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A No-Go Theorem
Let H = H∗ be bounded (one-electron Hamiltonian),

Let ~R = (R1, · · · ,Rd) be the position operator
(selfadjoint, commuting coordinates)

Then the electronic current is

~J = −e
ı
~

[H, ~R] ,

Adding a force ~F at time t = 0 leads to a new evolution with
Hamiltonian HF = H − ~F · ~R.
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A No-Go Theorem
The 0-frequency component of the current is

~j = lim
t→∞

∫ t

0

ds
t

eısHF/~ ~J e−ısHF/~ ,
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A No-Go Theorem
The 0-frequency component of the current is

~j = lim
t→∞

∫ t

0

ds
t

eısHF/~ ~J e−ısHF/~ ,

Simple algebra shows that (since ‖H‖ < ∞)

~F · ~j = const. lim
t→∞

H(t) −H
t

= 0 ,
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A No-Go Theorem
The 0-frequency component of the current is

~j = lim
t→∞

∫ t

0

ds
t

eısHF/~ ~J e−ısHF/~ ,

Simple algebra shows that (since ‖H‖ < ∞)

~F · ~j = const. lim
t→∞

H(t) −H
t

= 0 ,

WHY ?
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A No-Go Theorem
This is called Bloch’s Oscillations. It was observed in simulations
using ultracold atoms in an artificial lattice produced by lasers.
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A No-Go Theorem
This is called Bloch’s Oscillations. It was observed in simulations
using ultracold atoms in an artificial lattice produced by lasers.

To get a non trivial current we need

DISSIPATION !

Namely loss of information.
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The Drude Model (1900)
Assumptions :

1. Electrons in a metal are free classical particles of mass m∗ and
charge q.

2. Let n denotes the electron density.

3. They experience collisions at random Poissonnian times · · · < tn <
tn+1 < · · ·, with average relaxation time τrel.

4. If pn is the electron momentum between times tn and tn+1, then
the pn+1’s is updated according to the Maxwell distribution at
temperature T.
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The Drude Model (1900)

The Drude Kinetic Model
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The Drude Model (1900)
An elementary calculation leads to the Drude formula

σ =
q2n
m∗

τrel
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The Drude Model (1900)
An elementary calculation leads to the Drude formula

σ =
q2n
m∗

τrel

Heat conductivity can also be computed leading to

λ =
3n

2m∗
k2

BT τrel
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The Drude Model (1900)
An elementary calculation leads to the Drude formula

σ =
q2n
m∗

τrel

Heat conductivity can also be computed leading to

λ =
3n

2m∗
k2

BT τrel

The ratio gives the Wiedemann-Franz Law (1853)

λ
σ

=
3
2

(
kB

q

)2
T
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Aperiodicity

1. If the charges evolve in an aperiodic environment, their one-
particle Hamiltonian is actually a family (Hω)ω∈Ω of self-adjoint
operators depending on a parameter ω characterizing the de-
gree of aperiodicity (disorder parameter).

2. The aperiodicity can be ordered like in quasicrystals (long range
order), or disordered like in semiconductors, glasses or liquids
(short range correlations).

3. The space Ω of the disorder parameters is called the Hull. It is
always compact and metrizable.

4. The translation group G acts on Ω by homeomorphisms ta, a ∈ G.
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Aperiodicity
1. Covariance: if G is the translation group, if U(a) represents the

translation by a ∈ G in the Hilbert space of quantum states,
then

U(a) Hω U(a)−1 = Htaω

2. Continuity: ω ∈ Ω 7→ Hω is strong resolvent continuous.

3. Trace per Unit Volume: ifP is a G-invariant ergodic probability
on Ω then, for P-almost every ω

TP
(

f (H)
)

=

∫
Ω

dP(ω)〈x| f (Hω) x〉 = lim
Λ↑Rd

1
|Λ|

Tr
(

f (Hω) �Λ
)
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A Quantum Drude Model
Assumptions :

1. Replace the classical dynamics by the quantum one with one-
particle Hamiltonian H = (Hω)ω∈Ω.

2. Collisions occur at random Poissonnian times · · · < tn < tn+1 <
· · ·, with average relaxation time τrel.

3. At each collision, the density matrix is updated to the equilib-
rium one. (Relaxation Time Approximation).

4. Electrons and Holes are Fermions: use the Fermi-Dirac distribu-
tion to express the equilibrium density matrix.
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A Quantum Drude Model
A straightforward calculation leads to the Kubo formula
(JB, Schulz-Baldes, Van Elst ’94)

σi, j =
q2

~
TP

(
∂ j

(
1

1 + eβ(H−µ)

)
1

1/τrel − LH
∂iH

)

Where
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A Quantum Drude Model

1. ∂iA = ı[Ri,A] is the quantum derivative w.r.t. the momentum.

2. LH(A) = ı/~ [H,A] is called the Liouvillian.

3. β = 1/kBT and µ is the chemical potential fixed by the electron
density, namely

n = TP

(
1

1 + eβ(H−µ)

)
4. TP denotes the trace per unit volume, where P provides the way

the average over the volume is defined.
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The Work of E. Prodan: Numerical Results
E. Prodan, “Quantum transport in disordered systems under magnetic fields:
a study based on operator algebras”, arXiv:1204.6490. Appl. Math. Res. Express, (2012)

Numerical implementation of the previous Kubo Formula for dis-
ordered systems was provided by E. Prodan. The formula gives an
accurate algorithm which is very stable against disorder.

He used this algorithm to investigate more thoroughly the plateaux
of conductivity in the Quantum Hall Effect (QHE) with his collab-
orators after 2012.
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The Work of E. Prodan: Numerical Results
Quantum Hall Effect:

DoS (left) and colored map
of the Hall conductivity
(right) for W = 3.
The regions of quantized
Hall conductivity, which
appear as well defined
patches of same color, are
indicated at the right.
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The Work of E. Prodan: Numerical Results
Hall Plateaux:

First row (Second row): The
diagonal and the Hall
resistivities as function of
Fermi energy (density) at fixed
magnetic flux φ, temperature
T and disorder strength W

φ = 0.1 h/e
kBT = 1/τrel = 0.025
W = 1, 2, 3.

Each panel compares the data
obtained on the 100 × 100
lattice (circles) and on the
120 × 120 lattice (squares).
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The Work of E. Prodan: Numerical Results
Metal-Insulator transition between Hall plateaux

Transition from
Chern(PF) = 0 to
Chern(PF) = 1

The simulated (a) σxy and (b)
σxx, as functions of EF at
different temperatures.
(Song & Prodan ‘12)

It shows a fixed point at
EF = Ec

F where

σxx
T↓0
→ σxy = e2/2h
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The Work of E. Prodan: Numerical Results
Metal-Insulator transition between Hall plateaux: resistivity
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Transition from
Chern(PF) = 0 to
Chern(PF) = 1

ρxy as function of EF at
different temperatures. The
curves at lower temperatures
display quantized values well
beyond the critical point,
which is marked by the vertical
dotted line. For convenience
we also show the data for ρxx.
(Song & Prodan ‘12)
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The Work of E. Prodan: Numerical Results
Metal-Insulator transition between Hall plateaux: Scaling Law

Transition from
Chern(PF) = 0 to
Chern(PF) = 1

The simulated ρxx as function
of EF (a) before and (b) after
the horizontal axis was
rescaled as:

EF → Ec
F + (EF − Ec

F)
( T
T0

)−κ
with Ec

F = −3.15 , kBT0 = .08
and κ = .2 leading to p = 1
(Song & Prodan ‘12)
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What is Coherent Transport ?
Coherent transport corresponds to charge transport (electrons or
holes) ignoring dissipation sources such as electron-phonon or electron-
electron interactions.

1. The independent electrons approximation is justified.

2. The one-particle Hamiltonian (Hω)ω∈Ω is sufficient.

3. The wave packets diffuses through the medium at a rate depend-
ing upon how much Bragg reflections are produced (quantum
interferences).
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What is Coherent Transport ?

WAVE DIFFUSION

but

NO CURRENT !
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Spectral Measures

1. The density of state (DOS)∫ +∞

−∞

dNP(E) f (E) = TP
(

f (H)
)

2. The spectral measure relative to a given state ψ in the Hilbert
space, called local density of state (LDOS)∫ +∞

−∞

dµω,ψ(E) f (E) = 〈ψ| f (Hω)ψ〉

3. The current-current correlation (CCC) describes transport prop-
erties.∫

R2
dm(E,E′) f (E)g(E′) =

d∑
i=1

TP{ f (H) ∂iH g(H) ∂iH}
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The Current-Current Correlation Measure: Numerics
E. Prodan, J. Bellissard, Ann. of Phys., 368, 1-15, (2016).

The QHE scaling laws come from a singularity in the Current-
Current Measure. Here dm(E,E′) = f (E,E′)dEdE′

Left: intensity plot of the
current-current correlation
distribution f (E,E′).
Right: level sets of f (E,E′)
The calculation was made on a
120 × 120 lattice and the adta
were averaged over 100
random configurations.
(Prodan & Bellissard ‘16)



Solid Math, Aalborg May 28, 2016 31

The Current-Current Correlation Measure: Numerics
The scaling law observed in the QHE resistivity at the metal-insulator
transition Ec can be explained by an expression of the form:

f (E,E′) = g
(
E + E′ − 2Ec

|E − E′|κ/p

)
, E,E′ ' Ec .

It leads to

σii =
e2

h

∫
∞

0

4π
1 + y2 g

(
EF

(Γ|E − E′|)κ/p

)
dy , Γ =

1
τrel
.
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The Current-Current Correlation Measure: Numerics
The function g(t) can be computed also and fits well with a Gaus-
sian curve.

4π
2  g

(t
)

t

Left: The trace of the
asymptotic region where the
scaling invariance of the
current-current correlation
function occurs.
Right: Plot of 10 values of the
function g(t), together with a
Gaussian fit. (Prodan &
Bellissard ‘15)
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Local Exponents
Given a positive measure µ on R:

α±µ(E) = lim
{

sup
inf

}
ε ↓ 0

ln
∫ E + ε

E − ε
dµ

ln ε

For ∆ a Borel subset of R:

α±µ(∆) = µ−ess
{

sup
inf

}
E∈∆

α±µ(E)
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Local Exponents
Properties:

1. For all E, α±µ(E) ≥ 0. In addition, α±µ(E) ≤ 1 for µ-almost all E.

2. If µ is ac on ∆ then α±µ(∆) = 1, if µ is pp on ∆ then α±µ(∆) = 0.

3. If µ and ν are equivalent measures on ∆, then α±µ(E) = α±ν (E)
µ-almost surely.

4. α+
µ coincides with the packing dimension.
α−µ coincides with the Hausdorff dimension.
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Local Exponents

1. The LDOS exponent α±LDOS is defined as the maximum over the
state ψ of the local exponent associated with µψ.

2. The DOS exponents α±DOS is the local exponent associated with
NP.

3. It follows that

α±LDOS(∆) ≤ α±DOS(∆)
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Transport Exponents

1. For ∆ ⊂ R a Borel subset, let P∆, ω be the corresponding spectral
projection of Hω. Set

~Rω(t) = eıtHω ~R e−ıtHω

2. The averaged spread of a typical wave packet with energy in ∆
is measured by

L(p)
∆ (t) =

∫ t

0

ds
t

∫
Ω

dP 〈x|P∆, ω|
~Rω(t) − ~R|pP∆, ω|x〉

1/p

3. Define β = β±p (∆) similarly so that L(p)
∆ (t) ∼ tβ
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Transport Exponents
Properties:

• β−p (∆) ≤ β+
p (∆) and β±p (∆) are non decreasing in p.

• The transport exponent is the spectral exponent of the Liouvil-
lian LH localized around energies in ∆ near the eigenvalue 0
(diagonal of the current-current correlation).
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Transport Exponents
Heuristic:

1. β = 0→ absence of diffusion: (ex: localization)

2. β = 1→ ballistic motion: (ex: in crystals)

3. β = 1/2→ quantum diffusion: (ex: weak localization)

4. β < 1→ subballistic regime

5. β < 1/2→ subdiffusive regime: (ex: in quasicrystals)
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Transport Exponents
Guarneri’s Inequality:

β±p (∆) ≥
α±LDOS(∆)

d

Heuristics: ac spectrum

1. ac spectrum implies β ≥ 1/d.

2. ac spectrum implies ballistic motion in d = 1.

3. ac spectrum is compatible with quantum diffusion in d ≥ 2.
Expected to hold in weak localization regime.

4. ac spectrum is compatible with subdiffusion for d ≥ 3. Expected
to hold in quasicrystals.
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The Anomalous Drude Formula
(Mayou ’92, Sire ’93, Bellissard, Schulz-Baldes ’95)

In the Relaxation Time Approximation, it can be proved that

σ
τrel ↑ ∞
∼ τ2βF − 1

rel

where βF = β2(EF) is the transport exponent at Fermi level.
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The Anomalous Drude Formula

1. In practice, τrel ↑ ∞ as T ↓ 0.

2. If βF = 1 (ballistic motion), σ ∼ τrel (Drude). The system behaves
as a conductor.

3. For 1/2 < βF ≤ 1, σ ↑ ∞ as T ↓ 0: the system behaves as a
conductor.

4. If βF = 1/2 (quantum diffusion), σ ∼ const.: residual conductivity
at low temperature.

5. For 0 ≤ βF < 1/2, σ ↓ 0 as T ↓ 0: the system behaves as an
insulator.
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Transport in Quasicrystals
Lectures on Quasicrystals,
F. Hippert & D. Gratias Eds., Editions de Physique, Les Ulis, (1994),
S. Roche, D. Mayou and G. Trambly de Laissardière,
Electronic transport properties of quasicrystals, J. Math. Phys., 38, 1794-1822 (1997).

Quasicrystalline alloys :

Metastable QC’s: AlMn
(Shechtman D., Blech I., Gratias D. & Cahn J., PRL 53, 1951 (1984))

AlMnSi
AlMgT (T = Ag,Cu,Zn)

Defective stable QC’s: AlLiCu (Sainfort-Dubost, (1986))

GaMgZn (Holzen et al., (1989))
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Transport in Quasicrystals

High quality QC’s: AlCuT (T = Fe,Ru,Os)
(Hiraga, Zhang, Hirakoyashi, Inoue, (1988); Gurnan et al., Inoue et al., (1989); Y. Calvayrac et al., (1990))

“Perfect” QC’s: AlPdMn

AlPdRe
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Transport in Quasicrystals
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Transport in Quasicrystals
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Conductivity of Quasicrystals vs

Temperature vs. Temperature

σ ≈ σ0 + a Tγ with 1 < γ < 1.5

for .01 K ≤ T ≤ 1000 K
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Transport in Quasicrystals

1. Numerical simulations for the icosahedral phase of AlCuCo
suggest βF ∼ 0.375 = 3/8 (S. Roche & Fujiwara, Phys. Rev., B58, 11338-11396, (1998)) and
using Bloch’s Law τrel ∼ T−5, gives

σ
T↓0
∼ T5/4

a result compatible with experiments.

2. Numerical simulations performed for the octagonal lattice ex-
hibit level repulsion and Wigner-Dyson’s distribution (M. Schreiber,

U. Grimm, R. A. Roemer, J. -X. Zhong, Comp. Phys. Commun., 121-122, 499-501 (1999).)
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Transport in Quasicrystals
Thouless Argument

1. For a sample of size L in dimension d :
Mean level spacing ∆ ∼ L−d.
Thus Heisenberg time τH ∼ Ld.

2. Time necessary to reach the boundary (Thouless) L ∼ τβF
Th . Thus

τTh ∼ L1/βF.
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Transport in Quasicrystals
Comparing these estimate gives two regimes.

1. if βF > 1/d level repulsion dominates implying
- quantum diffusion 〈x2

〉 ∼ t
- residual conductivity
- absolutely continuous spectrum at Fermi level;

2. if βF < 1/d level repulsion can be ignored and
- anomalous diffusion dominates 〈x2

〉 ∼ t2βF

- insulating behaviour with scaling law
- singular continuous spectrum near Fermi level.
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Aalborg Seal and Coat of Arm

Thanks for listening !


