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O)NTRODUCTION :

The stability of systems with infinitely many degrees of freedom in
classical mechanics ig a2 problem which goes back to the foundation of
statistical mechanics a century ago [33]. The ergodic hypothesis by Boltzmann
was of central interest since the thermal equiiibrium was believed to be a
consequence of it. A century of research has not been sufficient to exhaust
the subject. Much remains ununderstood yet.

Even for systems with a finite number of degrees of freedom, it was
soon realized, that the problem is not simple. The first resuit of Poincaré
[40,41,54] that most of the periodic orbits of an integrable hamiltonian,
which are dense In the phase space, are unstable under generic perturbations,
together whith the Poincaré recurrence theorem (see for instance {6,16)),
were strong arguments favoring the ergodic hypothesis. However the
pioneering numerical resuits of Fermi, Pasta Ulam [17), and simultaneously
the mathematical scheme of AN. Koimogorov [27], in 1954, showed that in
fact, nearly integrable systems with a finite number of degrees of freedom
exnibit a non ergodic behavior. The scheme of Kolmogorov, proved to apply in a
more genera) framework by V.I. Arnold [2,3,4] and J. Moser {34)], leads to the
existence of “a lot” of orbits, quasi-periodic in time, and stable under small
perturbations. Each such orbit is dense in an invariant torus. By "a lot", we
mean that the set of such tori has a positive Licuville measure in the phase
space. Expositions of the proof of the KAM theorem can be found in
[7,9,13,20,29,35,36,48] .

The extension of the Kolmogorov-Arnold-Moser theorem to a system
with an infinite number of degrees of freedom is meaningless in itseif, and
requires additional informations motivated by the physics of the problem. For
instance one important problem is to decide what probability law will be used
to measure the phase space. Whereas all the usual choices. are equivalent in
the finite case, this is far from beeing true in the infinite one. The physics
will change drastically under a change of such probability law. '

The class of systems we have investigated is a lattice of identical
classical rotators, coupled together by short range interactions. Several
examples of physical systems are described in a similar way. A classical
treatment of a crystal where each atom is described by a point particle, and
is coupled to its neighbers via anharmonic forces, would lead to such a model.
We can also give a description of a vibrating string or of the oscillations of
an electromagnetic fleid in a-cavity, coupled to'themselves in a non linear
way, leading to the same kind of model; In this latter example, the lattice
sites are replaced by the index of the eigenmodes of the harmonic
approximation, and the non linear part actually couples the neighboring modes
together.

Two physical points of view may be adopted in this problem. The first
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one is motivated by the thermodynamics: the classical motion is described
through an initial condition which will be chosen randomly accerding to a
Gibbs measure. The main questions to be answered concern (i) the existence
of the solutions of the equations of .motion and (ii} the invariance and the
ergodicity or the non ergodicity of the Gibbs measure. This program was
partially fuifilled in other models such as the so called ideal gas [S5] or
points particles interacting via short range forces (28],

This is not the point of view we shall adopt here. In classical
mechanics we are .mainly interested by configurations with finite total
energy, a point of view which ts far more natural for systems like a vibrating
string. This is -in contrast with the thermodynamics which considers
configurations with finite energy per site or per degree of freedom. A finite
energy configuration is necessarily localized in the lattice. The ‘question we
have investigated here is to know whether it stays localized in the same
region for ever under the classical evolution. More precisely the models we
consider exhibit many invariant torii even after switching on the coupling
between sites. Let us notice that such invariant tori have zero probability
with respect to the Gibbs measure. In particylar our conclusion is not in
contradiction with the common belief thalt the Gibbs measure is
ergodic (which may be false either).

This result may appear surprising since local perturbations should
propagate in the crystal This is what one observes in a nearly harmaonic
crystal. The reason is that neighboring sites are in strong resonance. This
fact produces an instability of the motion of each oscillator and they are
likely to exchange their energy. On the other hand, in the general case, almost
every configurations with respect to the Gibbs measure exhibit a resonance,
and this is probably the mechanism which produces the thermal equilibrium.
in contrast, inour case, the crystal is not nearly harmonic, and a wide set of
initial localized perturbations satisfies a non resonant condition. The main
effect is that for small couplings, the motion is trapped in a local region.

Several mechanisms must be controlled to get such a conclusion. First
of all it is known that the higher the number of degrees of freedom the
smaller the critical value of the coupling constant below: which it is possible
to prove the KAM theorem (see below). To get a stability result in the
previous case we need to produce -a mechanism which prevents most of the
degrees of freedom to participate to the motion: somewhere the interaction
must act in order to create an effective cut-off in the lattice, decouphng the
degrees of freedom lying within a localized region from the outside.

The second mechanism to be controlled concerns the occurrence of
resonances between different regions in the lattice; if the typical frequencies
of oscillation of two or more sites are commensurate, an instability wili
appear whatever their distance is. Since these frequencies depend upon the
inttial conditions, the resonances decompose the phase space into a region of
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stability and a region of instability. When invariant tori oceur, they belong to
the stability region, but for more than two degrees of freedom, they do not
disconnect the instability region. in particular a typical unstable orbit may
wander in the phase space through this subset. This is the so-called Arnold
instability [5,14]. As a matter of fact, this phenomena is extremely slow 1o
develop, a8 the Nekhoroshev theorem shows {37,38], and is usually of no
importance in classical mechanics, even in physical phenomena with rapid
oscillations like plasma physics. However in our lattice of rotators, for
almost all initial configurations with respect 1o the Gibbs measure, there isa
family of sites somewhere in the lattice, producing a resonance. For this
reason, the Arnold instability should be an essential fact in the evolution 10
thermal equilibrium [8]. It is te avoid this phenomena in our sttuation, that
we start with localized configurations And it is one of the keypoints of our
work 10 recognize that non resonant localized configurations constitule a
fairly “large" set. By "large” we mean a set of positive measure with respect
to some gaussian measure on the set of localized configurations, which 18
jocally equivalent to the Liouville measure. This remark, together with the
existence of an effective spatial cul-off are the main ingredients which
allow the conclusion to hold We emphasize that these restrictions agree
actually with physical observations. For instance it is kKnown in guantum
chemistry, that large molecules behave in time as if there were made of
independent pieces, the radicals, weakly coupled together {43]

The precise model we study in this work, 13 3 D-dimensionat infinite
Jattice of classical rotators described by the following hamiltonan in the
action-angle variables:

() HA, 8= Z .0 (A2/2 + & ELA4.9,,,)]

where A"[Ax;XEZD} represents the set of action variables, whereas
=08, :xeZ%) represents the set of angles. In this expression, A is a fixed

finite subset of the Jattice contained in the hypercube of size R centered at
the origin: it represents the range of the interactions. On the other hand for A
a supset of the lattice, we have set A= {;\(;xel\] and 8, = [Bx;xe/\}, The

functions E  are uniformly bounded and holomorphic n the domain
D(ry)x Tpc‘]A where :

(2)  Dlrg)={Act; 1Al <ry)
In addition they satisfy uniformly in xeZP:
(3) E (A, .8,)=0max, , A} a5 A->0 (with 1220)

Tpo= (BeT+R;lim(B) < p)
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At last, £, measure the size of the interactions.
" In order to measure the size of the configurations in the phase space
we introduce the probability 15 on (RxT)Z" defined as follows:

(4) hol0AdR) - @ 0 dA, 48, (B30, V2. Ak I/,

If the sequence Q*[Ox,‘ xeZP) decreases sufficiently rapidly at infinity, and if
AglA,,; XeT®) satisties 1A, | < 2xl) (where Z is a positive decreasing
function), then the configurations localized around A, ,in the sense that, for
small enoughr :

(5) 1A-A L erZ(d ) with 20 2/ g 2 const. Lntbd )"0,

has a positive [l ~measure. We remark that, when conditionned on a set of

finite degrees of freedom, this measure is equivalent to the Liouville one.
This is what we called & locally |iouville measure B

The main result of this paper is summarized in the following theorem:

Iheorem : Let us consider the model (1), with the restrictions (2) & (3). Let A,
be a conf Iguration such that A, [ < Zxi) for all xeZ”. Given v 2 2 and
y>0small enough, there is AM{v) 2 (39+5v57)/d =19.18 satisfying:

{6a) R(V) 2 6v + 20/3 + O(L/V) a8 vV —>eo

and a closed set . localized around A, in the sense of (S) with a
p -measure greater than t-0(y), and for each A>A(v) an g > 0 such
that if € <€, and Aefl, the orbit starting at (A, 8) is aimost

periodic in time and is dense in an tnvariant infinite dimensional
torus of class C°Y, provided ;

D
(6b) 2(L) < const, geonst.L

In this case, the ¢ritical coupling £ is bounded by :

(6c) £ 2 const. y*.r,b.e®) for some ab>0

asy,r,, or p, tend to zero, where F is a decreasing function .
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This is an extension of the Kolmogorov-Arnold ~Moser {KAM) theorem .

In the previous model several changes are allowed without affecting
the conciusions of this thearem. First of all the tattice Z° can be replaced by
any countable set in which it is possible to measure the distance of two
points. In particular, we can treat systems for which the lattice is replaced
by eigenmodes. On the other hand, in the unperturbed hamiltonian, A f could be

replaced by any function of [A, eD(ry); Ix'-x| <R,] {for some R ,>0), with an
invertible second derivative on the domatin of definition. This is a serious

restriction only for nearly harmonic systems fike a vibrating string. it is a -

well known fact indeed, that perturbating a system of harmonic oscillators
requires a speclal treatment in order to apply the KAM algorithm (20,491,

Al 1ast, the importance of the condition (3) must be emphasized. For if
A 1s Tocalized in the sense of (5), it means that the effective coupling
between faraway sites 1S extremely weak. This is precisely the condition
needed to produce an effective spatial cut-off.

Before ending this introduction, let us point out some works in the
litterature which are of interest in the course of the proof.

The KAM algorithm was expiained firstly by AN Kolmogorov in the
International Congress of Mathematics in Amsterdam in 1954 (27], after a
paper appeared inrussian in 1934 {26] However, it was not untii 1962 that a
complete proof of its validity was produced by V.I. Arnold (2,3,4], in the case
of analytic perturbations of an integrable hamiltonian with an arbitrary
number of degrees of freedom, and by J. Moser [34], in the case of CK (for
k23331 perturbation of an integrable homeomorphism of the annuius
{systems with two degrees of freedom). Among the main steps of the proof,

one was borowed from an earlier work by NN. Bogolioubov & N.M. Krylov [10] '

concerning the use of the first order perturbation thecry to produce a

canonical transformatfon changing the original perturbation into a

perturbation of smaller order. One other step was borrowed from the famous
resuit of C.i. Siegel [52,53,54] concerning the analysis of the smatl divisor
problem in complex dynamical system. Later on, several major improvement
in the quantitative estimates were produced. Let us mention especiaily the
work of H. Ridssmann [44,45,46,47,50) who analyzed in great detall the
diophantine condition, a keypoint in getting better estimates. in particular, he
succeeded in reducing the differentiability condition in Moser's work to the
value K25 [44], and 1ater on, Moser [36] remarked that the RUssmann proof
leaded to k> 3 (see also [S0D. M Herman [25), produced a counter example
with k=3-¢ (¢ arbitrary) and proved that invariant circles having rotation
numbers of constant type are C*"tif k=n+8, n being an integer greater or equal
to 3 and O<B<I. For nearly integrable hamiltonians with f degrees of
freedom , J. Pdschel [42] founds k> 3N -1.
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Another type of improvement, more closely related to our work,
concerns the dependence upon the critical coupling &(N) below which the KAM
theorem can be proved, as a function of the number N of degrees of freedom.
This point did not retain much attention untit very recently. In the orlgmal
V.1, Arnold's work [3,4] one can found the est1mate

D £(R)2 const @ LM ror some a0,
More recently,this estimate has been improved to [9,20,21,22,48]
(8) e(N) 2 const, g N Lntf),
Then for a chain of oscillators, coupled via short range Interactions, without
the congition (3) above, £. Wayne [58] proved that it s possible to fmprove

this estimate up to:

(9 (N} 2 const. N2 for some big a1 {59}

“In a recent work, considering a general mode), without the restriction of

short range interactions imposed by E. Wayne, one of us (MV.) , using a
different kind of diophantine condition, based upon an analysis similar to that
of H. RUssmann, together with a different probability measure on the phase
space, equivalent to the Liouville measure, succeeded in improving the result
of G. Gallavotti to the form (56}

(10 e(R) 2 const. et (M foranya>s?2.

Systems with infinitely many degrees of freedom were also considered
recently. First of all, there are several results [15,57,61] proving the C.L.
Siege) theorem in an infinite dimensionatl complex space. Moreover, in [56]
some nearly integrable hamiltonians with infinitely many degrees of freedom
were shown to have invariant tori , the measure of which being positive with
respect to a "locally Liouville measure” 41  of the type (4). An example of such

an hamiltonian is :

. 2 _
(1i) H= Ex Ax /2 + ZK.Y Ex.y(A), COS(B)‘ Gy)
where
a
(12) Sup, EEW(A)I ¢ a. g B}

with . z = max {x,y) , a » 2 (arbitrary), B>0,and a is depending upon “a",
vanishing when “a" approaches 2. It describes a perturbation tocalized arcund
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the origin.

The next step was to consider an infinite homogeneous chain. The main
mechanism to be understood was the existence of an effective cut-off which
is achieved thanks to the condition (3).

when finishing to write this paper, we learned from E. Wayne and J.
Frohlich [19), that they proved a very simitar result on a model made of a
lattice of harmonic oscillators, having a random distribution of
eigenfrequencies, coupled via short-range interactions. Eventhough we don't
know the details of their proof yet, there is little doubt that ours is very
different from it.

we also want to mention that in the recent past, several important
numerical studies have been performed in connection with the question of
ergedicity. In particular, Froeschié [18], studied a dynamical system with N
degrees of freedom with a varying range R of interaction (and not satisfying
(3} 1) He showed that the size of the principal island of stability depends only
upon R, at least for N 40, and shrink to the empty set whenever R>7.Fora
different system with a random range, Gardner and Ashby {23}, computed the
probability for the greatest Lyapounov exponent to be positive, and proved
that it is zero for R/N < .11, and one for R/N 2.15 independentiyon N. The ratio
R/H is called the connectance of the system. Another numerical investigation
concerned the test of the ergodic hypothesis. Let us mention the work of
Patrascioiu et al. {33) and the important studies of the italian school
124,30,31,32} who exhibited a threshold in the enerqy per degree of freedom,
below which the equipartition of the energy fails to hold. This threshold is
independent of N and exists for any R.It seems also independent of the model
Investigated [32) Let us however point out that mathematical problems eccur
with the correct definition of the Lyapounov exponents when the system s
infintte dimensional, as remarked by Casati et al. [12], a remark which may
force the theoreticlans to be careful with the interpretations of the
numerical results.

This paper Is organized as follows. Section | is devoted to the
exposition of the strategy of the proof. We explain here the usual way of
proving the KAM theorem together with the necessary changes we have
introduced bere to achieve the result in our situation. in section i1 we
introduce the technical tools needed for the recurrent estimates, and we
perform them- without looking at the small divisor problem. Section Il
concerns the analysis of the small divisor problem. Wwe investigate in
particular the RUssmann approximation function [49] in great detail, tegether
with the properties of the set of non resonant localized configurations.
Section IV is devoted to the set of constraints on the different parameters
we have introduced before, which allow to achieve the convergence of the
recursion. '
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1) THE STR Y :

Let H,(A) be a completely integrable hamiltonian, written

in action-angle variables, having only L degrees of freedom. The motion of the
corresponding system is then given by :

() A=A 8 ()=8(0)+ (AL @A) =2H/3A,

Let H(A,9) = Hy(A) + €. EA,0) be a small perturbation of this Hamiltonian. To
compute the motion of this new system, we follow Jacobi {20] in trying to
find a canonical transformation changing (A,8) into (A',§), such that in the
new coordinates, H depends only upon A’ From the Poincaré theorem [41,54] on
the instability of periodic orbits, we know that this is impossible globally.
Therefore we only use first order perturbation theory. It consists inf inding a
function G (A,9) such that;

(2) {GH}+E=<E> <E>(A)=}TLd9 /en EAB)
where {] denotes the Polsson bracket. Up to the second order in €, the
hamiltonian reads in the new variables Hp= H+e{GH}+ Ole?), and it is

therefore completely integrable up to term of orders ¢ .

Following N.N. Bogolioubov and NM. Krylov [10l, we perform the full
change of variables given through the infinitesimal canonical transformation
G. Namely the new hamiltontan is formally given by :

{3) H, =expilIH =Zmo[G,[G,...[G,H]...}]/n! with LG(H)= {G, H}
From What has beep said, it can be written as:

(4) H(A8)= Ho(A)+ E>@)+E(A,8) where E,-0(e)

Even in this form, the new system is a very good approximation for practical
purposes as was remarked in {101

The next step, a scheme proposed by A.N. Kolmogorov [27], is simply 1o
reptace H by H,, the completely integrable part being now H0_1= H* <>, the

new interacting term being E,. Performing this change several times leads to
k
a sequence of hamliltonians H, (A,8) =H, (A)+ E (A 8) with £,=0(e?),

together with a sequence 6, =0(g _,) (where we set £ = g ) of infinitesimal
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transformations, such that ;
exp (LGa) M-y =H
This should lead to an extremely rapidly convergent algorithm.
However, in the course of this set of transformations there is an
essential difficuity connected with solving the eguation (23 To get the

solution, one usually expands G and E into a Fourier expansion with respect to
8. This gives formally :

(5) 6(A8) =4E L EfA)e'®® (o@n)’
Ir E(A0)= Tz Efareted

where o{A) i5 given by {i). As a matter of fact, the denominator (AN
which is equal to ¥, @), n can be fairly small for certain vaiues of n
indeed either there is some n for which it is equal to zero exactly, and thisis
called a resonance, which prevents (2) to have salutions, or we can apply the .
Dirichlet box principle [S1], accarding to which there.is a sequence (n) of

mutti-integers such that Iw(A)nI 5 ln It where |.| denotes some norm in R

As it is well known, the converse type of inequality is not true for any vector,
However, given o> L, the set Q of @'s in R' for which there ig some y» 0,such
that lwpl2y.hi® for any nin Z', has 3 full Lebesgue measure [SI]. As
proposed by V.t Arnold [2] and also by J. Moser {36] in a different way, this
polynomial divergency introduced in (5) can be controlled through an
exponential decrease of the Fourier coefficients of E, a property which is
equivalent to the analyticity of £ with respect to the angie variables in some
strip around the real. If we assume :

(6) TE (Al < const.e7? -t for aline 2-
the same type of estimate will follow for 6 with p replaced by p,= p-6,<p.In

addition, performing this remark at each step of the recursion, we will get
for the size ¢, of E, an estimate of the type:

(7 8,y $ 6278,  with Z,,08 <P

' K
Choosing 6, bigger than ck?‘“ for some 1<c <2,we will get g < € and there is
encugh room for 5, to satisfy (7), atlowing the sequence to converge.
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There is, however a new difficulty arising at this point. Namely we
need to controt the diophantine estimate :

(8) lolAdnl 2y .nl~® forall neZt

at each step of the recursion for the free part H,,, and consequently @,

changes each time we perform a canonical transformation. On the other hand
it is not difficult to check that the set of A's for which (8} is valid, is
nowhere denge. Controlling a function on such a set is not impossible, as was
done by E. Borel {11] in his mémoire on monogenic functions. However it s
difficult, and any attempt in this direction failed to be convincing up 10 now
For this reason, V. Arnold (see also G. Gallavotti [21,22]), proposed to
assume the analyticy of H with respect to A in some union of polydiscs
Max, [A-Altl<r centered at points satisfying (8). Then provided r is not too

large, the diophantine condition (8) is still satisfied uniformly on this
domain, provided we assume Inl <N for some ultraviolet cut-off N. This can
be justified by eliminating from £, in the equation (5}, all the Fourier
coefficients E, where lnl is bigger than N.N will be chosen in order that the

eliminated terms are small compare to €“. This will not affect the conclusion
that E1 is of order £ |n order 1o proceed at the next step, where @ is modified

into w, = w+0{e)we will diminish a tittle bit the radius of the polydiscs by
changing their center from Al to A ;i such a way that :

(9) @A) = @Al

a transfermation controlled by the implicit function theorem. Similacly, at
each step of the recursion we will get a new value r, of the radius of

analyticity of both the integrable part Hj,
particular, the limiting hamiltonian H_ = Fl) ot by " zo(H0 w1~ Ho .} 18 the sum

and the interaction EkA in

of an infinite number of functions, analytic in polydiscs with varying radi .
Following 6. Galiavotti [21,22], the v¥ derivativesof H_, is also a convergent

sum of gimilar terms provided ¥ v a0 & /1Y converges. If this is the case, the

invariant tori described through this canonical changg of variable, will be of
class V71 ‘ '

if we now come to the mode! described in the introduction, we need to
modify the previous strategy in two respects.

First of all we need to choose an effective spatial cut-off. Thanks to
the equation (3) of the introduction, this will be done by neglecting at each
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steps those lattice sites for which:

(10) 2L withl such that 2% ¢ €€
We are now reduced to a finite dimensional hamittonian system.

The second important change concerns the diophantine condilion (8) We
could modify it at each step in order Lo take into account the change in the
number of degrees of freedom. We have preferred another stralegy. Nametly we

define a set Qin R? such that for any @ in Q, the following estimate holds.

an loal2 y.ynl) Inl, = 2,70 In l.wibi

where the functions y and w must be chosen 1n such a way that Q has a
positive measure with respect to 1 - This will be studied in detall in

section ML

Let us remark that now the change n the analyticity radius at each
step, is sensitive Lo the spatial cut-off L through the decreasing of Z{L).
This is the reason we will get restriclions on the rate of decreasing of Z at
infinity as indicated in the main theorem
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1) ONESTEP OF RECURSION :

This section will be divided into three parts. In the first
one we iniroduce a set of norms needed for performing the estimates. Inthe
second, we construct the infinitesimal canonical fransformation which
allows us to go from one step to the next one in the recursion. The last one is
devoted to the construction and the estimate of the different parts of the new
hamiltonian.

[-1) NOBMS -

Let L be a positive integer and A be the square in 70 centered at
zerc with radius L, namely

s Doy =
{n o AExedP =T ) <L)

Lel also p be a positive number, and U be an open domain in CA. As in the
introduction, we set sz{aeT‘iR;Hm(e)Hp]. On the sel of holomorphic
bounded functions on U x ('L)" .we define the nerm :

{(2) Elly oy = S0Py Sgezh | I &0 €010

where [ (A) represents the nt coeffictent of Fourter of the function

8->f{A,8). We will denote by H (U,p.1.) the Banach space obtained from this
narm. The main properties of this space are summarized in the next three
propositions.

Propositt . Endowed with the norm g;‘ven' in (2), H(U,p,Ls is a Banach
algebra. for the pointwise muitiplication. In particular, if 7 and g
belong to H{U,p L), one gets ! ' :

(3) gl 0 ¢ B0 gy oy

Proof : the ™ fourier coeftictent of 19 s given by :
(rg) (A) = Z 2 TytA) g (A}

bt}

Therefore, if ane réplaces it into (2) one gets:
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)
gl 0§ SUPsey Zpgez (AN 1g (A ePith
since Inly ¢imly +in-ml; one gets, after an obvious change of variables :

HEglly oy € SUPgey (€ pezd I FlANeP Y] (2 oA Ig(a)l e 1th)

< Aflly o gl o
<

The next important property concerns the Poisson bracket. If f and g
belongs to the space H{U,p,L), {f,g} is the function given by the expression :

(4) {.9) = T, lof7aA, 2G/38, - 3f/26, 29/dA }

in the following proposition, we denote by D(A,r) =t the polydisc

Max, A IAARICE 2, and 2Ly =min,, Z, . Moreover H(r,pL) wil

denote the corresponding space of holomorphic functions. Then we obtain :

Proposjtion2: If f,e ${r,,p,L)and (€ H{r,, 0k, ther (f,f,) belongs to
H(rs,py.lq) where: ]

(5a) Ly=max(i,ly) , psg¢ min{pl,pz)' , ry < Mindr,ro)

and in addition if |t [f; denotes the norm in #.(r, p L) {i=1,2,3) we
get twhere e=2.718..):

(Sby HE My

¢ @I Cprpg) iy )T (ppmp ) TR T T, DI
<

L3

Proof © It is clear that {r.f,) depends upon the variables A 8.  with

XeA=AUA,. Therefore Ly=max(LL,). Thanks to (4), the p™ Fourter
coefficient of a term in the Poisson bracket (4) is given by :
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A dm of, /8A (A) £y (A)

(af 7oA 21 /28 ) (M) = 3 | g

1.5m

tf Abelongs to Uy, one may use the Cauchy formula to estimate the derivative
in the right hand side, namely :

= [2 51 j o
o /A8 = 21 dasom . €11 (Ave, br €9 b0

1.pm

where g denotes the element of R given by (g,),=6,,,and br is chosen in
such 2 way that A+ex.5r,e‘°‘ belongs to U, This is true in particular if or =
(ryrgd,

From this last remark one obtains :

5 pezh €PTEO 13 /A AN I, | 1T, (A)] ¢

(rrd 2,V UE g i) iy (A .eF’i’mlI].ISup&EU]E ez Iy (B 6Pyl
One can bound Z, from below by 2{l.,) and use the fact that py<p,. Then
summing over x in A and using the estimate :

(6) sup A lof e tPresiinh ¢ e(p-p)

we get immediatly the result of the proposition,
o

The third important result concerns the exponentiation of the
Liouvtile operator associated to some function f and defined formally as {(see
§1, eq.{3)):

(N Lyle=(1,g) exp(Led =2 4,0 &E:[f,g}...]]/k!
" k-times f

Proposition3: I f € $(r,p, L} and g & H (r,p, L), then exp{lf)g belongs
to #ir,pl), where:

(8a) Ly=max(lyto) , p<minlppo)ap, | r<min(ry,rol=ry

provided-
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(8b) i, < 200 (py- p)irg-r)/2e

where |||, denotes the norm in H (U,,p, L) (i=1,2,3) . In addition we
get:

(8c) L@k, | < {2ellfll,/ (Z(4) Lp,-pirg-rI* Hall,

rpl

@) Hexp(Lpgll, ¢ 11+ 2ellM/2@) (pypirg-rH T gl

0

Proof : Clearly (8d) is a consequence of (8¢}, which we now prove, Let us
set pj=po(l~j/k)fp,j/k and in much the same way, r =ry(t-}/K)rj/k.

Considering L;!(g) as an element of u(rj,pj,t3) for each 0< j<kwe get from
the proposition 2 -

LI LTl I (260 (pgp) rg =Y 2K % |
Iteraling this set of inegqualities we get
ek CgIIb ¢ ighy T201, 120 (pymphir, oy Y K2R/ K

tt remains Lo use the estimate :
(9) kY rkig ek

in order 1o get the resutt. o

H-2) THE INCINITESHMAL CANONICAL TRANSEORMATION

in dealing with a step of recursion we need to compute a canonical
transformation In the form exp(Lg) where G is 2 solution of the first order

equation (2) of section i. in this section, we will give some estimates on G.

Let E(A,B) be an element of H{D(r),p,L) where D{r) is a union of
polydiscs of radi r:

(10) _ D =U, bt Ay

Moreover , we assume that the n™ Fourier coefficient £ o °of £, vanishes
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unless {nl, <N.On the other hand let Ho{A)be the completely integrable part

of the hamiltonian at the step we are considering We will assume that it
satisfies the following non-resonance condition:

an | T, AL T2yydnl) /2  YAeD(r'Y), yinl <N
where 0 <rY¢rand :
(12) w, = dH o/ oA, Inl, = & ,ep Ind.wilx1)

and w is some positive increasing function. .
Then G is defined as :

(13) GA®) =% Mgt EgA (@@ y!elng

Thus we clearly get :

(14) WG, ¢ WENCE 2 fyp(NwiLn™

i1-3) THENEW HARHL TONIAN:

From now on, the sequence Z=[Zx;xez"i will be chosen as

foilows : there is a continuous monotone decreasing function again denoted by
Zon R, such thai:

(15 (i) 2,=20x|) for all x and Z(0)=1 .
() Z(s+2R) > |<0.Z(s)!j foralfs2o andsome fcd <2 and K 31
{111y Z(s) < K, exp{-K;.s] forsome K >Oand K, > O

Let us suppose that, al the initial stage of a recursion step, the
hamiltonian H(A,8) has the form:

(16) H(A,8)-

Z 20 A2 +hA)+ E(A8)+ Et—RstI1<L*R ENAA8)+ S LfR;Ix{qu(AHA'QXM)
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with the following conditions (here e Is some positive constant) :
() handEe HOMpL) NEN , cecet (e=2718.)
(i EM e HOMEIXPR and  HEM e ¢ 26,2010
(i) A isthesquare |x| <R E (A ,.8.,,) € ﬂ(D(r_),p,ix!gR) and:
BEMN o mar ¢ e Z(IxIP*  foralx

we define a spatial cut-off L* through the condition, whered {c <2
(17) 2% - RY=2L- R
From the hypothesis on Z it follows that L* » L+ QRIﬁen we set .
(18) EVN(ALQ)=

E(A8) + X L"Rslxilc L+R Ex(n(-&’-e") ¥ ZL&Rilxllc L* -R EN(,A)HA'BK*A)

If we assume L >e=2718.,and Z(L-R) <e, then:

- 3}
(19) eW=HEDN, 108 €, e LiPli7e)
where C_1s some positive constant o

Prgof : From (163 & (18) one gets immediatly -

eM=HEM (ot €+ 2 6 ZL-RAKDIAL-RY

From (15 (i1i)), one deduces:

(Lx-R)P ¢ LiP(K /2L *-R/ Ky = LK /2L -R) )/ K,

- The hypothesis of the lemma imply

ZL-RM LnP(K JZL*-RI/ K, € const ¢ LiP(1/g) for €< €
and therefore we get the result. <

Let us choose 0 <& <p_and define N* as the number such that.
(202) ghe 3 W =gty 2

we decompose £V as: EN=ghe N 4 NN yith:
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(200) B0(A) = T, 08, /2m E(AB) VM= Z 0 oy E(a) e 08

where the E 's are the Fourier coefficients of EV) G is now defined as in

section |1-2 w1th E replaced by E(N_ we assume that 0<r"%r exists such
that the non-resonant condition (11) occurs. We set r* =72, Then we get the

following result :

Proposition 4 : If, in addition to the previous hypothesis (15}, (16), (17), €
satisfies:

{i1) LR ¢ ¢

the transformed hamiltonian Hx = exp (LG) His well defined and can
be written in the same form as H (eq.16), where ;

(22) (i) p*=p-26

(ii) hwx=h+6h and |6h(A)| <V YA eD(n
I 1Bl e € €€

vy HE orror s 28, LIxIY W Ixl < L*+R

] x r‘l
Settinge* =¢© wealso have :

(v) Z{L*-R)P¢ex

Broof : In order to exponentiate LG i1 is necessary to satisfy the estimates

(8) of proposition 3. In our case, if it acts on {(r',p,L), with r V¢ r <r,and
p-b ¢ p' < p, thisgives:

NG, < er'z)r=s
Since ohe has :
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WG I, ¢ 2 Ty N wiL*))
the condition (21) gives:

2e 116 I (2L 81" <14 ¢ 12

which implies that the norm of the operator exp{(Lg) acting on H(rp'L)
with values inH.(r* p* L), is dominated by 2. Now, we have :

(23) exp(Lg)H = Hy + {GH,) + EN + (exp (L) ~1-Lg)Hy *
...(exp(LG)gl)Em‘N + exp(LG)E(mN .

"‘zt'-RslxI1(L"+R exp(LgE,. * zL*+Rs|x|‘ E,

for the 1ast terms do not depend upon the variables in 6. From the first order
equation, the sum of the second and third term in the right hand side of the
previous equality is equal to 6h. We get E . by adding the fourth, fifth and

sixth terms. For instance :

(exp (L)l 1-LglHy = ((exp{Lg) - 1V/Lg - 1)(6h - EM<Ny=
=%,y Bt Bh-EM Ny

Thanks to the previous remark, and to the proposition 3, if (21) holds -
one gets:
I (exp L) ~1-LpdHy llu gu v ¢ BEMZ LTI,y piN=wiL D% 611 ¢ €72

The fifth term in (21) can be combined with the previous one to get some
cancelation, and actually the previous estimate holds also for the sum of the
fourth and the fifth term. The next one is estimated in the same way if we

remark that :

HED, g e ¢ 278N M g2

Therefore (iit) is satisfied. The £ . Sare also estimated in the same way. At
tast, for | x 512 L*+RE, does not depend upon the degrees of freedom inside A.

For this reason, exp(Lg) actsas the identity operator and this term remains
unchanged. The proof of (v) is immediate. o
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i1y SMALL DIVISORS :

In this section we will study especially al) the technicalities needed

for controlling the non-resonance condition that we introduced in the
previous chapter.

111-1) MEASURING LOCALIZED CONFIGURATIONS :

Let A @ be a configuration satisfying:
(n IAfN<Z, Yxel®

Then, for ry<l, we define the polydisc D(r,) as follows :

D
@ Dirg)=(aee? IA-A @I<,Z, YxeP)

On the other hand, if g={g,; X 20}, is a sequence of positive real numbers,
. o .
we define on the space RZ  the gausstan probablitty measure y  as :

(3 By ® o0 GA/YZTT, . atA - A% 20,
Then we get :
Under the condition:
€Y 0,42 2= oltn(l )Y

the polydisc Dr,) has a positive u -measure.

Proof : Let us note Tirst the estimate :
- 2 2
NIES I 720 FULRER 2 ) u. 42m
Then, we get :

g e =Tl 70 -20ryZ, /40,0
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This infinite product converges to a non zero number, if and only if :

2,620 Hrgl, /d0) < e

thanks to the previous estimate this is true whenever ¢ /7 x2= ofLn(l x l,)“).

: ¢
Remark : It is easy to show that this condition is also sufficient for we have
the estimate :

2 - 2, a2
ule V2 [ ax ™72} uuB e

HI-2y ASET OF NON-RESONANT VECTORS :

tetwbea posit'ive increasing function on R, such that wi(0}= 1, and we
consider the function :

(5) WH1"9D = [ " gt gV

where 0<g <2 and ¢ is a decreasing positive function to be determined
later. For n in Z'7°), we define thenorm |nl, as:

lnt, = £,.20 Indwlxl)

D
we now introduce the set of non-resonant vectors Q as the susbet 's of R
such that :

D

(6) lanl 2 y (i} forall neZZ N0
where @n = Z,.z0 .0,
Then we get :

Under the assumption (4) of proposition S, if y is small
enough and if :

(7a) C,= [  dt.e@ (T, ;0 coth(twlx)) - 1)<

(70) pwllxl)® ¢ C2.2n.0, for all xs, with € <ee
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then QnD(r,) is non empty, and has a positive u o“Mmeasure.

Proof : from a well known property of probabilities one has :
1 (QND(F ) 2 1 (D(re)) - 1 (0©)
where Q° is the complement of . Now we have :

k@Y <2, 1 lwskonl <y whl,)) <
zu.ro JIEISY-W(Iqu) dg_(21”(",)—:/2.9»(gwgmﬁza(m

where £(n) and o(n) are the mean and the covariance of the random variable
w@n, namely

fw=2%,.,0 A%, oln) = (,.,0 tnl%o,)
From these estimates and {S) we obtain :
B Q¢ YT, winly) /(Qn.ﬂ(n))“;z;y.g. T, Wil
=Y.C E e foodte ¥, ertinylwtixly)
=¥Cy o 0te UM, T, NI )=y C,

rorg ., €tinl=coth(t/2).
Therefore, provided y is small enough, we have :

1 nDlr N2 p (Dr)) - v.G,C >0
<

Let now H(A}=Z, ;D A %2+ h(A) be a function on D(r )

such that {for some By« 1/2)

(BYIZ, 20 100 1(y).0,.0M/2A,0A 1 < By E, ;0 O, IfX)P
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for all sequence I of complex numbers. |f we denote by the
function defined as :

{9 w, (A) = aH/eA = A rah/aA,
then provided that € <1, and that (7a, /t) hold, one has the estimate :
-1 . N _ .
(0 p (w (Dl ) 2 uQ(D(ro)) 2y GG,

and the lefl hand side is positive {ar y small enough.

&

Pragl : As in the previous proposition, 1t is sufficient te estimate the
measure of the set of A's for which il A)n_l <y winly) For a given pe zP

let us decompose A into:
A =an.0 /o’ B, with %,z B, N0
Then 11 £ = (AL ,‘one ﬁas :
f=aon)'/?+ an/aA n
This defines “a” as a function of £ and B which satisfies .

P =laa/ofo@ Y21 1/0(0) B, 40 @7/0A A D, N O
> loasagl ol (1-8))

The change of variable A —> ({B) givesthe fellowing result (since f, < 1/.2).
12, -la- d( } J‘
iolalo@nt <y wind )l < 2[513),,!,“[1i ydgs(znotnnte e i (8

where duQ(B) ts the conditionned probabiiity with respecl Lo the data of a
The right hand side can be estimatet as - ' '

b lAs lo@als y yihl)} < 2y .yl @no@n?

which is the same as in the previous proposition up to the multiplication by 2.
(o]
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1i1-3) APPROXIMATED NON-RESONANCE :

Givenr, < r_, let D, be the set @ X@nD(r -r . Forr <r we
define D (r) as the set of points lying within the distance r from D in the
following sense :

(m D) ={A;{Beb . IA -Bi<r.Z, for all x )

By construction, O (r)is included in D(r ). Let now H{A) be as in proposition

7, with the additional requirements that R(A) depends only upon the sites
such that }x gL, and that it is holomorphic in D(r) for some O <r < ' Then

we get the following result

Proposttion 8 - Let H as before and let @ = 2H/3A be defined - by (95

we also assume that y.y0)/ 7, <1 For any real N bigges
than 1, there is 0< I <r suchthat for alt Ain D (r)and p in ZD,
ll[ll1 ¢ N,the following non resonance condition helds.

{12) - twtAinl w2y wind )

[ Moreover  satisfies:

(13} Foryg(N wik D/ E4tem) 7 N)
-where )
(14 T= 80Py (p) SUP, 1an/aAll 2
REY o

d <&

Proof: i AeD (), withr < r, there is Bin D such that |A -B i< FZ
~for ail x "s.0n the other hand since h is holomorphic In D (r), the fundamental
calcutus Termula yields

WA = B+ f qo.a/ao[m(A (c)).u] :

where, A(0) =0 A+ (1-0)B .Using the Cauchy formula, the remainder becomes:
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[, do.272 o{m (Alo)), n]= f,'do |27 doven . w(A(o+se'“)). n/ s.el@

where s is a positive number to be chosen. Since A belongs to D (r’) the

integrand is well defined provided r' (1+s} <r,namely:s <(r-r')/r Therefore,
since (A =A+ 3h/ 3 A the remainder is dominated by :

[, 'do.a/d0 w(Alo)).a ¢ r/Ar-r) L (1+m).N
If the right hand side is sméHer than or equal to ¥2.y.y(lnl,) we get:
r <z ryydnl ) Zo (N vz ypial ))

From our hypothesis, we have wz_y.y(inl )/Z, <1 for att p, and obviously N2 |
This gives the result.
o

Let us now consider h(A)=h{A)+8h{A) where again &h -sat_isf 1es the same
conditions as h. We set :

(15) §=SWacp () Sy 2, 2, |#neAPALLT,
£= supﬁwn‘r)lﬁh(ﬁ)l 8 = supag-on-(r) swp, I, 1 186h/aA 2 AN T,
tn much the same way we aiso define &, =w+36h/2 A,

Preposifion G : Under the nypothesi.s of proposition 8, and if :
{
L (18) e<2/5. 2R Ar-r)r and £+ BECHR

then, if r= r'm, Dw (r]) is contained into D (r').
1 a

<

Proof : -~ Let us consider the polydisc D(B,r') centeredat Be D, of radiusr
Weset w,=w+ 0.26n/9A and we define a path B(o) via the implicit equation

w4(Bl0)) = @) 0<o<l

CPT-85/P 1796 -26- July 1985



Invariant Tori ...

If £ is small enough the implicit function theorem implies that such a path
exists and is differentiable. Actually differentiating this equation yields:

2 = -
L, B, +2°na)2A2A 1B /do = -26N/AA,

Since £ 15 defined via an algebraic norm on the matrix-valued functions
indexed by the sites of our lattice, we get the estimate :

sup, Z, 7" 1dB,/do! < {|-§~5gl.supAEnQ(r.,_, 7. ash/a Al

From the Cauchy formula, since 6h is holomorphic in D (r), and Z, 2 Z(L), we

get :
SUP 4e Do) Zx".l abh/aAlse ZUr2(e-r !

in particular, the distance between B and B(1) is smaller than or equal to
451, and the polydisc D(B(1),r,) centered at B(}) of radius r,=r'/5 is

included tn the previous one.
Now, we remark from the previous argument, that both ¢ and @, are

local isomorphisms, since they are small perturbations of the -identity.
However they are defined only on 2 subdomain of the originat one D(r ). Since

by hypothesis, the perturbations h and 6h depends only upon a finite number of
variables, we can use the Whitney theorem [60] to extend them as C? functions
on D{r ,) with the same bounds £ and &€ of the second derivatives on D(r ). If

@ and @, denote these extension, they are also invertible on D(ro). The
implicit equation defining B(1) can be reduced to the following identity

B =~ o (B

and from the definition of D we also get @ "+ (D) = D . Therefore .
1 _

eDm

UMD” DIB(1)r ) = Uﬂ, ]D(B‘,rf) = Dmt(ri) C D

o
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V) BECURSIVE CONSTRAINTS -
IV-1) PARAMETERS OF THE RECURSION -

in this section, we collect all the constraints needed to perform the
recursion process. Then we will analyze them in order to check under what
conditions on the paramelers they are satisfied.

In order to fix the notations, we define a priori the sequence Z=
[Zx ;xe?P) as in §1i-3, the radius ro Of the polydisc of analyticity of the
original interaction in.the action variable, and P the width of its strip of
anatyticity in the angle variable. Now let €, be the size of the original
interaction namely : _ ‘

(1 £, sup, IE, “"o"’n'R .
where R is the range of the interaction (see Introduction eq. (1)). At the ktb
step of the recursion, we will denote by ¢, the size of the interaction and

correspondingly r,, p,, L, will denote the radius of analyticity in the action

variables, the width of the strip of analyticily in the angle variables, and the
spatial cut-off, of the new hamiltonian. At this step the hamiltonian is given
by (see SI1-3X '

(2) H, =
S0 A2 ¢ A ¢« E(AD) ¢ .
z:Lk—Rsb(I](Lkﬂi Ek.x(A‘ﬁ) * Zttﬂ?s!xl' EK(AK*A*B‘X*A)

where h, and E_depends only upon the variables located on the sites x with
|x|| ¢ L, , whereas the E, 'S depends on the sites x such that I"': <L +R.
At the next step, we first define the new datas as:

3 L = L f *N0 Py TP

Neay =_hk' oh, Eiar = Eup Ekﬂ.x = E".k.x = exp (LGkH)Ek.x

where G, is the infinitesimal "canonical transformation defined when
passing from k to k+i. From the eq. (17) of 81i-3 L,,, is defined through:

(4) ' (L, R) = UL R
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We define also Z, = Z(L,~R) and we get (8113, eq.(15ii):
(5) Z, 2 L) 2 ZLHR) 2 IR =7, ¢

At this stage we define an ultra-viclet cut-off N as(see §11-3, eq{20)).

k+1

(6) Npop = 176, tr(2G.LnP(1/¢, ) g 1<}

At last if €, i e
k

we get :
r 'pk"‘k

k

7 e = = HE ¢ Epa

ket Prartysy

It follows in particular that if €, < ™', there ts x , >0 such that :
(8) N, € X8, Lnl1/e,)

From (4) and (7) it also foliows that there is b> Osuch that Z,= ekh .Since we
‘need Zk" s €, (prop.4), it follows that A 2 1/b. Given h>C and 0<g <2, we
introduce the following notation : '

(9 €, = (2sh)/g . in(1/Z ) = (2+h)b/g.Ln(i/¢g )

1V-2) CONSTRUCTION OF THE RUSSMANM EUNCTION :

In Sil-2 (eq3) we Introduced a function ¢ similar to the functions

entering.in the Rissmann work {49] in describing the non-resonant cendition.
We set -

0 S(s) = -Ln(g(s))

we remark that 'S Is smooth,” positive, decreasing and concave on R,.

Moreover, if we normalize y-to W0)}=4, then S(0)=0: Since y vanishes - at
infinity, it follows that S is a diffeomorphism of R,. Let now ¢'Vbe a

positive decreasing functionon R such that :

(1) ¢4 lim, ., ¢{n)ed = o Yq>0
and Jo . om < e '
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We set and S will be defined through the following formula:

(12) 87 =S expliAnT . [§ d/n LnCizoMm))y ]
where 1> 1. Then we get : ’

: 5 satisfies the rollowing inequality:

a3 s ¢ o). s7hTE)

Proof : From (12) it follows that :

5T.6)= 57HE) _explisLnT e dn/7. en(1788{m) |

Since Ln{1/0'") is increasing, the integrand is bounded from below by its
value at {. Performing the integral gives the result. o

Let now x , > | be chosen and x be equal to- (2+h).b/g We set :
{14) 5, = xl.xf/x.{k.tt:“{f,p

and we have . -
Let ® begivenby &) = jg dn. o) . if:
(15) €, < exp-(g/b(2oh). 0 XK p ) K= (C-NX/ 26X X 2

then 3.,y 6, ¢py/2.

|

Emn[: Feom the definition we obtain:

T O T KX Z gy &y OMNEY

- By definition £, = go_c" and therefore, £, - t&-: = {c-1)/c £, . Therefore the

previous sum can be dominated by the integral :

8 € CX X /e jgu"an.o“’(n) = 0§ o) /2K < py/2.

¢
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The choice of S determines the function ¢ and therefore gives a constraint
on the function w introduced in the 8tH-2. On the other hand, we have not yet
given the behavior of the function Z, and the values of the L 's are not yet

specified. This can be done by imposing .

(16) WiL) = W, =X,

Lgmm_a_? : The sequence w, satisfies the inequalities

i
i

1 a7 S7Hg,) < w <STTL N,

Proof : since X , > 1 we have
STHED < x,5THE =W, < x125THEY
s xFoMe s g = 6, xSTTENE, X,

On the other hand, from (8) & (9)we have N, < X £, /X &, and therefore we get
the result. @
Proposition 10 : if h>0,f>0 b2 1/h,0¢g <2 are chosen in order that :

(3 T=rg/2+n)b > 1
and if we define the sequence g as

(19 2nC2 .6, = 2x PN

then with S defined by the equation (12) and y = €5 we get the
foltowing set of inequalities :
(200 ‘ .
g 20 = 7.2 Z(L )2 =.211C22.0(Lk) 2 (w8 2 N w )92 19
o

Proof : In temma 3 we have shown that S™E) <w <N .w, ¢ S7(TE,)
Applying S on each sides, and exponentiating, gives the resuit. o
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1V-3} THE NON RESONANT CONDITION :

Propositions B and 9 impose two conditions leading to the definition of
the new radius of analyticity after each step. The first one in proposition 8
gives the radius r, " as follows ;

(212 1t lan/3A 1 <m, <1
(210) then r Wer yWN, W, /8N,

Since y <1, we get r,\V¢r, /8. The other one concerns the size of the
interaction (prop.9 and eq.15 §t11-3} :

(22a) Tper =L + 0L, <172
s
(220) e,M ¢ 2/52(L,, 2 (r- eSO D and oy, ¢ 1 YS

In addition we know from the lemma (511-3) that :

(23 e W ¢ Coe, LnPlive,)
Thus a sufficient condition to vérify (22b) is given by :
(24 €, . Ln01/e, ) ¢ (Y7320 Q)r 2 9N W, 220, DYN,
Pt =F g CY/A0LQUN oW DN
Proposition 11: If - - o
(23y ()  afc-D> cf

(1) M) 2 (40ry).e “Halerhielixe - roral g o g

then the hypothesis My 2 ek' implies Fier 2 em' .

Proof :  From (24) we have :
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Pt /Eaf = T L Y/A0) RN W VN8 8 2 (y/40).e, 2 e/,
from (8), (9) & (14) 1t leads to:

Py /€ 2 (1740 8 AV y 2 0, )

trom {(9), (25 i) and )(22 > 1, the left hand side is bounded from below by 1.
]

EmD.O.S.‘liQD_lZ: I

{26) (i)  2bcdr2a+cf <

(i) OYXE)2 (32C o/ )5/ )P o~ HI-2e-hedchxe
_ rorall §>¢,
(it rore.2

then {24) is true.

Proaf - It is sufficient to check :

gk_l_np(ngk) ¢ (y/32C 0)_£k2a+fc-+2bcdv o ﬁml'

from which we see that (261) is necessary. If we use (8) (14)and (9) again, the
proof of this estimate follows the same line as the proof of proposition 1.
<&

|V-4) DIFFERENTIABILITY AND RECURSIVE CONSTRAINTS :

The fina! hamiltonian is a function of A defired-as the sum of an
infinite series:

(27) Hu(A)=E,.20 AZ2+ N (A) heol®) = Z,,, 80,

where 8h, is ihe amount of change of the integrable part of the hamittonian
after the k I step. Thanks to the proposition 4, we have :

(28) | h, (Al <€ [V on D (r,)
. : k
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where @ (A) =A » ah /oA
In particutar, if v is an integer, Gh, 1s v times differentiable and using
the Cauchy formula, it satisfies:

: %3] -y
{29) 1ax umla“ﬁhk/d Al e 0y .Z(Lk,l))
Since &y depends upon the sites with ) x| S by {511-3,eq.18 & 20b), the sum

of these derivatives canverges il :

(30) T o Tl DT e

Thanks to the previous section, this is irplied by the congition:
(3N ' ardbc ¢ /v

The same kind of estimates hold for the transformed .=
ﬂm exp(LGk) f{A,8) of a function { in s0Mé ﬂ(Dw(rJ, p,i.). In particutar,

f _ is the sum of an infinite series &, F with:

(32) f, = lexp (LGK)"}}ITJ:D““ exp(LGj)f

in particular, we get, whent > L

(33) o, $ 0 e e Ty (1 Tl

The same argument. shows that

proposition 13 1T -

LG4 bd+a <(C- /ey
i .

Ithen the canonical transformation Ti,, exp{flg) transforrng
| k

HUAB) INto H LAY transforms every element of H(D (v}, pl)intoa

CY function. In particutar, the corresponding erwariant torit are -1

times differentiable.
&

we must also check that the bounds on the different derivatives of h
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are compatibie : one of this bounds 1$ given in proposition 7 (eq.8), the others
in propositions B {(eq.14) and 9 (eq.16). it is not difficult to convince oneself
that the first of this three implies the others. Actually, using the Cauchy
formula, and considering that 6h, depends upon the sites within the distance

L,.; @nd fs analytic in a polydisc of radius r,, the first of these bounds is
implied by the foHowing ones :

(35) By € Ty By ¢ 172 with
B, $SUD 70 T,.0 1000 /2 ABAS/ZW, VPN | /n 220, 0o

To get the convergence of this serles it is necessary that ¢, be small enough
and that:

(36) Za+{4+h)cd < 1
o

There is one more constraint o impose, in order to allow us te define
the canonical transformation exp( Lg ) .1t is given in proposition 4, by {211}
K

nameby

(37) e 2en®™/e) < {y/16eC ) T WIN, W )21, )6

[ SR L3

In much the same way we obtain:
EmaaMnnJA: i
(38 (1) bd+arf < 2/c-!

(i) O'E) 2 (16eC 4/ yx £).(£/cy) P le ~HEeracbadloixe
forall £>¢,
(i) r, 2 g7

then (37} is true.
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IV-5) SOLVING THE CONSTRAINTS ON THE EXPONENTS -

To summarize, we have obtained the following relation between the
various exponents that we introduced ajong the previous sections :

(39) (i) b < fg/{2+h) {prop. 10)
(1) i < alc-1)c {prop. 11)
(iii) a+bd < (¢c-1)/cv  (prop. 13)
(iv} Za+2bcd+el < 1 {(prop. 12)
(v} arbd+f ¢ 2/c-t {prop 14}
(vi) 2a+{(4+ndbcd < | {eq.36)

As can be seen from the proofs of the various resuils, these constraints are
almost optimal Therefore the best results will be obtained by reptacing the
inequalities by equalities '

jlion 15: Forb>0, i<c <2, and v » 2 given, there exists a> 0, ¢»1,1>0,
G<g¢2, b O suchthat (39) 1s true if and only if .

(40) b <blw,c) = Mnl{2-00e- A3 20, (o 1 2 vel 2013 )

Preof : Using (1) & {11} we gel @ necessary condiion in the form

H f b

Gi) 3y cffe-13b

(i) b(2c- Nle-1) -« (o-1Weov
(iv} p(3c-2)/(c-1y « (2-0)c
(v) be(3¢- (1) <A

(vi1) b2e(2c- 1M {c-1) < 4

we remark that (v)&{vi) are consequences of (1) If v 2, which imphes {40),
Conversely, if (40) is satisfied, it is certainly possitle to Tind d> 1 such that

(ivi) be/le-1+bd < (c-1)/cv
{iv) 2hc/lc~1)+2hed+ch < 1
{v) be/{c-1)+bd+b < 2/¢-1
(vi) 2bc/(c-1)+ 4bed < |}

Proceeding in the same way,we easily check that it is possibie 1o choose a> 0,
then T > 0 and finally, h> 0 and O < g < 2 such that (40) be satisfied.
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O

Emmsﬁmn_l_ﬁ The maximal value of b compatible with {(40) is a monotone
decreasing function of v on the interval [2,50} and satisfies:

(412) B(V)=SUP |, (oD(V,C) = 1/6v.(1+10/9v + O{y )"

as v-eo, and In addition biv) ¢ b(2)=1719.18.... Consequently, If we
choose k= | /b, then k 220, for v=2, and

(41) A2 BYt20/3+0(1/v)  as y-dea,
<
Proof . let usset:
f (€)= {2-cHc-1)/c(3c-2) £.40) = (-1} %/c(2c-1)

Clearly t, has a maximum ¢, in the interval (1,2), and C < 3/2 as can be
checked from the sign of the Jogarithmic derivative On the other hand /v is
increasing on (1,23, and cuts 1, at the pointclv) given by :

- S(5+v) + {25(1+w) 2-B (1 eu)3+20) } 2
(42) clw) -

2(3+2v)

The supremum of b is reached at c= Max (¢ 5, c{v)}. We have v =1 cv/ T Lelv))
and the right hand side 1s increasing in c(v)e(1,2); for c(v)= 3/2> C, we get

v=5/4 which is smailer than 2. Thus, for v22, c(v} gives the supremum of b.

As v—reo we get ¢(v)=2-4/3v+0{1/v?) and this gives the asymptotic vaiue

of b(v). On the other hand, b{v) is decreasing in v and therefore, blv) xb(2) .

For v=2, we get from (42} : '
clv=2)= (15+457)/14 = 1610..

and this glves the numertcal value of b(2):  1/b{y=2)=19.18...

We recall that the exponent A giving how the interaction decreases
toward zero as the action variable decreases, ts limited by Ax1/b. Therefore
the minimal value of A is given by k> 1/b(v}, which 13 expressed by the
propositionlS. ¢
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IV-6) THE RUSSMANN FUNCTION :

it remains now to find the conditions on the functions y, w and Z that
we introduced to measure the resonance condition and the rate of decreasing
of the configurations. in §111-2 (eq. 5) w is defined via its Laplace transform,
namely :

(43) sy v2 [ 7 g et
we will choose the Tollowing expression for ¢ -
(44) ot) = @ Lzt |, dL LOTertwi)

where w, is a positive constant to be defined below, and w is bigger than ane,

increasing, and such that for alt t:Q the right hand side of (44) tonverges.
Then we get -

Proposision 17 . 1f was given by the eguatton (43) above, and 0, 15 Big enough,
1 then :

(45) Z ll_Ez(ZDJ\lO]‘ "P”BU“"W?] = C) L]

4]
broof - It is a simgle calculation to show that
(46) Oy fste UL g0 cothitwling /2y - 1)
1 e ’ :
We decompose this integral intothe sum fo v [, _For t>1 weget.

(T, 20 cothitwlx| 2/2)-1) «
Lt x|
¢ const.Z, yoeWIRT o

cotn(t.w(l x| )/2)
¢ constetZ . 0e ST oo cothiwllx]| )/2) = const e

For t <! we obtain:

% ez PLn(coth(tw(tx] i)./2)} ¢ const Ln(I/D) L Tetwi)
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But it is easy to show that DLP < (LP- (L-1)P1/(1-e " if L 2D, and since w is
increasing we can estimate the series by the following integral :

Ln(1/6) 2 L2 et g const. Ln(1/t) f | dL.LP e "W ¢ const. gtt)

Therefore chosing the constant w, big enough, allows us to bound the

integrand in (46) by an integrable function.
<

We wiil impose the fotlowing conditions on w :

D-concavity - the function v(£) = w "¥€}° s increasing and concave on
[1,e0), and v(1}) = O

k-scaling: there is © <x <i suchthat Hminfy  Ev(EMVE) ™ O

The previous condition implies that v and w are continuous, and one-ta-one. tn
the appendix we wili prove the following result :

1 It S(s} = ~Ln{y(s)), then there are two positive constants C,,
C_andl 0 O, suchthatifL>L p We have

(47) (Y - wiL) ¢ S NC, LBty D
(i) wiL).Lnwl)) 2 S NC_LPyLD
o
Let us now estimate the speed of variation of the sequence L , defined

by the equations (16) and (17) of §iv-2,

Proposition 19 : In order to satisfy the equation 16 & 17 of §IV-2 it is
sufficient that :

{48) E) = @ D SUWILR Y % Wy
in this case there are two positive constants.a, and a_ such that, for

L big enough :

_.LD“‘K)

(49) g ¢ 2(L) ¢ e"+-'~D
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Proof : The equation (16) reads for any ke N

wil,) = x,54g) and € = x.In(b/e )= x/b Ln(1/2(L,-R)

which is a consequence of {48), Now from (47), if L is big enough,

S7XE) «wlL) ¢ S7NC, LDk

which implies £ <C, LY} and therefore

)]
L) » Z0-R)% = g x8db, o -consiL

On the other hand,

$TKC PP < wildintwtL)) = x , 57X ELn(x ,37ED < const STHE/0MRE)

for Ll ,57LEN « const § ¢ const/@UXE)  thanks to (11). Using the

lemrnat, the right hand side is bounded by const.S "{T.£) In much the same
way, the Teft hand side is bounded betow by  const5°YC LPY | where (" is
some constant. Therefore we get 5 %¥C LD ¢ const. SYrE) Since S 1s the
logarithm of the Lapiace transform of some positive function, it satisfies
(Holder's inequality) S(p.s)<p.S(s) for any prl, which ieads to ¢ » const.LP
and Lo the result by the same reasoning <&

It remains Lo show now that the-Tunction @ Mdefined in SIV-2 (eq. 12)
satisties the hypothesis given in equalion (11)

Propesition 20 : (1) i1 w obeys 1o D-concavily and k-scaiing then ¢tV

salisfies
(50) Hm sup,_,,, L1/t 7€ =0
(i) If in addition, the function v(€)=w "¥€)® satisfies for some
2/3¢B <1
(51 V(v < const {£ LnPe))! for § big
then® Vis integrable on (1 o). o
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Proof : We recall that &V is defined through the equation (12), namely :
L1700 =LnT €. aSHENBE (1/5 TN gD
1fwesets =S 7€) (50)is equivalent to:

lim inf 5.5(s) = teo

4 ree

ie to: i mdt,ts arolt)ts
0

Hm_ , s3(@)=lim, _ _——— = ‘te
J Tt ewitrts
0

Using a gaussian appreximation of the exponent of the integrals (see lemma
Al inappendix A}, it is easy to get:
Jt(s]
5.51s) 2 : 5.t(s)
[ g gtow-wtion

dttse “Lels) - (t'T?U/?

with o = @"(T) and t(s) is the unigue solution of s =-@'(tés)). The proof will be
finished if we show that tim,  tlg(t)} = e This is a consequence of (see

App. A):
LI 2 wp. (17e?0+t) . viast) foralla>t

The second part of the proposition is more involved A sufficient
condition for integrability is
(/oM ang > i

liminf,_,,
or a fortiori:
1Hm 8.54(s).n5(s)/5(s) = O

§—>m

The proof of this estimate will 'be found in Appendix B. o

At last we remark that there is a large class of functions w satisfying
the D-concavity, the x-scaling condition and the eq.(51) as we wil} see in the
next section, tn this case, starting from the data of w, we have built ¢ then 3
and therefore ¢!
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tV-7) IHE SIZE QF THE INTFRACTION :

There are various places where we obtained bounds restricting
the size of £y In this chapter, the first bound was given in the lemma 2

(eq.5), and three others in proposition 11,12, and 14 are related. They are :

(52) (1) g4 cexp-[0HKp,¥X) K ¢ (c-bx/ex

(i) 0UEr2 Cy/y (E/x0® ey £y In(i/e )
with
X = (2+h)b/g
g = Min((alc-1)-¢f), (1-2a-2bcd-df},(2-c-ac-bed-¢f), (1-2a-(4+h)bcd) )
C3 = Max [40,'32C0,l6eC0/x1ci

(we nave added the 1ast exponent (1-2a-(4+h)cd) in view of the remalinder of
this section). As we saw in the previous section, given g, 0 with g, <d,
there is € suchthat if € » §  then & XE) » e %8/xS) in particular if -

{53} £g ¢ € Eo'X
then (52 ii) is satisfied as long as

e %X 3 Ly (§/x.0)207 a0 forall §: ¢,

If €./xc.> (2D-1)/(g-q ) ie if

(54) €q & € ey
then (5211) is satisfied as longas : =

(55) £ TN 1/e ) <yt 20N

The other tnequalitities come from the propositions 7,8 and 9. They are
related to the total size of h_. In proposition 7 we introduced the constant

B, which is dominated'by (see also §1V-4eq35)"
(56) Bs ¢ Si10B, with
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By = Cot, knP(1/€ ) KDL, P/ P 224, ) *

as can be seen easily from (SiI1-2 eq.8), using the Cauchy formula, the
estimate on the size of 6h {eq28 §iV-4), and the fact that 6h, is analytic in

a polydisc of radius r, , and depends upon the sites within the distance L, of
the origin. Here K(D) is a geometrical constant defined by :

(57) K(D) = sup ,, *(xeZ®;ix| <L) /P

The constraint B, <1 can be obtained by imposing g <! provided B ,<p. in
particular, B, is bounded from above by :

(58) B, ¢ KIDC, tbed)P/K, g (-2a(aendbedd n D¢y /¢ )

for we have used the estimate (5-iii) of §11-3 on Z, and the relations between
Z and € as described in the previous sections. If in addition to them we recall
the hypothests €4 <e™', we get the bound :

(59) eo3. tn®(1/e ) < C,(D,bed,a,0)
where \
€ 4(D,bed,q,6) = K(DYC, (bed)®/K . T, o % Vet

Let us remark that if we want A very close to its minimal value, g will be
fairly small, and € , will vanish like (17q) Y%as g-> 0.

The estimates needed in propositions 8 & 9 are actually conseauences of (59)
as can be easily seen from (§111-2, eq.14 & 15).

et us finish this section by remarking that there are a lot of functions
w's satisfying the three conditions described in the previous section. The
limiting cases are given by the following examples .

[+
(60) (i) w(t) = eAln M) asl-see , with a> 3, A>0
07 Kp) eA.Ln(Kp)“"“‘”
and B
X
(i) wil) = eAl asl-dee , with Ke¢i, A> D
&K p) = Ln2(Kp)

¥ 3€ M %
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In this appendix we will prove the proposition 18. wWe recatl that y was
introduced in 8i1-2 (eq. 5) and defined via its Laplace transform as :

(1) pisf92) = [T gy, g0ttt

In contrast with §1V-6 (eq. 44} we will choose the following expression for ¢
{which does not change the conclusion):

2 9(1) = @y Ln(1+1/1). ], a0 gt

where Wy is a positive constant £o be defined below, and w is bigger than one,

increasing, and such that for all t » O the right hand side of (50) converges. we
have imposed the following conditions on w ;

D-concavity : the function v(€)=w{£)® s increasing and concave on
[1,e0), andvi})=0. '

k-scaling: there is O <k <l suchthat Tminfg_ EVIEIVIE) > 0.

The previous condition implies that v and w are continuous, and one-to-one
we will prove the following result :

o 1T S(8) = -Ln(y(s)), then there are Lwo positive constants C,,
C_andi, >0, suchthat if L L, we have:

(3) () wilb) ¢ 5 7NC, PP
iy wiL).Lnlw(L) 2 5 ~NC Pl o

1- The Legendre transform Lg of ¢ is defined as :

(4 Lels)=Inf, {o(t)+ t.s)

From (2), it follows that ¢ is positive on R,, it vanishes at infinity and it

diverges at t —» 0. Therefore L¢ is finite 2t all s> 0. On the other hand ¢ iz
completely monotone f.e. (-)".@'"Xt)> 0 for all ne N. Thus the infimum in (4) is
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reached at a unique point t(s), solution of the equation:

[45)] s+ @tls))=0

The first step gives a comparison between S and L :

Let L9 be the Legendre transform of @ and t(s) be defined by {5).
Then g satisfies the following bounds .

(6) ws) ¥ [n/20"t(sH) VZ g tots)

ps) < (/29 sM Y2+ 1/s rgltish/s). e Lol
&

Prooaf - From the fundamentai formula of calculus we get:

PO ¢ ts = L(s) + (t-t(sN?. [} do .(1-0) g"(a.t+{i-0)H{s)

we already know that ¢" is positive. Since it is also decreasing, we get

J-“S) ot gPW-tsg gLots) Io dt e lttsh 2 ptsh/2
and

jt() dt golti-tsy e-qu(s) f dt @ &-tis) m‘(l(s))fz

This gives the lower bound and the first part of the upper bound in (6). For
t7 t(s) we will estimate the integrand through:

e(t)+ts 2 Lepls) - for  t(s) < t < Lglsk/s

and .

Pth)+ts 2 Ls for t 2 Lols)/s
Thus we get:

Lels)

Jis S gp WOt ¢ o L96) (pt(s))/s]
and ' '

fLotays dt.e PO ¢ o L9Eleys
which achieves the result. : - “ o
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2- Using the function v(£) = w™{£)® we get immedtatly:

) plt)= g . Ln(+1/1). ;" dEvi (gl et
: Forany a>Oandt<a, ¢satisfies the following bounds:
@)
Wy LNT+1/1) w(a/t).e® < () ¢ Wy Ln(i+ /0 via/1) [tee ¥/ (a-t))

]

Progf - The lower bound is immediatly obtained from (7) by restricting the
interval of integration to {1,a/t] For the upper bound we get:

Pl = %.Ln(hl/t}.[L,m dEv(E) +viart).f,, di. e8]

a/t

for v' is decreasing (since v is concave). This gives the upper bound if we
remark that the concavity of v impties: :

WIE) < v(EMI(E-1) for all £>1

In much the same way we get the bounds:
0¢ -(p(t) < const. tnlast). (a/t) viast)

{9 for t<a/?
' 0¢ (p(t) < const. Ln{a/t).(a/t.v(a/t)

On the other hand we have:
“gt =@y Ln(+1/8). [, g Ev(E) et 4/(tC1+ D). )7 dvi) et
from which it follows immediatly:

(10} -@'(t) 2 const. (a/t).v{a/t) for tea

Thus we get the following estimates {where C_ <1 <, }

(Y C..Lnta/t{s) vlast(s)) < Lets) < C, inla/ts).vlia/t(s))
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C_.(artishvlast{s) ¢ s ¢ C, Ln(ast{sh. (ast(s)iv(ast(s))
for s»s, suchthat t(sy) ¢ a/2.

From the lemma A2 and the previous formula it follows that g(t(s))/s , i/s
and t/¥"(1(s)) tend to zero as s—>eo. Thus for s big enough, Le(s) ¢ S(s). On
the other hand we also get from the same estimates

Ln{g (t{s))}/Lgp(s) ~> O as § —dea

Therefore given C>1, there is s, big enough such that
{12) Lo(sy ¢ S(s) ¢ C.Lo(s) forall s 2 §;.

3- We are now ready to prove the proposition 18. Let s be given
inthe form s=LP w(L) with L big enough. If we set £ = w(L), we get from
(11) with t=t(s}

Evig) » C_ (a/t)vla/t) » C_.(a/t). vC_a/t)

for v i1s increasing. it follows that £ » C_.a/t. Therefore, if £ is big enough,
we obtain from (1) :

LplEv(E)) ¢ C,LnlE/C_Y v{E/C ) ¢ const Ln{f). (L)
where again we used tht; concavity of v in the form
(i3 V(gD ¢ VGG /(g - 1) i8> g1
We now remark that thanks to the K-scaling condition, we have
Ln(E)- ¢ const. v(g¥
Using {12) we get for L big enough
S(L?.w(L) ¢ const. LD+

“which Is the first inequality to be proved.
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Let us choose s in the form s = LD w(L) Ln(w(L)) with L big enough and
let ¢ be w(lL}). From (11) we get immediatly £ ¢ C,a/t. Thus using the same

trick as before we get for big £'s:

Le(s) 2 C_Lna/t) vla/t) 2 const. Ln(g). v(£} > const. w() = const. L°

This implies immediatly the other bound on w.

-APPENDIH D : & f of tion 20-

As announced. in the section V-6, proposition 20, it is necessary o
prove the following result .

Lemmna 81 - If w satifies the D—co_ncavity' and the k-scaling conditions,
together with (if w(g)=w "H{)P):

(1 vEVE) < const (£ LpP(g) ! for § big
and some 23<B <
then we have :

(2) lim 5.5{s).(LnSs) )/ S(8) = O

5— oo

Proof - Using the proof of the proposition 20 we get
f, dt.s(t-t(s)) eoltrts

55'{s) = s.t(s)}+R(s) R(s) =
' Iow dt_e-tp(t)-ls

We claim that R(s) is negligible compare to s.t(s). For indeed cutting the
numerator into @ sum of two integrals on the intervals [0,Lois)/s} and
(Lgp(s)/s,=), we get

IW: dt. s(t-t(s)) .e"®Hs ¢ IW: dt.s(t-t{sN.e =< et ¥p(s) 1i/s
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Using the hypothesis on v,the second term is dominated by
The other Integrals are treated through a gaussian approximation as in the

Appendix A . This leads to: V(g ¢ const.v(gy). (£, LnB(g )1

R(s) < const g (t(sNV2 {s/0"(Le/s) + @/s ) If we set £ = 1/t, and we remark that v is increasing we get v(£,) <vand

Using the estimates of Appendix A, we get with =1/t and provided t<1, N ¢ constEv LnY(v) + const.Ev LnY (v )/Lrﬁ(g)

Ln”"’E,.V( §) /2
Ris)/st{s) ¢ const. ———— : On the other hand we have
_ v{E/Lng) L ¢ constilnE).v ¢ const.v'**
Using the concavity of v, we get Tor £ big enough from the k-scaling. Thus patching tegether all the estimates leads to:
VE/LNE) @ const WE)/LnE. - : e  tin(L@) N/D < const.Ln'"¥y) + const.kn'Y (v )/ L)

On the othér hand the x-scaling property implies :

Now we remark that thanks to (1), we get by integration
Lng ¢ const. v(£X

: tnv ¢ const. Ln'®g) : for € big enough
which shows that indeed'R(s) / s:1(s) tends to zero as s—ree. . . .

“Fhus it -remains to show that replacing s.5°(s) by s.t(s) leads to the . . Hence as t-»0, the right hand side converges to zero provided <y and
resull. We know that s = -@'(t{s)), and that 5(s) behaves like Lp(s) (App.A - B/(y+1)> 1-8. This implies 3> 2/3 and in this ¢ase it suffices to choose '
Lemma Al) as s->oo; since Ly = ¢+ s.t(s) it follows that to get the result ¢ :
must dominate the product st(s) at Infinfty. Thus 1t is sufficient to shiow that : 1 ¢y« 213D

Lng(t) . tlg N/ gt} —> e a5 =0 in much the same way,
Going back to the expresstbn of g’ (see App. A, proof of Lemma A2) we get two ‘ LniLg)/Ln(1/t) < const.Lnv/Lné S
terms : ’
' : which converges to zero provided - B <1 . This achieves the result . .~

LotLep). tle{t)l/ oft). ¢ constintLe)/Ln(1/t) + LEn(Le) N/D %
where : S - S _ L

N={, dg L) et D= [, dEV(E) e _ . ‘ _ g
AS In ApD. A we get _ ‘ ' I '

D 2 const. w(i/t)

whereas we get for N the following estimate :
g, = (L i withv = v

N ‘foﬁ"dt.f,.v'(?;),e"f . }g;'dt,.f,.v‘(i;).e"f ¢ LVEy + vIg/t?

CPT-85/P.1796 -49- Julyl98S . | CPT-85/P.1796 ~50- July1985



levariant Tord ..

BEFERENCES

[1] R.ABRAHAM ,JE. t1ARSDEN, Foundation of Mechanics, Benj.Reading, Mass. 2ndEd.(1976)

[21 V1. ARNOLD, Small Divisors |.0n the Mappings of Lhe Circle onto itself, lzv. Akad Neuk ., SS5kMal., 22(1),
(1963),21-26.

[3] V.I. ARNOLD, Small Divisors I}, Proof of a AN.Kolmogarov Theorem on conservation of conditionnally
Periodic Motion under Small Perturbalionsof the Hamiltonian Function, Usp Hat Nauk ., 18(5).(1963),13-40.

[4] V.LARNOLD, Smalt Divisors Problem in Classical and Calestial Mechanics, Usp.Mal.Nauk., 16(6), (1963),

91-192.

{51 V.1LARNOLD, Instability of Dynamical Syslemswith many Degrees of Freedom, (Russian}, Doki. Akad Nauk
SSSR, 156,(1964),9. .

[6) VIARNOLD, A.AVEZ Problémesergodiquas en Mécanique Classique, Paris (1967).

{71 V.LARNOLD, Chapitres Supplémentaires de la théorie des équations différenticlles ordinaires, £d. Mir,
Moscou (1980},

{8) 6. BENET:I'IN, L. GALGANI, A GIORGILL!, Bollzmann's ullraviolel cut-ofl and Nekhoroshev's Lheorem on
Arnoids diffusion, Nalure, 311, (1984),444-446.

{9] G.BENETTIN, L.GALGANL, A GEORGILLI, .M. STRELCYN, A proof of Keimogorov's theorem on invartant tori,
using-canonical bransformations definad byihe Lie method, Nuov. Cim. 798. (19841201,

© {1OINN. BOGOLIOUBOV N.M KRYLOV, Sur quelques Fermules de Développement en Séries dans laléecanique non
Lingaire, Ukeanin Akad Nauk . Kiev, 4. (1934),56 See alse Ann.of Math. Studies, [E {19473,106.

111} €. BOREL, Lecons sur-les Fonclion Manogénes uniformes dume Varisble Complaxe, Gauthier-Viltars Paris,
(1917).

£12) 6. CASATL. t. GUARNERI, F. VALZ-GRIS, Preliminaries to the Ergedic Theory of Infinite Dimensional
Syslems:A Model of Radiant Cavily, J. of Stat Phys 30 (1983),195-217.

11331 CHIERCHIA, 6. GALLAVOT 1, Smooth prime integrals for quasi-periodic Hamiltonisn systems,Nuov. Cim.,
838 ,2,(1982)277-295

[14] B.Y CHRIKOV, A Universal Instability of Many Dimensionat Osciltator Systems.Phys Rep. 52, 26341979).

[15] D.V.CHOODNOVSKY 3 6.V.CHOODNCVSKY. Infinite Dimansional Siegsl's Theorem, Notices of the AMS,
(1976)P A58,

116311 .CORNFELD,S.V FQMIN.Ya.6. SINAL, Ergodic Theory,Grundlsrhen Bd245, (1982) Springer Verlag Berlin,
Heidslberg, New York.

CPT-85/P 1396 St- . il 1985

iy ariant Tort

[17)E FERMI, J. PASTA,S.ULAM In "Enrico Fermi, Collecled Papers™, Chicago, Minois, (1975)978.

[18)C.FROESCHLE, Connectance of dynamical systems wilhincreasing numberof degreeseol freedom, Phys.Rev.
A, 18,(1978),277-261.

[49}J. FROHLICH, T. SPENCER, E. WAYNE. Localization in disordered non iinear dynamical systems.,
Preprint,{1985).We recsived this work after the first version of our paper W thank these authors for
sending us the manuscripted versien priorto publication.

[20} 6. GALLAVOTTI,Elements of Classical Machanics, Springer Texis and Monographs in Physics. (1983}

[2116.GALLAVOTTI, Perturbation Theoryfor Classical Hamillonian Systems, in "Scaling and Sslf Similarily 1
Physics”, J. Frahlich Ed ,Birkhauser Boston, Basel, Stuttgard, (1983)

{2216 GALLAVOTTI, Classical Machanics and Renormalizslion Sroup. in “Reqular and Chactic Motion in

Dynamical Systems™. G. Velo & AS. WIghtman Eds. . NATO ASI Series . Physics, Vol 118, Plenum Press.
New York,London, (198%).

123] *.R. GARDNER, W R. ASHEY, Conneclance of Large Dynamic (Cybernetic) Syslems. Crilical Value for
Stability, Nature, 226 (19701784,

124} A.GIANSANTL, M.PETTINI, A WULPIANI, Connectance and Eguipartition threshold in Harmltoman syslems,
Prepriml Universila di Roma, (1985). :

(25} HRHF.RHAN Surles Cnurbaslnvnrlanlss parlelefFeomos‘phlsmss de I'Anneau, Vol .1 Aslerasque 103-104
(1983).

1261 AN KOLMOGOROV, On the Canservation of Conditionally Periadic Motions under Smiatl Perturbations of
the Hamitlonian Function, Dokl. Akad Nauk . 885R, 96, {1954),527-530.

[27] AN.KOLMOGOROV, Théorie Générale des Systémes Dynamigues en Hécaniqu-e Ciassique. Proc. tntern.
Congress of Math., Amslardam{ 1952} English Translalionn App.D of ref.i1].

{28] 0. LANFORD iIi, The classical Mechanics of one dimensional systemsol infinitely many parlicles, i-An
existence theorem.Comun_ Hath.Phys . 9. (1968).179-191; I1-Kinetic theory,Comm Math.Fhys 11, [1969),
257-292

£29] AJLICHTENBERG, I1.A LIEBERMANN-Reqular and Stechastic Metion, Springer Verlag, Berlin, Heidetberg, -
New York,(1983).

{30} R.LIVE, H.PETTINI, 5.RUFFO, M.SPARPAGLIONE, A VLI PIANY, Relaxation Lo different stalionary states in
the Farmi-Pasta-Ulam model, Phys Rev. A, 28, (1983 13544-3552.

[3LR.LIVI, M.PETTIMI, S.RUFFO, M. SPARPAGLIONE, A. VULPIANI, Equipartition thrasholdin nonlinear targs
Hamiltonian systems: the Fermi-Pasta-Ulam model, Phys Rev. A, 31, (1985),1039- 1045

i32] R.LIVE, M.PETTINI, S, RUFFO, A.VLLPIANI, Further Resulls on the Equipartition Threshold in Large
Nonlinear Hamiltenian Systems, Preprint Universita dsgli Studi di Firenze (1985).

[33) A M.LYAPOUNOV, Probléma Genéral de ta Stabitilé. des Mouvements, Ann.Fac.Sci. Toulouse (2}, 203-474,
(1907). Reprintedin Ann.Math.Studies, (1973}, PrincetonUniversily Press,Princeton, N.J.

CPT-85/P 179 S2- 0 July 1985



Invariant Tori ..

{34] J. MOSER, On Invariant Curves of an AreaPreservingMapping of an Annulus, Nachr Akad.Wiss. Gotlingen
tath.Phys KI, 11an®1,(1062),1-20,

[35) J. MOSER, On (he Conskruction of AlmostPeriodic Solutiens for Ordinary Differantial Operators,Proc.int.
Conf. an Functional Analysisand Related Topics, Tokyo,(1969)60-67.

{36] J. MOSER, Slable and Random Motien in Dynamical Systems, Ann.Math. Studies, {1973}, Princelon Univ.
Prass,Princaton N.J.

{37] N.N. NEKHOROSHEV, The behavior of Hamiltenian systems that are clese to integrable ones, Funct. Anal,
Appl.5, (1971) 338-339.

[38} MN. NEKHOROSHEV, Exponential eslimates of the time of stability for neariy integratde Hamillonians,
Russ.Math. Surveys, 32 (1977),1-63

[39] A PATRASCICILLE SEILER, O.STAMATESCH, Non-ergodicity in classical slactrodynamics Phys Rev. A, 31
(19835),1906-1912.

[40) H. POINCARE, Les Nouvelles Méthodes de la Mécanique Céleste, Tome H1, Gauthier -Villars{1899}Reprinted
by Dover, NewYork(1957). ‘

[41}H.POINCARE, Dauvres, tome VI, Gauthier-Villars, Paris, (1952).

42} J. POSCHEL, Integrability of Hamiltonian Systems onCantorSsts, Comm.Pure and Appl.Math.. 36.¢1962),

633-695.

{43} One of us (J.B.) Lharks W.P.REINHARDT for having made this remerk during the Come Conference on
“Quanium Chaos” in june 1983,

§441 H. RUSSFANN, Uherinvariante Kurven differrenzterbarar Abbildungen gines Kreisings, Nach: Akad.wiss.
Gollingen [l, Mat Phys . K1,11.(1970)52-105.

{45} H. RUSSMANN, On Optima? Estimates for the Solutions of Linear Partis) Différentiat Equations of Firsi
‘Ordor with Conskanl Coefficients on The Tarus, Lecture Notes in Phys. 18, (1975), 598-624 Springer
Verlag,Barlin, Heidelberg, New York.

[46] H.RUGSMANN, Notes on Sums Containing Smatl Divisors, Camm. Pure and Appl. Math., 29 (1976).755-
738,

[47} H. RGSSMANN, On Optimal Estimates for Solutions of Linear Dilference Eguations on the Circla. Celestial
Machanies, 14.(1976)33-37.

[48] H.RUSSMANN, On the construction of invariant tori of nearly integrable hamitlonien systems, with
applications; Notss given at bhe Mastitut de Stalistique, Laboraloire de dynamique stallaire, Univarsite
Pierreel Marie Curie, {1979}, Paris.

{49) H.RUSSMANN, On the One Dimensionat Scheidinger Equation with a Quasi Perodic Potenlial, Ann.N.Y.
Acad.of Sci., 357, (1980)90.

-[50) H.RUSSMAMM, On Lhe Existence of inverisnt Curves of Twist Mappings of an Annulus, Preprink Mainz
(1982). i

CPT-85/P.179% 52 Jiky 1985

Invariant Tori ...

[S51) W.SCHMIDT, Diophantine Approximations, Leclures Netes in Math.n? 789, (1980)Springer Verlag,Berlin,
Heidelberg, Mew York.

[S523 C.L SIEGEL, Iteration of Analylic Funclions, Ann Math., 43, (1942),607-612.

[53) CL. SIEGEL, Uber dis Normallorm anatylischer Differsntialgleichungen in der Nahe einer
Gleichgewichtslosung, Nachr. Akad. Wiss. Gottingen, Math. Phys, K1, Math-Phys-Chem Abt., 1952, (1952},
21-30,

{541 CL.SIEGEL, J. MOSER, Leclures on Celastial Mechanics, Grundlahren 84 187, {1971) Springer Varlag,
Berlin, Heidelberg, New York.

{55] Ya.5.8INAY, Construction of Dynamics in one dimerstonal Systems of Statistical Machanics, Theor Math.
Phys. 12, (1973),487

156} MLVITTOT, Thése, (Université de Provence, Marseille), Preprint CPT 85/F. 1775 i preparation.
{571 B.WARE infinite dimensional versions of twotheoremsof CariSiegal, Bulk AMS, 82 4,(1976)613-635.

[SB] E.WAYNE, The KAM Theory of Syslams wilh short Range Interaclions; I, Carnen. Math. Phys., 96 (1984),
341-3291, Comm Math.Phys, 96, (1984),331-344

{59} in{58].the effective exponent @ is muchbigger Lhan the value antiouncéd by the asther,if we Lake inlo
account the constraints on the analylicily domain. We found 2> 1344 instead of a» 160 .

(60] H.WHITHEY, Analylic Exiensions of Differentiables Functions defined on closed Sats, Transl AFIS. 36
{1934),63-89.

[61] E ZEHNDER, C.L.Siegel's Linearizalion Theorem in Infinite Dimension, ManusMath., 23 (1G78) 363371

ARNA S

CPT-85/P 179 S July 1985



	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28

