 0 there is N ∈ N such that for |n| ≥ N |an| ≤ ε for all a ∈ F .

Proof: If F ⊂ c0(Z) is compact, then, for any ε > 0 there is a finite family {a(1), · · · , a(m)} in
F so that the open balls B(a(i), ε/2) cover F . In particular, if a ∈ F , then there is an 1 ≤ i ≤ m

such that ‖a−a(i)‖ ≤ ε/2 so that ‖a‖ ≤ maxi ‖a(i)‖+ ε/2. Hence F is bounded. Moreover, since
a(i) ∈ c0(Z), there is a natural integer Ni such that for |n| ≥ Ni, |a(i)

n | < ε/2. If N = max{Ni} it
follows that for any a ∈ F , there is 1 ≤ i ≤ m such that ‖a− a(i)‖ < ε/2, implying that |an| < ε
if |n| ≥ N .
Conversely, let F be a closed bounded subset of c0(Z) such that for all ε > 0 there is N ∈ N
such that for |n| ≥ N |an| ≤ ε for all a ∈ F . Then let K denotes the disc in C centered at the
origin with radius supa∈F ‖a‖. Hence any sequence a ∈ F satisfies an ∈ K for all n. Therefore
F can be identified with a subset of the infinite product K̂ = KZ. Let Fw denote the image of
F in K̂, that will be equipped with the product topology. Therefore, thanks to the Tychonov
theorem, Fw is pre-compact. The injection φ : F → Fw is onto, by construction and continuous.
It is sufficient to show that the inverse is continuous to prove that F is compact. Since K̂ is
metrizable, it is sufficient to show that if (a(j))j∈N denotes a convergent sequence in Fw, then
it converges uniformly. The convergence in the product topology means that for each n ∈ Z
the limit an = limj→∞ a

(j)
n exists. Since a(j) ∈ Fw, let N be such that |a(j)

n | < ε/2 for all j’s
and |n| ≥ N . It follows that (i) |an| ≤ ε/2 whenever |n ≥ N , showing that a ∈ c0(Z), and that
(ii) sup|n|≥N |an − a

(j)
n | ≤ ε. Since the sequence a(j) converges pointwise, it follows that there

is J ∈ N such that for j ≥ J and |n| < N |an − a
(j)
n | ≤ ε. Hence ‖a − a(j)‖ ≤ ε as well. Thus

limj→∞ ‖a− a(j)‖ = 0. Since F is closed, it follows that a ∈ F . 2

Corollary 5. Given any strictly positive element h in c0(Z), the unit ball B satisfies hBh is
compact.

Proof: (i) h is a positive element of A = c0(Z) if and only if h = (hn)n∈Z with hn ≥ 0 for
all n’s. It is strictly positive if and only if hn > 0 for all n. For indeed, if so, let a ∈ A be any
element. For N ∈ N let aN be the element obtained from a by changing an into zero if |n| > N .
Then limN→∞ ‖a − aN‖ = 0. Since hn > 0 for all n the element bN = aN/h2 is well defined in
c0(Z), therefore aN = h2bN ∈ hAh. Conversely, if there is n ∈ Z such that hn = 0 then any
element a ∈ hAh satisfies an = 0 so that hAh is not norm dense in A.
(ii) If h ∈ c0(Z) is strictly positive, then if ‖a‖ ≤ 1 it follows that hah satisfies |(hah)n| =
|an|h2

n ≤ h2
n. Hence hBh is obviously closed, bounded and equicontinuous at infinity, thus,

thanks to Lemma 10, is norm compact. 2

Given a metric dZ on Z, a spectral triple can be constructed as follows. A natural faithful
representation of c0(Z) on `2(Z) is given by the pointwise multiplication

(af)n = an fn , a ∈ c0(Z) , f ∈ `2(Z) .
The discrete analog of a derivation is the finite difference (∂f)n = fn − fn−1, which is not
self-adjoint. If the metric changes from site to site, the corresponding operator should rather be
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(∇f)n =
fn − fn−1

ıdZ(n, n− 1)
, ⇒ (∇∗f)n =

fn+1

ıdZ(n+ 1, n)
− fn

ıdZ(n, n− 1)
,

In this definition only the distance between consecutive points is required. It is natural to define
a Dirac operator by changing `2(Z) into the spinor space `2(Z)⊗ C2 and set

DZ =
[

0 ∇
∇∗ 0

]
=
σ1 + ıσ2

2
∇+

σ1 − ıσ2

2
∇∗ .

This gives a symmetric operator, but its resolvent is not compact in general. However, adding
to DZ an operator commuting to c0(Z) may transform it into a compact one as seen below.
Before stating the result, it will be convenient to introduce the following operators on `2(Z) and
on `2(Z)⊗ C2:

(13) (Xf)n =
[
cncn+1 0

0 −cncn+1

]
fn = cncn+1σ3fn ,

where the sequence c = (cn)n∈Z is required to satisfy

lim
|n|→∞

cn = +∞, , cn δn ≥ 1 .

with δn = dZ(n, n− 1). The result is the following

Lemma 11. The operator Dλ = DZ + λX is selfadjoint with compact resolvent for any λ ∈
R \ {0}.

Proof: It should be noted that X has compact resolvent, since (z1 − X)−1 is a diagonal
operator with eigenvalues (z + ±cncn+1)−1 which converges to zero as |n| → ∞. It will be
proved that (z − λX)−1DZ is compact as well. If so, the resolvent equation implies

(z − λX −DZ)−1 = (z − λX)−1 + (z − λX)−1DZ(z − λX −DZ)−1 ,

leading to the result. Now, for z = ı

(
(ı− λX)−1DZf

)
n

=
[

(ı− cncn+1)−1δ−1
n (f−n − f−n−1)

(ı+ cncn+1)−1(δ−1
n f+

n − δ−1
n+1f

+
n+1)

]
,

where f±n denote the two components of fn ∈ C2. The hypothesis made on cn shows that

|ı− cncn+1|−2δ−2
n =

1
c2nδ

2
nc

2
n+1 + δ2n

≤ c−2
n+1

|n|↑∞−→ 0

A similar estimate holds for the other component. This shows that (z−λX−DZ)−1 is compact
indeed. 2

The Connes metric is now defined by

dC(n,m) = sup{|an − am| ; ‖[Dλ, a]‖ ≤ 1}
Following Gromov [37] the path metric associated with a metric dZ is given by

dp(m,n) =
n∑

k=m+1

dZ(k, k − 1) , for m < n .
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Lemma 12. Let dZ be a metric on Z. Then, the Connes metric associated with Dλ coincides
with the path metric dp associated with dZ.

Proof: An elementary calculation shows that

[Dλ, a] =
[

0 [∇, a]
−[∇, a∗]∗ 0

]
.

It follows from then that ‖[Dλ, a]‖ = max{‖[∇, a]‖ , ‖[∇, a∗]‖} so that

(14) ‖[Dλ, a]‖ = sup
n

(
|an − an+1|
dZ(n, n+ 1)

)
Therefore ‖[Dλ, a]‖ ≤ 1 implies |an − am| ≤

∑n
j=m+1 dZ(j, j − 1) whenever m < n. Let now

m < n and define b ∈ c0(Z) by aj = 0 if j ≤ m, bm+k =
∑k

j=1 dZ(m + j,m + j − 1) for
1 ≤ k ≤ n −m, then bn+k = bn −

∑n−m
j=n−m−k dZ(m + j,m + j − 1) if 1 ≤ k ≤ n −m, bl = 0 if

l ≥ 2n−m. Then, by construction ‖[Dλ, b]‖ ≤ 1 and |bm− bn| =
∑n−m

j=1 dZ(m+ j,m+ j− 1). 2

At this point the eq. 14 gives an important clue for the spectral triple to be a spectral metric
space. In view of the Lemma 10, the Lipschitz ball is compact only if limn→∞ dZ(n, n+ 1) = 0.
More precisely

Lemma 13. Let dZ be a metric on Z. Then the triple (c0(Z), `2(Z)⊗C2, Dλ) is a spectral metric
space if and only if

∑
n∈Z dZ(n, n− 1) <∞. In the latter case BLip is norm compact.

Proof: (i) Clearly, the representation of c0(Z) is non degenerate and the Dλ-commutant is
trivial. Thus the only condition that ought to be checked is the total wu-boundedness of the
Lipschitz ball. It is sufficient to show that BLip is bounded if and only if C =

∑
n∈Z dZ(n, n−1) <

∞, in which case it is norm compact.
(ii) Since X commutes with the elements of c0(Z), it follows that [Dλ, a] = [DZ, a]. The Lipschitz
ball is therefore the set of a ∈ c0(Z) such that |an − an−1| ≤ dZ(n, n− 1) for all n. If the metric
is summable, then, for m ≥ n and a ∈ BLip it follows that |am − an| ≤

∑m
j=n+1 dZ(j, j − 1). If

m→ +∞ this gives |an| ≤
∑+∞

j=n+1 dZ(j, j − 1) ≤ C. In particular ‖a‖ ≤ C. In much the same
way, letting n→ −∞ gives |am| ≤

∑m
−∞ dZ(j, j − 1) ≤ C. This shows that BLip is bounded and

equicontinuous at infinity in the norm topology. Thanks to Lemma 10, BLip is norm compact.
(iii) If now

∑
j∈Z dZ(j, j − 1) diverges, for any integer N let aN be the sequence defined as

follows: (a) aN
n = 0 if n ≤ 0, (b) aN

n =
∑n

j=1 dZ(j, j − 1) if 1 ≤ n ≤ N and (c) aN
n =

max
{(∑N

j=1 dZ(j, j − 1)−
∑n

j=N+1 dZ(j, j − 1)
)
, 0

}
if n ≥ N + 1. By construction aN ∈ BLip

and ‖aN‖ =
∑N

j=1 dZ(j, j − 1) wich diverges as N → ∞. Hence BLip is unbounded, and the
spectral triple cannot be a spectral metric space. 2

Remark 3. The latter result shows that such a spectral triple can only be defined as a spectral
metric space if c0(Z) can be replaced by its one point compactification. 2

The latter result suggest that, in order to recover the weak∗ topology from a spectral triple
without requiring a one-point compactification of the C∗-algebra, it is necessary to use a different
Dirac operator. One possibility consists in using a field of such operators, instead of only one,
in the spirit of what was done in [55]. A candidate is the following: let ∇ be replaced by
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(∇rf)n =
fn − fn−r

dZ(n, n− r)
,

and let Dr be the corresponding Dirac operator. Changing cn+1 into cn+r in the definition
of X (see eq. (13)), leads to a diagonal operator Xr, so that Dr,λ := Dr + λXr has compact
resolvent for all r ∈ N and λ ∈ R \ {0}. Then the Connes distance associated with the sequence
Dλ = (Dr,λ)r≥1 will now be defined as follows

dC(ρ, ω) = sup{|ρ(a)− ω(a)| ; sup
r≥1

‖[Dr,λ, a]‖ ≤ 1}

A convenient way to represent this family in a unique spectral triple consists in looking at the
direct sum. This is achieved by changing the Hilbert space `2(Z) into `2(Z×N∗) where N∗ is the
set of nonzero natural integers. In order to get a Dirac operator, it will be necessary to increase
the set of Dirac matrices. In this specific case it seems that at least four of them, denoted
by γ1, · · · , γ4, are needed. This gives the following construction: let E be a 4-dimensional
Hilbert space on which the Dirac matrices are represented and let K be the Hilbert space
K = `2(Z× N∗)⊗ E . A vector in K can be seen as a double sequence f = (fn,r)(n,r)∈Z×N∗ with
fn,r ∈ E . Then the algebra c0(Z) is represented by

(af)n,r = anfn,r .

The Dirac operator will be now given as before in two steps. First the part giving the various
finite differences with the family of operator ∇r and then a diagonal operator to insure that the
resolvent will be compact. A solution to this problem consists in defining the following operators

(∇f)n,r =
fn,r − fn−r,r

dZ(n, n− r)
, (Xf)n,r = cncn+rγ3fn,r , (Rf)n,r = rγ4fn,r .

Then the Dirac operator on K will be defined by

(15) DK =
γ1 + ıγ2

2
∇+

γ1 − ıγ2

2
∇∗ + λ(X +R) .

It is tedious but straightforward to check that DK has compact resolvent and that

‖[DK, a]‖ = sup
n6=m

|am − an|
dZ(n,m)

.

The main result is the following

Proposition 5. Let dZ be a metric on Z. Then (c0(Z), `2(Z×N∗)⊗E , DK) is a spectral triple.
It is a spectral metric space if and only if the metric dZ is bounded.

Proof: (i) Checking that the representation of c0 is non degenerate is clear. Checking that
C1 is dense is also easy. The only technical point consists in checking that DK has compact
resolvent. Since the proof follows the lines of the proof of Lemma 11, it will be left to the reader.
(ii) The second part consists in checking whether the Lipschitz ball is wu-totally bounded or
not. The same argument as in the proof of Lemma 13 shows that, if dZ is not bounded, there
is a sequence (aN )N∈N in BLip such that ‖aN‖ → ∞ so that BLip is not bounded. Indeed it
is sufficient to take (a) aN

n = 0 if n ≤ 0, (b) aN
n = dZ(0, n) if 1 ≤ n ≤ N and (c) aN

n =
max{(dZ(0, N)− dZ(N,n)), 0} if n ≥ N + 1.
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(iii) Conversely if dZ is bounded then, any a ∈ BLip satisfies |an| ≤ lim supm→∞ |an − am| ≤
lim supm→∞ dZ(n,m) <∞. Therefore BLip is bounded in norm, so that, thanks to Corollary 5,
BLip is wu totally bounded. 2

Remark 4. It is easy to define on Z bounded metrics that are shift invariant. An example is
dZ(n,m) = tanh (|n−m|). More generally if d1 > d2 > · · · dn > 0 is a decreasing sequence of
positive numbers such that

∑
j dj converges, then dZ(n,m) =

∑|n−m|
j=1 dj if n 6= m, defines a shift

invariant bounded metric on Z. 2

The main question is now to understand what happens if the metric is unbounded. The answer
to this question is provided by the following result about the Connes metric

Lemma 14. Let dZ be a bounded metric on Z. Then the Connes distance associated with the
spectral metric space (c0(Z), `2(Z o N∗)⊗ E , DK) is exactly the Wasserstein distance of order 1
on M1(Z) associated with dZ.

Proof: (i) Given two probabilities ρ, ω ∈ M1(Z), let M(ρ, ω) be the set of probabilities on Z2

with marginals given by ρ and by ω respectively. Practically, µ ∈ M(ρ, ω) is a double sequence
(µm,n)(m,n)∈Z2 with µm,n ≥ 0,

∑
n∈Z µm,n = ρm and

∑
m∈Z µm,n = ωn for all m,n’s. The

Wasserstein distance of order p ≥ 1 is defined as

Wp(ρ, ω)p = inf
µ∈M(ρ,ω)

∑
(m,n)∈Z2

µm,n dZ(m,n)p .

For a ∈ c0(Z), the difference ρ(a)−ω(a) can be written as ρ(a)−ω(a) =
∑

(m,n)∈Z2 µm,n(am−an).
Since a belongs to the Lipschitz ball if and only if |am − an| ≤ dZ(n,m) for all indices, then
|ρ(a) − ω(a)| ≤

∑
m,n µm,ndZ(m,n). Minimizing over the measures µ gives |ρ(a) − ω(a)| ≤

W1(ρ, ω). In particular the Connes distance is dominated by the Wasserstein distance W1.
The opposite inequality is the content of a Theorem by Kantorovich and Rubinstein [41], showing
that if ρ and ω have finite support, then their Connes distance coincides with their Wasserstein
distance. 2

The Lemma 14 gives a clue for what to do if the distance is unbounded. For indeed the
Wasserstein distance is defined on a dense subset of measures, namely the probability mea-
sures ω ∈ M1(Z) such that

∑
n∈Z ωn dZ(n0, n) < ∞ for some n0. When dZ is unbounded this

subset is weakly dense and is a countable union of weakly compact sets, by Prokhorov’s The-
orem. This indicates that the Connes metric might be defined for a spectral triple that is not
a spectral metric space, provided the state space is replaced by a suitable closed subset. The
following set of results is directly coming from [28].
Let MD(Z) be defined as the set of states ω ∈ M1(Z) such that

∑
n∈Z |n|ωn < ∞. Clearly,

MD(Z) is weakly dense in M1(Z). A subset F ⊂ MD(Z) will be called D-tight whenever for
every ε > 0 there is N ∈ N∗ such that

ω ∈ F ⇒
∑
|n|>N

|n|ωn ≤ ε .

The main result in [28] is the following

Proposition 6 (Dobrushin [28]). (i) The Wasserstein metric W1 associated with the usual
metric d(m,n) = |m− n| on Z is well defined on MD(Z) and makes it a complete metric space.
(ii) If (ρj)j∈N∗ is a sequence in MD(Z) that W1-converges to ρ then it converges weakly to ρ.
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(iii) Any D-tight set is weak∗-compact. On any D-tight subset of MD(Z) the W1-topology coin-
cides with the weak∗ one.

Proof: (i) Let ρ, ω be a pair of elements in MD(Z). Then if µ ∈ M(ρ, ω), it follows that∑
m,n

µm,n|m− n| ≤
∑
m,n

µm,n(|m|+ |n|) =
∑
m

(ρm + ωm)|m| <∞ .

This implies that W1(ρ, ω) < ∞. In particular, if a ∈ c0(Z) then, since m 6= n ⇒ 1 ≤ |m − n|,
|ρ(a)− ω(a)| ≤

∑
(m6=n)∈Z2 µm,n|am − an| ≤ 2‖a‖

∑
(m6=n)∈Z2 µm,n|m− n|, it follows that

(16) |ρ(a)− ω(a)| ≤ 2‖a‖W1(ρ, ω)

In particular, this proves (ii), namely that a sequence converging in the W1-topology converges
weakly. In addition to eq. (16) the following estimate holds

(17) |
∑
n∈Z

(ρn − ωn)|n| ≤W1(ρ, ω) .

For indeed, |
∑

n∈Z(ρn − ωn)|n|| = |
∑

(m6=n)∈Z2 µm,n(|m| − |n|)| ≤
∑

(m6=n)∈Z2 µm,n|m − n|.
Minimizing over the choice of µ gives the estimate.
(ii) Let (ρj)j∈N∗ is a W1-Cauchy sequence in MD(Z). It follows from eq. (16) that it converges
weakly to some state ρ. Thanks to eq. (17) it follows that the sequence of positive real numbers
Zj =

∑
n∈Z ρ

j
n |n| is Cauchy and thus converges to Z ≥ 0. Since 1−ρj

0 =
∑

n6=0 ρ
j
n ≤

∑
n∈Z ρ

j
n |n|,

it follows that Z ≥ 1− ρ0. In addition, thanks to the weak∗-convergence, it follows that, for all
N ∈ N∗, ∑

|n|≤N

ρn|n| = lim
j→∞

∑
|n|≤N

ρj
n|n| ≤ lim sup

j→∞
Zj = Z .

this proves that ρ ∈ MD(Z). It remains to prove that W1(ρj , ρ) converges to zero as well.
Since (ρj)j∈N∗ is a W1-Cauchy sequence, for any ε > 0, there is J ∈ N∗ such that for i, j ≥
J, W1(ρi, ρj) ≤ ε. Therefore, for any i, j ≤ J let µi,j ∈ M(ρi, ρj) be such that

∑
m,n ρ

i,j
m,n|m−

n| ≤ 2ε. Let µi
m,n be any limit point as j → ∞. By construction

∑
m µi,j

m,n = ρj
n so that

taking the limit gives µi ∈ M(ρi, ρ). Moreover
∑

m,n ρ
i
m,n|m − n| ≤ 2ε as well, showing that

W1(ρi, ρ) ≤ 2ε) for i ≤ J . Hence ρ is the W1-limit of the sequence. Therefore MD(Z) is
complete.
(iii) Let F be D-tight. Then let N(ε) be the smallest integer N such that

∑
|n|≥N |n|ωn ≤ ε.

Then for l ∈ N∗ let Fl = {ω ∈ M1(Z) ;
∑
|n|≥N(1/l) |n|ωn ≤ 1/l}. Clearly this set is weakly closed

since
∑
|n|≥N |n|ωn = supM

∑
M≥|n|≥N |n|ωn. Thus F =

⋂
l Fl is also weakly closed. Hence F

is weakly compact. Let (ρj)j∈N∗ be a weakly convergent sequence in F and let ρ be the limit.
Given ε > 0 let N ∈ N∗ be such that

∑
|n|>N ρn ≤ ε. Then let rj

m = min{ρj
m, ρm} if |m| ≤ N

and rj
m = 0 for |m| > N . It is convenient to define the following sequences

ωj,+
n = ρj

n − rj
n , ωj,−

n = ρn − rj
n .
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It follows that ωj,±
n ≥ 0 and that, for |n| ≤ N , ωj,±

n = |ρj
n − ρn|± = max{±(ρj

n − ρn), 0}. In
particular,

∑
n∈Z ω

j,+
n =

∑
n∈Z ω

j,−
n = Cj . In addition, there is some J such that for j ≥ J , then

Cj =
∑
|n|>N ρn +

∑
|n|≤N |ρ

j
n − ρn|− ≤ 2ε. Let µj ∈ M1(Z2) be defined as follows

µj
m,n = rj

nδm,n +
ωj,+

m ωj,−
n

Cj
.

It follows that µj ∈ M(ρj , ρ) as can be checked easily. Moreover

∑
m6=n

µj
m,n|m− n| =

∑
m6=n ω

j,+
m ωj,−

n |m− n|
Cj

.

The upper bound |m − n| ≤ |m| + |n| gives
∑

m6=n µ
j
m,n|m − n| =≤

∑
n(ρj

n + ρn − 2rj
n)|n| ≤∑

n |ρ
j
n − ρn||n|. Since both measures belong to F ,

∑
|n|>N(ε) |ρ

j
n − ρn||n| ≤ 2ε. On the other

hand, there is J2 > 0 such that for j > J2,
∑
|n|≤N(ε) |ρ

j
n − ρn||n| ≤ ε. Hence, for j > J2,

W1(ρj , ρ) ≤ 3ε, showing the limj→∞W1(ρj , ρ) = 0. 2

4.4. The Metric Bundle. Let (A,H, D) be a spectral triple and let α ∈ Aut(A). If α is
not equicontinuous, the Connes-Moscovici construction suggests to replace A by the C∗-algebra
of functions over the metric bundle vanishing at infinity. However, for the purpose of α it is
sufficient to restrict this bundle to the orbit of the original metric under α. This orbit can be
identified with Z so that the new algebra should simply be B = A⊗ c0(Z), namely the algebra
of sequences b = (bn)n∈Z with bn ∈ A and limn→∞ bn = 0. The product is pointwise, namely
(bc)n = bncn. Remarkably A acts as a multiplier algebra if (ab)n = abn and (ba)n = bna. Thanks
to the detailed study made in the previous Section 4.3, the following result hold

Proposition 7. Let A be a separable C∗-algebra admitting a strictly positive element and let B
denote A⊗ c0(Z). Let en denote the evaluation map en : b ∈ B 7→ bn ∈ A.
1)- A closed subset F ⊂ B is compact if and only if the following three conditions hold

(a) F is bounded,
(b) for each n ∈ Z, en(F ) ⊂ A is compact,
(c) it is equicontinuous at infinty, namely, for each ε > 0 there is N ∈ N such that
b ∈ F ⇒ ‖bn‖ ≤ ε for |n| > N .

2)- A closed subset F ⊂ B is wu-totally bounded if and only if the following two conditions hold
(a) F is bounded,
(b) for each n ∈ Z, en(F ) ⊂ A is wu-totally bounded.

Proof: (i) Thanks to Result 3, F is wu-totally bonded if and only if there is a strictly positive
element h ∈ B such that hFh is norm compact. A strictly positive element can be chosen to be
given by hn = δnh where h is a strictly positive element of A and δn > 0 is a sequence of positive
real numbers such that lim|n|→∞ δn = 0. Therefore the part 2)- of the proposition results from
the characterization of compact subsets.
(ii) Let then F be norm compact. Then the projection Fn = en(F ) ⊂ A is compact since the
projection is a ∗-homomorphism, thus continuous. In addition, given ε > 0, there is a finite
family {b1, · · · , bs} ⊂ F such that the open balls of radius ε/2 centered at the bj ’s cover F .
Therefore, like in the proof of Lemma 10, it implies that (a) F is bounded, (b) for each ε > 0
there is N ∈ N such that b ∈ F ⇒ ‖bn‖ ≤ ε for |n| > N .
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(iii) Conversely let F ⊂ B be closed, bounded, with en(F ) = Fn compact for all n ∈ Z and such
that for each ε > 0 there is N ∈ N such that b ∈ F ⇒ ‖bn‖ ≤ ε for |n| > N . Let then (bj)j∈N
be a sequence in F . Since the product space

∏
n∈Z Fn is compact for the product topology,

without loss of generality, it can be assumed that this sequence converges pointwise to some
b, such that bn = limj b

j
n for all n’s. The same argument as in the proof of Lemma 10 shows

that ‖b− bj‖ → 0 so that, since F is closed, b ∈ F . Hence every sequence admits a convergent
subsequence, showing that F is compact. 2

Let now X = (A,H, D) is a compact spectral metric space, namely A is unital. Let α ∈ Aut(A)
be quasi-isometric. Whenever the corresponding Z-action is not equicontinuous, the following
construction overcomes the difficulty coming form the fact described in teorem 2. First replace
A by B = A ⊗ c0(Z). It is worth remarking that n labels the points in the orbit of the metric
under α. Therefore, the automorphism α induces on B an automorphim α∗ defined by

(α∗(b))n = α(bn−1) ,
which coincides with the interpretation that α changes also the metric, namely it moves it by one
step in the orbit space indexed by n. Then α∗ induces an automorphism α∗∗ on the multiplier
algebra M(B) of B. Since A can be seen as a subalgebra of M(B) it is easy to check that
α∗∗(a) = α(a) for a ∈ A.
Then, using the results of Section 4.3 it is possible to define a spectral triple based on B as
follows:

(1) the Hilbert space is the tensor product K = H⊗ `2(Z× N∗)⊗ E where now, E support
a representation of five Dirac matrices instead of four. In particular a vector f ∈ K can
be seen as a double sequence (fn,r)(n,r)∈Z×N∗ where now fn,r ∈ H ⊗ E .

(2) the algebra B is represented as follows

(bf)n,r = α−n(bn) fn,r ,

(3) a bounded shift invariant distance will be chosen; so that dZ(m,n) = d|m−n| for some
sequence (dj)j∈N satisfying d0 = 0 and dj ≤ dj′ + dj” for all j such that j ≤ j′ + j”; for
simplicity there is no loss of generality in choosing this distance so that supj dj = 1;

(4) the new Dirac operator is, using the same notation as in eq. (15),

DB =
γ1 + ıγ2

2
∇+

γ1 − ıγ2

2
∇∗ + λX + γ5D .

where now it is sufficient to take for X the operator

(Xf)n,r = (γ3 n+ γ4
1
d2

r

)fn,r ,

(5) the automorphism α∗ is implemented by the unitary operator u defined by

(uf)n,r = fn−1,r ,

implying that ubu−1 = α∗(b).
It is straightforward to check that the DB-commutant is trivial. In addition the Lipschitz ball
is made of elements b ∈ B such that (i) ‖α−mbm − α−nbn‖ ≤ d|n,m| for all m,n, and (ii)
supn |[D,α−nbn]‖ ≤ 1. Let BLip be the Lipschitz ball for X = (A,H, D) and let B1

Lip the subset
of BLip of elements of norm less that . These two conditions imply that bn ∈ αn(B1

Lip) for
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all n ∈ Z. Since X is a compact spectral metric space, it follows that B1
Lip is norm compact

and therefore, thanks to Proposition 7, it follows that the Lipschitz ball of the spectral triple
Y = (B,K, DB) is wu-totally bounded. The following result summarizes the properties of this
triple and the proof will be left to the reader

Proposition 8. The triple Y = (B,K, DB) as defined above is a spectral metric space, which
will be called the metric bundle over X. In addition, u−1[DB, u] is bounded and commutes with
the elements of B.

4.5. Crossed Product Metric Bundle: Proof of Theorem 3. This section is devoted to
the proof of Theorem 3. The basic object will be the metric bundle Y overX. That α∗ defined an
equicontinuous action on Y is a consequence of the last result of Proposition 8. For indeed, like in
Theorem 2, the property u−1[DB, u] is bounded implies that u ∈ C1. Moreover since it commutes
with the elements of B, u[DB, b]u−1 = [DB, α∗(b)] showing that α acts equicontinuously. In
particular, the algebra B and the operator u generate a ∗-representation of the crossed product
algebra B oα∗ Z and Y oα∗ Z = (B oα∗ Z,K, DB) is a spectral triple. It remains to show that
the Lipschitz ball of this triple is wu-totally bounded.
First it will be convenient to represent also the dual action. Namely, for k ∈ T let vk be the
unitary operator given by

(vk f)n,r = eıkn fn,r .

It is elementary to check that vkbv
−1
k = b is b ∈ B. Moreover, vkuv

−1
k = eık u. Hence vk

implements the dual action on B oα∗ Z. However, this action is not equicontinuous. While vk

commutes with X and with D, it does not commute to ∇. For if ∇k = vk ∇ v−1
k then

(∇k f)n,r =
fn,r − eıkrfn−r,r

dr
,

so that

([∇k, b] f)n,r = eıkr α
−n(bn)− α−n+r(bn−r)

dr
fn−r,r

This expression shows that k ∈ T 7→ vk[∇, b]v−1
k ∈ B(K) is strongly continuous but not norm

continuous because of the dependence in r. If, however, h = (hn)n∈Z is a strictly positive element
of c0(Z), then

(h[∇k −∇k′ , b]h f)n,r = hn (eıkr − eık
′r)hn−r

α−n(bn)− α−n+r(bn−r)
dr

fn−r,r ,

showing that the map k ∈ T 7→ h vk[DB, b]v−1
k h ∈ B(K) is continuous in norm.

Let now c =
∑

l∈Z cl u
l ∈ CLip where CLip denotes the Lipschitz ball of Y oα∗ Z. Then cl ∈ B can

be written as a sequence (cn,l)n∈Z such that cn,l ∈ A. Moreover, by assumption ‖[DB, c]‖ ≤ 1.
Then applying the dual action and integrating over k ∈ T gives
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(
u−l

∫
T
vk[DB, c]v−1

k e−ıkl dk

2π
f

)
n,r

=
γ1 + ıγ2

2
α−n(cn,l−r)− α−n+r(cn−r,l−r)

dr
fn−l,r

+
γ1 − ıγ2

2
α−n(cn,l+r)− α−n−r(cn+r,l+r)

dr
fn−l,r

+γ3l(clulf)n,r + γ5([D, cl]ulf)n,r .

Taking a partial trace over the various Dirac matrices, leads to the following necessary conditions
for c to be in the Lipschitz ball CLip

‖α−n(cn,l)− α−n+r(cn−r,l)‖ ≤ dr , ‖[D,α−n(cn,l)]‖ ≤ 1 , ‖∂c‖ ≤ 1 .
The first inequality implies ‖cn,l‖ ≤ supr dr ≤ 1. Hence with the second inequality, it means
that cn,l ∈ B1

Lip for all n, l. In particular, since B1
Lip is norm compact in A, if h is a strictly

positive element of c0(Z) it follows that hch satisfies the conditions of Proposition 9 in Section 8.
In particular, hCLiph is norm compact.

5. Noncommutative Tori with Real Multiplication

We give here an example of a situation where the problem of extending a spectral triple to
a crossed product by the action of the integers arises naturally in a context motivated by
the arithmetic geometry of real quadratic fields. The noncommutative space described by the
original spectral triple is a noncommutative torus with real multiplication, while the action of
the integers is induced by the action of the group of units of the real quadratic field. The
geometry that arises in this case, in fact, turns out to be very similar to the prototype example
of the Arnold cat map that we described earlier in the paper.
In the ’70s Hirzebruch formulated a conjecture expressing the signature defects of Hilbert mod-
ular surfaces in terms of the Shimizu L-function of real quadratic fields [38]. This conjecture
was proved by Atiyah–Donnelly–Singer [5] using the Atiyah–Patodi–Singer index formula, to-
gether with a detailed analysis of the induced operator on the solvmanifold that gives the link
of a cusp singularity of the Hilbert modular surface. The main part of the argument of [5]
consists of separating out in the eta function of this operator a part that recovers the Shimizu
L-function, whose value at zero gives the signature defect, and a remaining part that vanishes at
zero and is not of arithmetic nature. It was recently shown in [49] that the Shimizu L-function
of a real quadratic field is obtained from a spectral triple on a noncommutative torus with real
multiplication, as an adiabatic limit of the Dirac operator on a 3-dimensional solvmanifold. The
Dirac operator on this 3-dimensional geometry gives, via the Connes-Landi isospectral defor-
mations [22], a spectral triple for the noncommutative tori obtained by deforming the fiber tori
to noncommutative spaces. It is also shown in [49] that the 3-dimensional solvmanifold of [5]
is the homotopy quotient in the sense of Baum–Connes of the noncommutative space obtained
as the crossed product of the noncommutative torus by the action of the units of the real qua-
dratic field. This noncommutative space is identified with the twisted group C∗-algebra of the
fundamental group of the 3-manifold. The twisting can be interpreted as the cocycle arising
from a magnetic field, as in the theory of the quantum Hall effect. The resulting interpretation
of the Shimizu L-function in terms of the noncommutative geometry of noncommutative tori
with real multiplication, in the sense of [46], is interesting in view of the conjectured role of
noncommutative tori in the Stark conjecture for real quadratic fields proposed in [46]. In fact,



32 Dynamical Systems on Spectral Metric Spaces

as explained also in [50], the result of [49] deals with a special case of the zeta functions defining
the Stark numbers, which are the conjectural generators of abelian extensions of real quadratic
fields, and it shows how to relate these to the geometry of noncommutative tori.

5.1. Lattices and Noncommutative Tori. To fix notation, we let L ⊂ K be a lattice in a
real quadratic field K = Q(

√
d), with U+

L the group of totally positive units preserving L,

(18) U+
L = {u ∈ O∗K |uL ⊂ L, αi(u) ∈ R∗+},

with αi, i = 1, 2, the two embeddings of K in R. We let V denote a finite index subgroup of
U+

L . We denote by ε a generator, so that V = εZ.
Let Λ be the lattice in R2 obtained by embedding L in R2 by

(19) Λ = {(α1(`), α2(`)) | ` ∈ L}.

The group V acts on Λ by λ = (α1(`), α2(`)) 7→ (εα1(`), ε−1α2(`)). The following solvable Lie
group will be considered

(20) S(R2,R, ε) = R2 oε R,

where R acts on R2 as the one-parameter subgroup {et log Aε}t∈R of SL2(R) with

(21) Aε =
[
ε 0
0 ε′

]
∈ SL2(R).

As in [5], the following discrete subgroup will be needed

(22) S(Λ, V ) = Λ oAε Z

together with the quotient

(23) Xε = S(Λ, V )\S(R2,R, ε).

The noncommutative torus of irrational modulus θ is topologically the irrational rotation C∗-
algebra Aθ = C(S1) oθ Z. It can be equivalently described as a twisted group C∗-algebra
C∗r (Z2, σ), where σ is a 2-cocycle on Γ = Z2, namely a multiplier σ : Γ× Γ → U(1) satisfying

(24) σ(γ1, γ2)σ(γ1γ2, γ3) = σ(γ1, γ2γ3)σ(γ2, γ3),

with σ(γ, 1) = σ(1, γ) = 1. For the noncommutative torus the cocycle σ can be taken of the
form

(25) σ((n,m), (n′,m′)) := exp(−2πi(ξ1nm′ + ξ2mn
′)), θ = ξ2 − ξ1.

In addition, upon choosing ξ2 = −ξ1 = θ/2, the following property holds

(26) σ((n,m), (n′,m′)) = σ((n,m)ϕ, (n′,m′)ϕ), ∀ϕ ∈ SL2(Z).
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We consider the noncommutative torus C∗r (Λ, σ), where the lattice Λ is as in eq. (19) of the
form Λ = {(n+mθ, n+mθ′) | (n,m) ∈ Z2}, with θ and θ′ Galois conjugates. The algebra is the
norm closure of the twisted group ring C(Λ, σ) generated by

(27) Rσ
ηeλ = σ(η, λ)eλ+η,

where eλ is the canonical basis of `2(Λ) and σ(η, λ) = σ((n,m), (u, v)), for η = (n+mθ, n+mθ′)
and λ = (u+ vθ, u+ vθ′). These satisfy the relation Rσ

ηR
σ
λ = σ(η, λ)Rσ

η+λ.
The cocycle σ as in eq. 25 with eq. 26, which we can write as

(28) σ(η, λ) = exp(−πiθη ∧ λ),

extends to a cocycle σ̃ on the group S(Λ, V ), of the form

(29) σ̃((η, εk), (λ, εr)) = σ(η,Ak
ε (λ)) = σ((n,m), (u, v)ϕk

ε ),

where ϕε ∈ SL2(Z) is given by

(30) ϕε =
[
a b
c d

]
with ε = a+ bθ and εθ = c+ dθ.

so that θ and θ′ are the two fixed points of the transpose of ϕε.
The group S(Λ, V ) is amenable, so that the maximal and reduced (twisted) group C∗-algebras
coincide. The group S(Λ, V ) satisfies the Baum–Connes conjecture (with coefficients), since it
is isomorphic to the crossed product Z2 oϕε Z, and the 3-manifold Xε is the homotopy quotient,
in the sense of Baum–Connes, of the noncommutative space C∗(S(Λε, V ), σ̃).
In particular, the algebra C∗(S(Λε, V ), σ̃) = C∗(Λ, σ)oV is the noncommutative space describing
the quotient of the noncommutative torus Tθ with real multiplication, described by the algebra
C∗(Λ, σ) by the action of the group of units V . Thus, it provides a geometric analog, in the
case of real quadratic fields, of the quotient E/Aut(E) = P1 of an elliptic curve with complex
multiplication in the case of imaginary quadratic fields.
In [49] one relates the Shimizu L-function to the geometry of the noncommutative torus Tθ by
considering the Dirac operator on the 3-dimensional solvmanifold Xε as in [5] and its isospec-
tral deformations to a fibration of noncommutative tori, as in [22]. From the point of view
we are considering here, one can proceed in a different way, working with spectral triples on
the noncommutative torus Tθ with algebra C∗(Λ, σ), and the induced spectral triples, via the
metric bundle construction, on the crossed product by Z that gives the noncommutative space
C∗(S(Λε, V ), σ̃).

5.2. A Spectral Metric Bundle. As in §7.4 of [49], we consider on the noncommutative torus
Tθ a spectral triple with representation

(31) Rσ
(r,k)ψn,m = σ((r, k), (n,m))ψ(n,m)+(r,k)

and Dirac operator
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(32) Dθ,θ′ =
[

0 δθ′ − iδθ
δθ′ + iδθ 0

]
,

where θ′ is the Galois conjugate of the quadratic irrationality θ and the derivations δθ and δθ′
are given by

(33) δθ : ψn,m 7→ (n+mθ)ψn,m, δθ′ : ψn,m 7→ (n+mθ′)ψn,m.

This is equivalent to Dθ,θ′ : ψλ 7→ (λ1σ1 + λ2σ2)ψλ, with σk the Pauli matrices (see eq. 4)
and λ = (λ1, λ2), which is the Dirac operator induced on the fiber noncommutative tori by the
isospectral deformation of the 3-manifold Xε. The commutators of the Dirac operator with the
generators of the algebra are bounded

[Dθ,θ′ , R
σ
(r,k)] =

[
0 (r + kθ′)− i(r + kθ)

(r + kθ′) + i(r + kθ) 0

]
.

Since V acts in an hyperbolic way, similarly to the Arnold cat map acting on the commutative
torus, it is required to construct the noncommutative analog of the metric bundle according to
the general description given in Section 4.5 in order to describe the metric space associated with
the crossed product. This leads to consider the sequences (bn)n∈Z of elements bn ∈ C∗(Λ, σ),

bn =
∑

λ

cn,λR
σ
λ

with limn ‖bn‖ = 0. They define elements b ∈ BΛ,σ := C∗(Λ, σ) ⊗ c0(Z). The action αε of the
group V of units on C∗(Λ, σ) by

αk
ε : Rσ

λ 7→ Rσ
Ak

ε (λ)

or equivalently Rσ
(n,m) 7→ Rσ

(n,m)ϕk
ε
, extends to an action on BΛ,σ by setting

(34) ((αε)∗(b))n = αε(bn−1) =
∑

λ

cn−1,λR
σ
Aε(λ) =

∑
λ

cn−1,A−1
ε (λ)R

σ
λ.

In this case it is then convenient to take as Hilbert space H⊗ `2(Z). This has a representation
of the crossed product algebra BΛ,σ o(αε)∗ V by

bψλ,n = α−n
ε (bn)ψλ,n =

∑
λ′

cn,λ′R
σ
A−n

ε (λ′)
ψλ,n,

where we write the latter as∑
λ′

cn,An
ε (λ′)R

σ
λ′ψλ,n =

∑
λ′

cn,An
ε (λ′)ψλ+λ′,n,

and the unitary υε implementing the action of the generator of V is given by

υε ψλ,n = ψλ,n−1,

so that υε b υ
−1
ε = (αε)∗(b). We consider on this Hilbert space the Dirac operator

(35) D̂ψλ,n = σ3n log(ε)ψλ,n +Dθ,θ′ψλ,n,
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where σ3 is the third Pauli matrix (see eq. 4), and log(ε) is the length of the unit ε, which is the
length of the base circle in the fibration T 2 → Xε → S1.
As in §4 of [49], we write the generators of the crossed product algebra C∗(S(Λ, V ), σ̃) as Rσ̃

(n,m,k)

or Rσ̃
(λ,k) and we identify them with the elements Rσ

λυ
k
ε since we have

Rσ̃
(n,m,k)R

σ̃
(n′,m′,k′) = σ̃((n,m, k), (n′,m′, k′))Rσ̃

(n,m,k)(n′,m′,k′)

= σ((n,m), (n′,m′)ϕk
ε )R

σ
(n,m)+(n′,m′)ϕk

ε
υk+k′

ε = Rσ
(n,m)υ

k
εR

σ
(n′,m′)υ

k′
ε .

One has in this way also a representation of C∗(S(Λ, V ), σ̃) on the Hilbert space H⊗ `2(Z) by
identifying the Rσ

λ with the constant sequence bn = Rσ
λ for all n ∈ Z, that is, cn,λ′ = δλ′,λ for all

n ∈ Z.
Then the commutator

(36) [D̂, υε] = −σ3 log(ε)υε,

is clearly bounded, and

(37) [D̂, b]ψλ,n = [Dθ,θ′ , α
−n
ε (bn)]ψλ,n,

is bounded for all sequences b = (bn) with finite support. Thus, one obtains a spectral triple
for the algebra BΛ,σ oαε V with bounded commutators on the dense subalgebra Bc,Λ,σ oαε V ,
with Bc,Λ,σ consisting of the sequences with finite support. The algebra C∗(S(Λ, V ), σ̃) acts as
multipliers with commutators with D̂ that are unbounded multipliers of Bc,Λ,σ oαε V .

The Dirac operator D̂ of eq. (35) is in fact given by the Fourier modes of the Dirac operator on
the 3-manifold Xε, namely

(38) DXε =

[
∂
∂t e−t ∂

∂y − iet ∂
∂x

e−t ∂
∂y + iet ∂

∂x − ∂
∂t

]
,

when the spinors ψ((x, y), t) on Xε are expanded in the form ψ =
∑

λ ψλEλ, with Eλ =
exp(2πi〈Θ−t(x, y), λ〉), with 〈(a, b), λ〉 = aλ1 + bλ2 and Θ−t(x, y) = (e−tx, ety), so that

DXεEλ = (
∂

∂t
σ3 + 2πiλ1σ1 + 2πiλ2σ2)Eλ.

This example is in essence very similar to the case of the Arnold cat map, with the matrix
Aε ∈ SL2(R) acting on the fiber torus T 2 of the mapping torus Xε.
Up to a unitary transformation, as in [5], [49], the Dirac operator Dθ,θ′ on the noncommutative
torus ca be written as

(39) Dθ,θ′,0 =
∑

µ∈(Λr{0})/V

Dµ
θ,θ′,0,

where Dθ,θ′,0 is the restriction to the complement of the zero modes λ = 0, and Dµ
θ,θ′,0 is given

by

(40) Dµ
θ,θ′,0ψAk

ε (µ) = sign(N(µ)) |N(µ)|1/2 (εkσ1 + ε−kσ2)ψAk
ε (µ),
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where a fundamental domain FV for the action of V on Λr {0} is chosen and λ ∈ Λ, if λ 6= 0, is
written as λ = Ak

ε (µ) for some µ ∈ FV and some k ∈ Z. This formulation shows clearly that the
action of Z that implements the crossed product changes the metric on the noncommutative torus
by mapping sign(N(µ)) |N(µ)|1/2 (εkσ1 + ε−kσ2) 7→ sign(N(µ)) |N(µ)|1/2 (εk+1σ1 + ε−(k+1)σ2).

This example, just as in the case of the Arnold cat map, gives a clear illustration of the subtleties
involved in the problem of the choice of the metric on Z that we discussed in the previous
sections. In fact, the natural Dirac operator to consider here, which in this case is dictated by
the requirement that it recovers the 3-manifold geometry of [5], corresponds to the usual metric
on Z, which, however, as we have seen, requires the use of the smaller state space characterized
by the finite first moment condition. While one can make sense of this condition in the specific
case at hand, a general treatment of such first moment conditions in the general setting of
noncommutative geometry is missing and will be an interesting topic of investigation.

6. Cuntz–Krieger Algebras and AF-Algebras

One of the earlier results on the interaction between noncommutative and arithmetic geometry
was the use of spectral triples techniques to model the “fiber at infinity” in the Arakelov geometry
of arithmetic surfaces [25], in terms of the choice of a Schottky uniformization as in [47], and of
the action of the Schottky group on its limit set. This point of view gave rise to the construction
of a θ-summable, not finitely summable spectral triple, where the algebra representation was
related to the archimedean cohomology at infinity, see also [24]. Based on the analogies between
the degenerate fiber at the archimedean place in the Arakelov geometry of arithmetic surfaces,
and the case of Mumford curves with p-adic uniformization, the same technique were adapted
in [26] to describe a noncommutative space associated to the action of a p-adic Schottky group
on its limit set. The construction was later refined in [27] and [12].
The original motivation for considering spectral triples on crossed products by the integers in
[27] was to improve the θ-summable spectral triple on the crossed product algebra C(ΛΓ)oΓ of
a Kleinian or p-adic Schottky group on its limit set, considered in [26]. The idea was to replace
the algebra C(ΛΓ)oΓ, which can be described in terms of a Cuntz–Krieger algebra OA, with its
stabilization OA = FA oT Z. One then considers the problem of constructing a spectral triple
on the non-unital AF algebra A = FA and extending it to the crossed product FA oT Z.
The case of FA can be handled in the way proposed by Christensen and Ivan [13], namely by
choosing eigenvalues with |λn| ≥ (dimAn)q, for An ⊂ An+1 the filtration of the AF algebra
and with q > 2/p. This determines a p-summable Dirac operator on a Hilbert space H, which
is the GNS space of a state ϕ, with quotient map πφ : A → H and Hn = πφ(An), with
dimHn ≤ dimAn.
In general, if the restrictive quasi-invariance assumption of [27] is removed, the metric bundle
construction leads to a spectral triple on the noncommutative metric bundle algebra B oT∗ Z,
with B = A ⊗ c0(Z), on which A oT Z acts as multipliers, instead of a spectral triple for the
crossed product FA oT Z.
In this case, the metric on Z and the form of the Dirac operator on the crossed product by the
integers is not strictly dictated by the geometry, so that one can modify the construction by
choosing a metric on Z that satisfies the conditions of §4.3 and obtain a spectral metric space
with the desired properties.
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7. Algebro-Geometric Codes and Spectral Triples

In the recent work [48], the asymptotic bound problem in the theory of algebro-geometric codes
was reformulated in terms of quantum statistical mechanical systems and operator algebras
associated to coding maps. In particular, it is shown in [48] that the code parameters, rate and
relative minimum distance, can be recovered from the Hausdorff dimensions of certain Cantor-
like fractals associated with the code.
Just as the prototype example of the Arnold cat map provides a model for the application to
the case of noncommutative tori with real multiplication described above in Section 5, the other
prototype example, of the bilateral shift and Cantor sets described in the Example 2 (Section 4.1)
serves as a model for the application to algebro-geometric codes.

7.1. The Spectral Metric Space of Codes. The basic terminology of [48] is given here. Let
A be a finite alphabet of cardinality #A = q. The main application here we will focus on the
case where A is a finite field Fq, which is set theoretically identified with the set {0, . . . , q − 1}
of q-ary digits. For some given n ∈ N let An be the n-hypercube. The Hamming metric on An

is defined as d(x, y) = #{k |xk 6= yk}, for x = (x1, . . . , xn) and y = (y1, . . . , yn) in An. This
satisfies the bound d(x, y) ≤ n.

Definition 6. An [n, k, d]q-code is a subset C ⊂ An with

k = logq(#C), and d = min{d(x, y) |x, y ∈ C, x 6= y}.
The rate of the code is R = k/n and the relative minimum distance is δ = d/n.

In particular, if the alphabet has q letters with q = pr, it will be identified with the elements
of a finite field Fq. However, the codes C : Fk

q ↪→ Fn
q will not be required to be Fq-linear maps,

that is, nonlinear codes are included in the present description.
Let Qn = [0, 1]n be the standard unit cube in Rn. A point in Qn will be written as x =
(x1, . . . , xn) using the q-adic expansion of points in [0, 1]. Then, a fractal S̄C in Qn will be
associated to a code C, by first subdividing the unit cube Qn into qn smaller cubes, each of
volume q−n: each of these smaller cubes consist of the points x ∈ Qn such that in the q-adic
expansion the first digits (x11, . . . , xn1) are equal to a given element (a1, . . . , an) in An. Among
these one then only those for which (x11, . . . , xn1) is an element of C ⊂ An are kept and the
others are deleted. The same procedure is then iterated on each of the remaining cubes. The set
obtained in this way is the Sierpinski fractal S̄C consisting of all points x ∈ Qn such that all the
points (x1k, . . . , xnk) ∈ An, for all k ≥ 1, belong to the code C ⊂ An. The Hausdorff dimension
dimH(S̄C) of this fractal is logq(#C); when normalized to the ambient space dimension it equals
the rate of the code,

log(#C)
n log q

=
k

n
= R.

Similarly, for a given [n, k, d]q-code C ⊂ An, the set ΞC of doubly infinite sequences x = (xm)m∈Z
of code words xm ∈ C will be considered. Let also W denote the set of all words of finite length
in the code language, that is, all finite sequences of elements of C. As recalled in §5 of [48]
(see [29]) the entropy of a language is defined through the following procedure. The structure
function of the code language is defined by counting words of a given length

sC(N) = #{w ∈ W : |w| = N}.
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Here the length of a word w ∈ W is defined as the number of letters in the underlying alphabet
A, rather than the number of code words w consists of. Namely if w = w1 · · ·wm with wi ∈ C
this gives |w| = nm, where C ⊂ An. The generating function for the sC(N) is given by

(41) GC(t) =
∑
N

sC(N)tN ,

and the entropy of the code language is defined as

(42) EC = − log#A ρ(GC),

which is the logarithm of the radius of convergence ρ(GC). It turns out that the series in eq. (41)
and the entropy in eq. (42) have a natural interpretation in terms of the spectral triples of [55].
In fact, the spectral metric spaces Xτ,C = (C(ΞC),HC , πτ , D) is defined as in Example 2, where
HC = `2(WC)⊗ C2, with representations

πτ (f)ψ(w) =
[
f(xw) 0

0 f(yw)

]
ψ(w),

for τ : WC → ΞC × ΞC a choice map, and with Dirac operator

Dψ(w) = q|w|
[

0 1
1 0

]
ψ(w).

Then the zeta function of the spectral triple is given by ([55] §6)

ζD(s) =
∑

w∈WC

q−|w|s =
∑
m

qkmq−snm =
∑
m

q(R−s)nm = (1− q(R−s))−1,

with convergence for <(s) > R. This gives

(43) ζD(s) = GC(q−s),

(44) ζD(s) = GC(q−s),

which recovers the structure functions for the code language, and the degree of summability of
the spectral triple is the code rate, which is also equal to the entropy of the code language. In
fact, sC(N) = 0 if N 6= nm and sC(nm) = qkm for an [n, k, d]q-code.
A similar type of fractal construction can be done for the code parameter d instead of k, as
explained in [48]. Namely, the property that C has minimum distance d means that any pair
of distinct points x 6= y in C must have at least d coordinates that do not coincide, since
d(x, y) = #{i |xi 6= yi}. Thus, in particular, this means that no two points of the code lie
on the same π, for any π as above of dimension ` ≤ d − 1, while there exists at least one π
in Πd which contains at least two points of C. In terms of the iterative construction of the
fractal S̄C , this means the following. For a given π ∈ Π` with ` ≤ d − 1, if the intersection
C ∩ π is non-empty it must consist of a single point. Thus, another fractal can be constructed,
corresponding to a choice of a linear space π ∈ Π` with ` ≤ d − 1, where at the first step the
single cube Q` = Qn ∩ π is replaced with a scaled cube of volume q−`, successively iterating the
same procedure. This produces a family of nested cubes of volumes q−`N with intersection a
single vertex point. The Hausdorff dimension is clearly zero. When ` = d there exists a choice
of π ∈ Πd for which C ∩ π contains at least two points. Then the same inductive construction,
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which starts by replacing the cube Qd = Qn ∩ π with #(C ∩ π) copies of the same cube scaled
down to have volume q−d produces a genuinely fractal object of positive Hausdorff dimension.
(This is the same argument as in Proposition 3.3.1 of [48], except that it is formulated here in
terms of S̄C , as in §4.1.3 of [48], rather than in terms of SC as defined in §3.1 of [48].) The
spectral metric space construction of [55] can also be applied to the resulting fractal SC∩π for
π ∈ Πd.

7.2. The Shift Action on a Code Space. The action of the bilateral shift on ΞC or on ΞC∩π

then produces a non-equicontinuous action. Geometrically, in such cases the resulting crossed
product construction corresponds to considering code languages up to the natural equivalence
relation given by the action of the bilateral shift. This gives rise to the type of crossed product
construction we have been investigating. Once again we see that the issue of the choice of metric
structure over Z arises and determines the type of topological and metric properties that one
expects to find on the state space.
In this case the resulting noncommutative metric geometries have interesting global symmetries
that come from Galois actions.

Let Fqm be a field extension of Fq. Then a [n, k, d]q-code C : Fk
q ↪→ Fn

q determines a [n, k, d′]qm-
code C(m) with d′ ≤ d, by setting C(m) : Fk

qm → Fn
qm

C(m)(u) = (C(u1), · · · , C(um)),

where the vector spaces Fqm and Fm
q are identified. Hence u ∈ Fk

qm can be written as u =
(u1, . . . , um) with ui ∈ Fk. In particular #C(m) = (#C)m = (qm)k, so that the parameter k
remains the same. To see that d′ ≤ d let πd,q denote the Fq-linear space such that #(C∩πd,q) ≥ 2
and such that all spaces π of smaller dimension have #(C ∩ π) ≤ 1. Then the Fqm-linear space
πd,qm = πd,q ⊗Fq Fqm satisfies the same property #(C(m) ∩ πd,qm) ≥ 2. Thus, a code C over Fq

defines a family of codes C(m) over all the fields extensions, with inclusions C(`) ⊂ C(m) for `|m
induced by the corresponding inclusions of fields Fqm ⊂ Fq` . All the codes C(m) have the same
rate R and non-increasing δ’s.
Consider then the Galois action of Gal(Fqm/Fq) acting on both the source and target spaces
Fk

qm and Fn
qm of a code C : Fk

qm ↪→ Fn
qm , obtained as above, so that the coding map is equivariant

with respect to this action. The Galois action of Gal(Fqm/Fq) then induces a homeomorphism
of the fractal sets S̄C , induced by the Frobenius φ. This in turn determines an automorphism
φ of the algebra C(ΞC) and a unitary transformation of the Hilbert space HC , so that the
representations πτ are equivariant. The metric structure given by the spectral triple is also
preserved by this action, since the length of words in the code language is preserved. This gives
a global symmetries of the spectral geometry.

8. Appendix: Proof of the Proposition 3

Let A be a unital C∗-algebra. Let α ∈ Aut(A) be an automorphism of A. Then A will denote
the crossed product algebra Aoα Z. Then A is generated by the elements of A and by a unitary
element u such that uau−1 = α(a). Hence A is the norm closure of Ac made of elements of the
form b =

∑L
l=−L bl u

l for some integer L, where bl ∈ A for all l. The dual action is the family of
automorphisms of A defined by ηk(a) = a for a ∈ A and by ηk(u) = eıku, where k ∈ T. Then
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(1) If b ∈ Ac then ηk(b) =
∑

l∈Z bl e
ıkl ul.

(2) The ∗ derivation ∂ generating the dual group action is defined by ∂b = dηk(b)/dk �k=0

giving ∂b =
∑

l∈Z ıl bl u
l.

(3) The conditional expectation E : A 7→ A is defined by E(b) =
∫

T ηk(b) dk/2π = b0.
In particular E(bb∗) =

∑
l bl b

∗
l .

(4) The equation bl = E(b u−l), valid on Ac extends to A .

The first important result of this Section is

Proposition 9. For each l ∈ Z, let Kl ⊂ A be a compact set for the norm topology. Let B(K)
be the set of b ∈ A = Aoα Z such that (i) b0 = E(b) = 0, (ii) bl = E(bu−l) ∈ Kl for all l ∈ Z,
(iii) ∂b ∈ A and ‖∂b‖ ≤ 1. Then B(K) is compact.

The proof of this result requires several intermediate steps.

8.1. Algebraic Bounds. The first step is given by

Lemma 15. If b ∈ A is such that ∂b ∈ A , then

‖b− E(b)‖2 ≤ π2

3
‖E(∂b ∂b∗)‖

Proof: Let π be any representation of A and let H be the corresponding Hilbert space. Then,
for f, g ∈ H and b ∈ A the following holds

〈f |π(b− E(b)) g〉 =
∫ π

−π

dk

2π
〈f |π(b− ηk(b)) g〉 = −

∫ π

−π

dk

2π

∫ k

0
dp 〈f |π(ηp(∂b)) g〉 .

Exchanging the order of integration gives

〈f |π(b− E(b)) g〉 = −
∫ π

−π

dp

2π
(π − |p|) sign(p) 〈f |π(ηp(∂b)) g〉 .

Applying a Cauchy-Schwartz inequality leads to

|〈f |π(b− E(b)) g〉|2 ≤
∫ π

−π

dp

2π
(π − |p|)2

∫ π

−π

dk

2π
|〈f |π(ηk(∂b)) g〉|2

The first term in the r.h.s. gives π2/3. Using again the Cauchy-Schwartz inequality, the other
terms can be bounded by

∫ π

−π

dk

2π
|〈f |π(ηk(∂b)) g〉|2 ≤ ‖g‖2

∫ π

−π

dk

2π
〈f |π(ηk(∂b ∂b∗)) f〉 ≤ ‖g‖2‖f‖2‖E(∂b ∂b∗)‖ .

Since π is an arbitrary representation, this last estimates leads directly to the result. 2

Corollary 6. If b ∈ B(K) then ‖b‖ ≤ π/
√

3.

Proof: This follows immediately from Lemma 15 and from the definition of B(K). 2
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8.2. The Fejer Kernel and Approximation Estimates. The Fejer kernel is the function
FN defined on T by

(45) FN (k) =
1
N

sin2{(N)k/2}
sin2 (k/2)

=
N−1∑

n=N+1

(
1− |n|

N

)
eınk

It has the following properties: (i) it defines a probability distribution on the torus

FN (k) ≥ 0 ,
∫ π

−π

dk

2π
FN (k) = 1 .

(ii) it is concentrated in the vicinity of the origin

Prob
{
|k| ≥ π√

N

}
=

∫
|k|≥π/

√
N

dk

2π
FN (k) ≤ 1√

N

The Fejer approximant of order N of b ∈ A is defined by

b(N) =
∫ π

−π

dk

2π
FN (k) ηk(b)

This definition shows that b(N) ∈ A and that ‖b(N)‖ ≤ ‖b‖. In particular, the map b ∈ A 7→
b(N) ∈ A is continuous. Moreover if b ∈ Ac it follows from eq. (45) that

b(N) =
∑
|l|<N

(
1− |l|

N

)
bl u

l

By continuity this equation is still valid for b ∈ A showing that b(N) is always an element of Ac.

Lemma 16. For any b ∈ A , its Fejer approximants satisfy limN→∞ ‖b− b(N)‖ = 0. Moreover,
if ∂b ∈ A then

‖b− b(N)‖ ≤ π√
N
‖∂b‖+

2√
N
‖b‖ .

Proof: By definition

b− b(N) =
∫ π

−π

dk

2π
FN (k) (b− ηk(b)) .

The integral on the r.h.s will be decomposed into
∫
|k|≥π/

√
N +

∫
|k|≤π/

√
N = (I) + (II). The first

term can be estimated by

(I) ≤ 2‖b‖Prob
{
|k| ≥ π√

N

}
≤ 2√

N
‖b‖ .

To estimate the other term, let ε > 0 be chosen. Then, there is Nε ∈ N such that, for N ≥ Nε,
then (i) 2‖b‖/

√
N ≤ ε/2 and (ii) ‖b − ηk(b)‖ ≤ ε/2 as soon as |k| ≤ π/

√
N . This gives the

obvious bound

N ≥ Nε ⇒ (II) ≤ ε

2
, ⇒ ‖b− b(N)‖ ≤ ε .

If now ∂b ∈ A the estimate of (II) can be improved. For indeed, by definition
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(46) b− ηk(b) = −
∫ k

0
dp ηp(∂b) , ⇒ ‖b− ηk(b)‖ ≤ |k|‖∂b‖ .

Plugging this last inequality into (II), gives the result. 2

Corollary 7. If b ∈ B(K) then ‖b− b(N)‖ ≤ 2.2π/
√
N .

Proof: Follows immediately from Lemma 16, the definition of B(K) and Corollary 6. 2

8.3. Compactness Properties.

Lemma 17. Given a sequence (Kl)l∈Z of norm compact subsets of A, the set B(K) defined in
Proposition 9 is closed.

Proof: Let b ∈ B(K). Since A is a metric space, there is a sequence (bn)n∈N contained in
B(K) converging in norm to b.
(i) By definition E(bn) = 0 for all n ∈ N so that, taking the limit n → ∞ leads to E(b) = 0.
In addition E(bn u−l) ∈ Kl. Since Kl is compact, it is closed in norm so that, taking the limit
n→∞ leads to E(b u−l) ∈ Kl as well.
(ii) Thanks to eq. (46), it follows that, for all n ∈ N∥∥∥∥ηk(bn)− bn

k

∥∥∥∥ ≤ ‖∂bn‖ ≤ 1

Taking the limit as n→∞ implies

sup
−π≤k≤π

∥∥∥∥ηk(b)− b

k

∥∥∥∥ ≤ 1

In particular, since ηk+k′ = ηk ◦ ηk′ (group property), the map k ∈ T 7→ ηk(b) is Lipschitz
continuous with Lipschitz constant 1. Thanks to Lebesgue’s Lemma, it follows that this map is
almost surely differentiable. Let k0 ∈ T be such that the differential exists at k0 namely

dηk(b)
dk

�k=k0= c = lim
h→0

ηk0+h(b)− ηk0(b)
h

.

Applying η−1
k0

= η−k0 on both sides implies that the map k ∈ T 7→ ηk(b) is differentiable at zero
(actually everywhere) and that the derivative has a norm less than 1. Therefore b ∈ B(K) 2

Proof of Prop 9: Let (bn)n∈N be a sequence contained in B(K). It will be proved that there
is a convergent subsequence with limit in B(K). Since B(K) is metric, this is sufficient to prove
the compactness.
(i) By construction the sequence bn,l = E(bn u−l) is entirely contained in Kl. In particular
b̂n = (bn,l)l∈Z\{0} ∈ Ω if Ω denotes the product space

∏
l 6=0Kl. Thanks to the Tychonov

theorem, Ω is compact for the product topology. Therefore there is a subsequence (b̂ni)i∈N
which converges in Ω. Replacing (bn)n∈N by (bni)i∈N, there is no loss of generality to assume
that this is the sequence (b̂n)n∈N itself. Hence for each l ∈ Z, the limit limn→∞ bn,l = bl ∈ Kl

exists.
(ii) Let now b(N) be defined as
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b(N) =
∑
|l|<N

(
1− |l|

N

)
bl u

l = lim
n→∞

b(N)
n ,

where b(N)
n denotes the Fejer approximant of order N of bn. Thanks to Corollary 7 it follows

that if N < M then

‖b(N) − b(M)‖ ≤ lim sup
n→∞

‖b(N)
n − b(M)

n ‖ ≤ lim sup
n→∞

(
‖b(N)

n − bn‖+ ‖bn − b(M)
n ‖

)
≤ 4.4π√

N
.

It follows that the sequence (b(N))N∈N is Cauchy and therefore it converges in A to a limit b.
(iii) By construction ∂b(N) exists since b(N) ∈ Ac. For a fixed N it satisfies

∂b(N) =
N−1∑

l=−N+1

ıl

(
1− |l|

N

)
bl u

l = lim
n→∞

∂b(N)
n

From then, it follows that ‖∂b(N)‖ ≤ lim supn→∞ ‖∂b(N)
n ‖ ≤ lim supn→∞ ‖∂bn‖ ≤ 1. In particular

b(N) ∈ B(K). Since B(K) is closed, thanks to Lemma 17, it follows that b ∈ B(K) as well. 2

8.4. Quotient Spaces. Let A be a unital C∗-algebra with unit denoted by 1. Let δA denote
the Banach space A/C1 and let [a] ∈ δA denote the equivalence class of a ∈ A modulo C1. The
quotient norm is defined by

‖[a]‖1 = inf
λ∈C

‖a− λ1‖ .

Let now ω be a state on A and let ψω denote the map ψω(a) = ([a], ω(a)) ∈ δA×C. The space
δA × C is a complex vector space that will become a Banch space if endowed with the norm
(c, z) = ‖c‖1 + |z|.

Lemma 18. The map ψω : A 7→ A/C1× C is linear, bounded, invertible with bounded inverse.

Proof: The linearity and continuity of ψω is obvious from the definition. If a, b ∈ A satisfy
ψω(a) = ψω(b), then [a] = [b] implying that there is λ ∈ C such that b = a + λ1. Then the
equation ω(a) = ω(b) implies that λ = 0 showing that a = b. Hence ψω is one-to-one. To show
that it is onto, let (c, z) ∈ δA× C. Then there is a ∈ A such that c = [a]. If λ = z − ω(a) ∈ C
it follows that [a + λ1] = c and ω(a + λ1) = z. Hence ψω(a + λ1) = (c, z). Since the inverse
is everywhere defined, by the closed graph theorem, it follows that the inverse is continuous as
well. In particular, the inverse image of a compact set in δA× C by ψω is compact. 2

8.5. Proof of Proposition 3. Let CLip denote the Lipschitz ball of A oα Z. By definition,
b ∈ CLip if and only if ‖[D̂, π̂(b)]‖ ≤ 1.
(i) This condition implies two properties: (a) for all l ∈ Z, bl = E(bu−l) belongs the the Lipschitz
ball BLip of A, (b) ‖∂b‖ ≤ 1. For indeed, if f, g ∈ H⊗ `2(Z) and if e, e′ ∈ C2, the inner product
〈g ⊗ e|[D̂, π̂(b)] f ⊗ e′〉 can be written as 〈e|

(
〈g|[D̂, π̂(b)] f〉

)
|e′〉, where now 〈g|[D̂, π̂(b)] f〉 is a

2× 2 matrix equal to (I) + (II) with
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(I) =
∑

n,l∈Z
〈gn|[D,π ◦ α−n(bl)] fn−l〉 σ1

(II) =
∑

n,l∈Z
〈gn| l π ◦ α−n(bl)] fn−l〉 σ2 = −ı 〈g|π̂ (∂b) f〉 σ2

Let σ0 denote the unit 2 × 2 matrix. Then, the Pauli matrices satisfy Tr (σiσj) = 2δi,j for
i, j ∈ {0, 1, 2, 3}. It follows that

ı

2
Tr

(
〈g|[D̂, π̂(b)] f〉

)
= 〈g|π̂ (∂b) f〉 ,

showing that b ∈ CLip implies ‖∂b‖ ≤ 1. In particular, ılbl = E(∂b u−l) implies that ‖bl‖ ≤ 1/|l|,
whenever l 6= 0. On the other hand the same type of formula with σ2 replaced by σ1 implies
that ‖[D,π ◦ α−n(bl)]‖ ≤ 1 for all n, l ∈ Z. In particular bl ∈ BLip for all l ∈ Z.
(ii) Let Kl be the closure of the set of a ∈ BLip ⊂ A such that ‖a‖ ≤ 1/|l| for l 6= 0. If
ω is any state on A it follows that a ∈ Kl ⇒ |ω(a)| ≤ 1/|l|. Let ψω denote the map
ψω(a) = ([a], ω(a)) ∈ A/C1 × C defined in Section 8.4. Then the image ψω(Kl) is included
in the closure of [BLip] × {z ∈ C : |z| ≤ 1/|l|}, which is compact. Consequently, thanks to
Lemma 18, Kl is compact. It follows that, the subset C0 ⊂ CLip of elements with E(b) = 0
is included in B(K). Thanks to the Proposition 9, this set has a compact closure. Since any
element of CLip has the form b = b0 + b− E(b), and since b0 ∈ BLip, it follows that the image of
CLip inside A oα Z/C1 has also a compact closure, because b − E(b) ∈ B(K) and [BLip] has a
compact closure. 2
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