ELECTRONC TRANSPORT

in
 APERIODICSOLIDS

Jean BELLISSARD
Westfälische Wilhelms-Universität, Münster
Department of Mathematics
Georgia Institute of Technology, Atlanta
School of Mathematics \& School of Physics
e-mail: jeanbel@math.gatech.edu

Collaborations

H. Schuzz-Baldes, (FAU, Erlangen, Germany)
E. Prodan, (Yeshiva U., New-York City, NY)

Main References

J. Bellissard, H. Schulz-Baldes, A. van Elst,

The Non Commutative Geometry of the Quantum Hall Effect, J. Math. Phys., 35, 5373-5471, (1994).
J. Bellissard, H. Schulz-Baldes, J. Stat. Phys., 91, 991-1026, (1998).
H. Schulz-Baldes, J. Bellissard, Rev. Math. Phys., 10, 1-46 (1998).
J. Bellissard, Coherent and dissipative transport in aperiodic solids, Lecture Notes in Physics, 597, Springer (2003), pp. 413-486.
G. Androulakis, J. Bellissard, C. Sadel, J. Stat. Phys., 147, (2012), 448-486.
Y. Xue, E. Prodan, Noncommutative Kubo formula: Applications to transport in disordered topological insulators with and without magnetic fields, Phys. Rev. B, 86, 155445, (2012).
E. Prodan, J. Bellissard, Mapping the Current-Current Correlation Function

Near a Quantum Critical Point, Ann. of Phys., 368, 1-15, (2016).

Content

1. Dissipation, Kubo's Formula
2. Anomalous Transport
3. Numerics

A No-Go Theorem

Let $H=H^{*}$ be bounded (one-electron Hamiltonian),
Let $\vec{R}=\left(R_{1}, \cdots, R_{d}\right)$ be the position operator (selfadjoint, commuting coordinates)

Then the electronic current is

$$
\vec{J}=-e \frac{l}{\hbar}[H, \vec{R}]
$$

Adding a force \vec{F} at time $t=0$ leads to a new evolution with Hamiltonian $H_{F}=H-\vec{F} \cdot \vec{R}$.

A No.Go Theorem

The 0 -frequency component of the current is

$$
\vec{j}=\lim _{t \rightarrow \infty} \int_{0}^{t} \frac{d s}{t} e^{\imath s H_{F} / \hbar} \vec{J} e^{-\imath s H_{F} / \hbar}
$$

A No.Go Theorem

The 0 -frequency component of the current is

$$
\vec{j}=\lim _{t \rightarrow \infty} \int_{0}^{t} \frac{d s}{t} e^{\imath s H_{F} / \hbar} \vec{J} e^{-\imath s H_{F} / \hbar}
$$

Simple algebra shows that (since $\|H\|<\infty$)

$$
\vec{F} \cdot \vec{j}=\text { const. } \lim _{t \rightarrow \infty} \frac{H(t)-H}{t}=0,
$$

A No.Go Theorem

The 0 -frequency component of the current is

$$
\vec{j}=\lim _{t \rightarrow \infty} \int_{0}^{t} \frac{d s}{t} e^{\imath s H_{F} / \hbar} \vec{J} e^{-\imath s H_{F} / \hbar}
$$

Simple algebra shows that (since $\|H\|<\infty$)

$$
\vec{F} \cdot \vec{j}=\text { const. } \lim _{t \rightarrow \infty} \frac{H(t)-H}{t}=0,
$$

A No-Go Theorem

This is called Bloch's Oscillations. It was observed in simulations using ultracold atoms in an artificial lattice produced by lasers.

A No.Go Theorem

This is called Bloch's Oscillations. It was observed in simulations using ultracold atoms in an artificial lattice produced by lasers.

To get a non trivial current we need

DISSIPATION!

Namely loss of information.

The Drude Model (1900)

Assumptions:

1. Electrons in a metal are free classical particles of mass m_{*} and charge q.
2. Let n denotes the electron density.
3. They experience collisions at random Poissonnian times $\cdots<t_{n}<$ $t_{n+1}<\cdots$, with average relaxation time $\tau_{r e l}$.
4. If p_{n} is the electron momentum between times t_{n} and t_{n+1}, then the p_{n+1} 's is updated according to the Maxwell distribution at temperature T.

The Drude Model (1900)

random scatterers

The Drude Model (1900)

An elementary calculation leads to the Drude formula

$$
\sigma=\frac{q^{2} n}{m_{*}} \tau_{r e l}
$$

The Drude Model (1900)

An elementary calculation leads to the Drude formula

$$
\sigma=\frac{q^{2} n}{m_{*}} \tau_{\text {rel }}
$$

Heat conductivity can also be computed leading to

$$
\lambda=\frac{3 n}{2 m_{*}} k_{B}^{2} T \tau_{r e l}
$$

The Drude Model (1900)

An elementary calculation leads to the Drude formula

$$
\sigma=\frac{q^{2} n}{m_{*}} \tau_{\text {rel }}
$$

Heat conductivity can also be computed leading to

$$
\lambda=\frac{3 n}{2 m_{*}} k_{B}^{2} T \tau_{\text {rel }}
$$

The ratio gives the Wiedemann-Franz Law (1853)

$$
\frac{\lambda}{\sigma}=\frac{3}{2}\left(\frac{k_{B}}{q}\right)^{2} T
$$

Aperiodicity

1. If the charges evolve in an aperiodic environment, their oneparticle Hamiltonian is actually a family $\left(H_{\omega}\right)_{\omega \in \Omega}$ of self-adjoint operators depending on a parameter ω characterizing the degree of aperiodicity (disorder parameter).
2. The aperiodicity can be ordered like in quasicrystals (long range order), or disordered like in semiconductors, glasses or liquids (short range correlations).
3. The space Ω of the disorder parameters is called the Hull. It is always compact and metrizable.
4. The translation group G acts on Ω by homeomorphisms $\mathrm{T}^{a}, a \in G$.

Aperiodicity

1. Covariance: if G is the translation group, if $U(a)$ represents the translation by $a \in G$ in the Hilbert space of quantum states, then

$$
U(a) H_{\omega} U(a)^{-1}=H_{\mathrm{T}^{a}} \omega
$$

2. Continuity: $\omega \in \Omega \mapsto H_{\omega}$ is strong resolvent continuous.
3. Trace per Unit Volume: if \mathbb{P} is a G-invariant ergodic probability on Ω then, for \mathbb{P}-almost every ω

$$
\mathcal{T}_{\mathbb{P}}(f(H))=\int_{\Omega} d \mathbb{P}(\omega)\left\langle x \mid f\left(H_{\omega}\right) x\right\rangle=\lim _{\Lambda \uparrow \mathbb{R}^{d}} \frac{1}{|\Lambda|} \operatorname{Tr}\left(f\left(H_{\omega}\right) \upharpoonright_{\Lambda}\right)
$$

A Quantum Drude Model

Assumptions :

1. Replace the classical dynamics by the quantum one with oneparticle Hamiltonian $H=\left(H_{\omega}\right)_{\omega \in \Omega}$.
2. Collisions occur at random Poissonnian times $\cdots<t_{n}<t_{n+1}<$ \cdots, with average relaxation time $\tau_{\text {rel }}$.
3. At each collision, the density matrix is updated to the equilibrium one. (Relaxation Time Approximation).
4. Electrons and Holes are Fermions: use the Fermi-Dirac distribution to express the equilibrium density matrix.

A Quantum Drude Model

A straightforward calculation leads to the Kubo formula
(JB, Schulz-Baldes, Van Elst'94)

$$
\sigma_{i, j}=\frac{q^{2}}{\hbar} \mathcal{T}_{\mathbb{P}}\left(\partial_{j}\left(\frac{1}{1+e^{\beta(H-\mu)}}\right) \frac{1}{1 / \tau_{\text {rel }}-\mathcal{L}_{H}} \partial_{i} H\right)
$$

A Quantum Drude Model

1. $\partial_{i} A=\imath\left[R_{i}, A\right]$ is the quantum derivative w.r.t. the momentum.
2. $\mathcal{L}_{H}(A)=\imath / \hbar[H, A]$ is called the Liouvillian.
3. $\beta=1 / k_{B} T$ and μ is the chemical potential fixed by the electron density, namely

$$
n=\mathcal{T}_{\mathbb{P}}\left(\frac{1}{1+e^{\beta(H-\mu)}}\right)
$$

4. $\mathcal{T}_{\mathbb{P}}$ denotes the trace per unit volume, where \mathbb{P} provides the way the average over the volume is defined.

The Work of E. Prodan: Numerical Results

E. Prodan, "Quantum transport in disordered systems under magnetic fields:
a study based on operator algebras", arXiv: 1204.6490. Appl. Math. Res. Express, (2012)

Numerical implementation of the previous Kubo Formula for disordered systems was provided by E. Prodan. The formula gives an accurate algorithm which is very stable against disorder.

He used this algorithm to investigate more thoroughly the plateaux of conductivity in the Quantum Hall Effect (QHE) with his collaborators after 2012.

The Work of E. Prodan: Numerical Results

Quantum Hall Effect:

DoS (left) and colored map of the Hall conductivity (right) for $W=3$. The regions of quantized Hall conductivity, which appear as well defined patches of same color, are indicated at the right.

The Work of E. Prodan: Numerical Results

Hall Plateaux:

First row (Second row): The diagonal and the Hall resistivities as function of Fermi energy (density) at fixed magnetic flux ϕ, temperature T and disorder strength W
$\phi=0.1 h / e$
$k_{B} T=1 / \tau_{\text {rel }}=0.025$
$W=1,2,3$.
Each panel compares the data obtained on the 100×100 lattice (circles) and on the 120×120 lattice (squares).

The Work of E. Prodan: Numerical Results

Metal-Insulator transition between Hall plateaux

> Transition from
> Chern $\left(P_{F}\right)=0$ to
> Chern $\left(P_{F}\right)=1$
> The simulated (a) $\sigma_{x y}$ and (b) $\sigma_{x x}$, as functions of E_{F} at different temperatures.
> (Song \& Prodan '12)
> It shows a fixed point at
> $E_{F}=E_{F}^{c}$ where
> $\sigma_{x x}^{T \downarrow 0} \sigma_{x y}=e^{2} / 2 h$

The Work of E. Prodan: Numerical Results

Metal-Insulator transition between Hall plateaux: resistivity

Transition from
$\operatorname{Chern}\left(P_{F}\right)=0$ to
$\operatorname{Chern}\left(P_{F}\right)=1$
$\rho_{x y}$ as function of E_{F} at different temperatures. The curves at lower temperatures display quantized values well beyond the critical point, which is marked by the vertical dotted line. For convenience we also show the data for $\rho_{x x}$. (Song \& Prodan '12)

The Work of E. Prodan: Numerical Results

Metal-Insulator transition between Hall plateaux: Scaling Law

Transition from
Chern $\left(P_{F}\right)=0$ to
Chern $\left(P_{F}\right)=1$

The simulated $\rho_{x x}$ as function of $E_{F}(a)$ before and (b) after the horizontal axis was rescaled as:

$$
E_{F} \rightarrow E_{F}^{c}+\left(E_{F}-E_{F}^{c}\right)\left(\frac{T}{T_{0}}\right)^{-\kappa}
$$

with $E_{F}^{c}=-3.15, k_{B} T_{0}=.08$ and $\kappa=.2$ leading to $p=1$
(Song \& Prodan '12)

What is Coherent Transport?

Coherent transport corresponds to charge transport (electrons or holes) ignoring dissipation sources such as electron-phonon or electronelectron interactions.

1. The independent electrons approximation is justified.
2. The one-particle Hamiltonian $\left(H_{\omega}\right)_{\omega \in \Omega}$ is sufficient.
3. The wave packets diffuses through the medium at a rate depending upon how much Bragg reflections are produced (quantum interferences).

What is Coherent Transport?

WAVEDIFFSSION
 but
 NO CURRENT!

Spectral Measures

1. The density of state (DOS)

$$
\int_{-\infty}^{+\infty} d \mathcal{N}_{\mathbb{P}}(E) f(E)=\mathcal{T}_{\mathbb{P}}(f(H))
$$

2. The spectral measure relative to a given state ψ in the Hilbert space, called local density of state (LDOS)

$$
\int_{-\infty}^{+\infty} d \mu_{\omega, \psi}(E) f(E)=\left\langle\psi \mid f\left(H_{\omega}\right) \psi\right\rangle
$$

3. The current-current correlation (CCC) describes transport properties.

$$
\int_{\mathbb{R}^{2}} d m\left(E, E^{\prime}\right) f(E) g\left(E^{\prime}\right)=\sum_{i=1}^{d} \mathcal{T}_{\mathbb{P}}\left\{f(H) \partial_{i} H g(H) \partial_{i} H\right\}
$$

The Current-Current Correlation Measure: Numerics

E. Prodan, J. Bellissard, Ann. of Phys., 368, 1-15, (2016).

The QHE scaling laws come from a singularity in the CurrentCurrent Measure. Here $d m\left(E, E^{\prime}\right)=f\left(E, E^{\prime}\right) d E d E^{\prime}$

Left: intensity plot of the current-current correlation distribution $f\left(E, E^{\prime}\right)$.
Right: level sets of $f\left(E, E^{\prime}\right)$
The calculation was made on a 120×120 lattice and the adta were averaged over 100 random configurations.
(Prodan \& Bellissard '16)

The Current-Current Correlation Measure: Numerics

The scaling law observed in the QHE resistivity at the metal-insulator transition $E_{\mathcal{C}}$ can be explained by an expression of the form:

$$
f\left(E, E^{\prime}\right)=g\left(\frac{E+E^{\prime}-2 E_{\mathcal{C}}}{\left|E-E^{\prime}\right|^{/ / p}}\right), \quad \quad E, E^{\prime} \simeq E_{\mathcal{C}}
$$

It leads to

$$
\sigma_{i i}=\frac{e^{2}}{h} \int_{0}^{\infty} \frac{4 \pi}{1+y^{2}} g\left(\frac{E_{F}}{\left(\Gamma\left|E-E^{\prime}\right|\right)^{\kappa / p}}\right) d y, \quad \Gamma=\frac{1}{\tau_{\text {rel }}}
$$

The Current-Current Correlation Measure: Numerics

The function $g(t)$ can be computed also and fits well with a Gaussian curve.

Left: The trace of the asymptotic region where the scaling invariance of the
current-current correlation function occurs.
Right: Plot of 10 values of the function $g(t)$, together with a
Gaussian fit. (Prodan \&
Bellissard '15)

Local Exponents

Given a positive measure μ on \mathbb{R} :

$$
\alpha_{\mu}^{ \pm}(E)=\lim \left\{\sup _{\inf }\right\}_{\varepsilon \downarrow 0} \frac{\ln \int_{E-\varepsilon}^{E+\varepsilon} d \mu}{\ln \varepsilon}
$$

For Δ a Borel subset of \mathbb{R} :

$$
\alpha_{\mu}^{ \pm}(\Delta)=\mu-\mathrm{ess}\left\{\begin{array}{c}
\sup \\
\inf
\end{array}\right\}_{E \in \Delta} \alpha_{\mu}^{ \pm}(E)
$$

Local Exponents

Properties:

1. For all $E, \alpha_{\mu}^{ \pm}(E) \geq 0$. In addition, $\alpha_{\mu}^{ \pm}(E) \leq 1$ for μ-almost all E.
2. If μ is $a c$ on Δ then $\alpha_{\mu}^{ \pm}(\Delta)=1$, if μ is $p p$ on Δ then $\alpha_{\mu}^{ \pm}(\Delta)=0$.
3. If μ and v are equivalent measures on Δ, then $\alpha_{\mu}^{ \pm}(E)=\alpha_{v}^{ \pm}(E)$ μ-almost surely.
4. α_{μ}^{+}coincides with the packing dimension.
α_{μ}^{-}coincides with the Hausdorff dimension.

Local Exponents

1. The LDOS exponent $\alpha_{\text {LDos }}^{ \pm}$is defined as the maximum over the state ψ of the local exponent associated with μ_{ψ}.
2. The DOS exponents $\alpha_{\mathrm{DOS}}^{ \pm}$is the local exponent associated with $\mathcal{N}_{\mathbb{P}}$.
3. It follows that

$$
\alpha_{\mathrm{LDos}}^{ \pm}(\Delta) \leq \alpha_{\mathrm{DoS}}^{ \pm}(\Delta)
$$

Transport Exponents

1. For $\Delta \subset \mathbb{R}$ a Borel subset, let $P_{\Delta, \omega}$ be the corresponding spectral projection of H_{ω}. Set

$$
\vec{R}_{\omega}(t)=e^{\imath t H_{\omega}} \vec{R} e^{-\imath t H_{\omega}}
$$

2. The averaged spread of a typical wave packet with energy in Δ is measured by

$$
L_{\Delta}^{(p)}(t)=\left(\int_{0}^{t} \frac{d s}{t} \int_{\Omega} d \mathbb{P}\langle x| P_{\Delta, \omega}\left|\vec{R}_{\omega}(t)-\vec{R}\right|^{p} P_{\Delta, \omega}|x\rangle\right)^{1 / p}
$$

3. Define $\beta=\beta_{p}^{ \pm}(\Delta)$ similarly so that $L_{\Delta}^{(p)}(t) \sim t^{\beta}$

Transport Exponents

Properties:

- $\beta_{p}^{-}(\Delta) \leq \beta_{p}^{+}(\Delta)$ and $\beta_{p}^{ \pm}(\Delta)$ are non decreasing in p.
- The transport exponent is the spectral exponent of the Liouvillian \mathcal{L}_{H} localized around energies in Δ near the eigenvalue 0 (diagonal of the current-current correlation).

Transport Exponents

Heuristic:

1. $\beta=0 \rightarrow$ absence of diffusion:
(ex: localization)
2. $\beta=1 \rightarrow$ ballistic motion:
(ex: in crystals)
3. $\beta=1 / 2 \rightarrow$ quantum diffusion:
(ex: weak localization)
4. $\beta<1 \rightarrow$ subballistic regime
5. $\beta<1 / 2 \rightarrow$ subdiffusive regime: (ex: in quasicrystals)

Transport Exponents

Guarneri's Inequality:

$$
\beta_{p}^{ \pm}(\Delta) \geq \frac{\alpha_{\mathrm{LDos}}^{ \pm}(\Delta)}{d}
$$

Heuristics: ac spectrum

1. ac spectrum implies $\beta \geq 1 / d$.
2. ac spectrum implies ballistic motion in $d=1$.
3. ac spectrum is compatible with quantum diffusion in $d \geq 2$. Expected to hold in weak localization regime.
4. ac spectrum is compatible with subdiffusion for $d \geq 3$. Expected to hold in quasicrystals.

The Anomalous Drude Formula

(Mayou '92, Sire '93, Bellissard, Schulz-Baldes '95)

In the Relaxation Time Approximation, it can be proved that

where $\beta_{F}=\beta_{2}\left(E_{F}\right)$ is the transport exponent at Fermi level.

The Anomalous Drude Formula

1. In practice, $\tau_{\text {rel }} \uparrow \infty$ as $T \downarrow 0$.
2. If $\beta_{F}=1$ (ballistic motion), $\sigma \sim \tau_{\text {rel }}$ (Drude). The system behaves as a conductor.
3. For $1 / 2<\beta_{F} \leq 1, \sigma \uparrow \infty$ as $T \downarrow 0$: the system behaves as a conductor.
4. If $\beta_{F}=1 / 2$ (quantum diffusion), $\sigma \sim$ const.: residual conductivity at low temperature.
5. For $0 \leq \beta_{F}<1 / 2, \sigma \downarrow 0$ as $T \downarrow 0$: the system behaves as an insulator.

Transport in Quasicrystals

Lectures on Quasicrystals,
F. Hippert \& D. Gratias Eds., Editions de Physique, Les Ulis, (1994),
S. Roche, D. Mayou and G. Trambiy de Laissardière,

Electronic transport properties of quasicrystalls, J. Math. Phys., 38, 1794-1822 (1997).

Quasicrystalline alloys :

Metastable QC's: AlMn
(Shechtman D., Blech I., Gratias D. \& Cahn J., PRL 53, 1951 (1984))
AlMnSi
AlMgT $(T=A g, C u, \mathrm{Zn})$

Defective stable QC's: AlLiCu (Sainfort-Dubost, (1986))
$\mathbf{G a M g Z n}$ (Holzen et all, (1989))

Transport in Quasicrystals

High quality QC's: \quad AlCuT $(T=F e, R u, O s)$

(Hiraga, Zhang, Hirakoyashi, Inoue, (1988); Gurnan et al., Inoue et al., (1989); Y. Calvayrac et al., (1990))
"Perfect" QC's: $\begin{gathered}\text { AlPdMn } \\ \text { AlPdRe }\end{gathered}$

Transport in Quasicrystals

Typical values of the resistivity
(C. Berger in Lectures on

Quasicrystals)

Transport in Quasicrystals

Conductivity of Quasicrystals vs
Temperature vs. Temperature
$\sigma \approx \sigma_{0}+a T^{\gamma}$ with $1<\gamma<1.5$
for $.01 \mathrm{~K} \leq T \leq 1000 K$

Transport in Quasicrystals

1. Numerical simulations for the icosahedral phase of AlCuCo suggest $\beta_{F} \sim 0.375=3 / 8$ (s. Roche \& Fuizuara, Phys. Rev, B58, 11338-11396, (1998)) and using Bloch's Law $\tau_{\text {rel }} \sim T^{-5}$, gives

$$
\sigma \stackrel{T \downarrow 0}{\sim} T^{5 / 4}
$$

a result compatible with experiments.
2. Numerical simulations performed for the octagonal lattice exhibit level repulsion and Wigner-Dyson's distribution (M. Schreiber,

Transport in Quasicrystals

Thouless Argument

1. For a sample of size L in dimension d :

Mean level spacing $\Delta \sim L^{-d}$.
Thus Heisenberg time $\tau_{H} \sim L^{d}$.
2. Time necessary to reach the boundary (Thouless) $L \sim \tau_{T h}^{\beta_{F}}$. Thus $\tau_{T h} \sim L^{1 / \beta_{F}}$.

Transport in Quasicrystals

Comparing these estimate gives two regimes.

1. if $\beta_{F}>1 / d$ level repulsion dominates implying

- quantum diffusion $\left\langle x^{2}\right\rangle \sim t$
- residual conductivity
- absolutely continuous spectrum at Fermi level;

2. if $\beta_{F}<1 / d$ level repulsion can be ignored and

- anomalous diffusion dominates $\left\langle x^{2}\right\rangle \sim t^{2 \beta_{F}}$
- insulating behaviour with scaling law
- singular continuous spectrum near Fermi level.

Aalborg Seal and Coat of Arm

Thanks for listening !

