The STRANGE PROPERTIES of QUASTGREGMATS

Jean BELLISSARD ${ }^{12}$
Université Paul Sabatier, Toulouse G
Institut Universitaire de France

Collaborations:

J.X. ZHONG (Oak Ridge)
R. MOSSERI (Groupe Physique Solides, Paris VII)
H. SCHULZ-BALDES (University of California, Irvine)
D. SPEHNER (Universität Essen, Germany)
J. VIDAL (Groupe de Physique des Solides, Paris VII)

[^0]
SUMMARY

1. Quasicrystalline Compound

2. Quasiperiodic Structures
3. Electronic Properties
4. Spectral Properties
5. Transport Properties
6. Anomalous Transport
7. Why are $A l P d M n$ and $A l P d R e$ SO DIFFERENT?
8. Conclusion

References:

1. Lectures on Quasicrystals, F. Hippert \& D. Gratias Eds., Editions de Physique, Les Ulis, (1994),
2. Quasicrystals, S. Takeuchi \& T. Fujiwara Eds., World Scientific, (1998),
3. Electronic transport properties of quasicrystals, S. Roche, D. Mayou and G. Trambly de Laissardière, J. Math. Phys., 38, 1794-1822 (1997),

Quasicrystalline alloys :

Metastable QC's:
 AlMn

(Shechtman D., Blech I., Gratias D. 6 Cahn J., PRL 53, 1951 (1984))
AlMnSi
AlMgT
$(T=A g, C u, Z n)$

Defective stable QC's: AlLiCu
(Sainfort-Dubost, (1986))
GaMgZn
(Holzen et al., (1989))

High quality QC's:
$\operatorname{AlCuT}(T=F e, R u, O s)$
(Hiraga, Zhang, Hirakoyashi, Inoue, (1988))
(Gurnan et al., Inoue et al., (1989))
(Y. Calvayrac et al., (1990))
"Perfect" QC's:
AlPdMn
AlPdRe

- Typical TEM diffraction pattern -- with 5 -fold symmetry -

QUASIPERIODIC STRUCTURES :

- The Penrose Tiling -

- The cut-and-project construction -

- The Octagonal Tiling -

- The Window of the Octagonal Tiling -

ELECTRONIC PROPERTIES :

Measure or Computation of the Density of States (DOS) near the Fermi level.

Experimental Methods

1. Soft X-ray Emission Spectroscopy (SXES)
2. Soft X-ray Photoabsorption Spectroscopy (SXAS)
3. Electron Photoemission Spectroscopy (XPS)
4. Electron Energy Loss Spectroscopy (EELS)
5. Tunneling Effect Junction.

Numerical Methods

LMTO-ASA computations

(Linear Muffin-Tin Orbital Method in the Atomic Sphere Approximation)

Partial DOS measured by SXES or SXAS:
(a) pure $A l$,
(b) $\omega-A l_{7} C u_{2} F e$,
(c) rhombohedral approximant $A l_{62.5} C u_{26.5} F e_{11}$,
(d) icosahedral phase $A l_{62} C u_{25.5} F e_{12.5}$ (E. Belin et al. (1992))

Total DOS of alloys with close composition:
(A) approximant $1 / 1 i-A l_{62.5} C u_{25} F e_{12.5} 128$ atoms/unit cell,
(B) non-approximant $\omega-A l_{7} C u_{2} F e, 40$ atoms/unit cell.
(Roche et al. (1997))

Effect of Bragg diffraction on electronic bands
(S. Roche et al. (1997))

Representation of a Pseudo-gap

(S. Roche et al. (1997))

Examples of pseudo-Brillouin-zones of the icosahedral phase.

A: $42(30+12)$ facets (main pseudo-zone for $A l C u F e, A L P d M n$;
B: 60 facets (main pseudo-zone for AlCuLi).
The arrows are issued from the peaks which together with all equivalent peaks (by the icosahedral symmetry) define the facets of the pseudo-zone.
(S. Roche et al. (1997))

SPECTRAL PROPERTIES :

Density of States (DoS) :
If $H=1$-particle Hamiltonian

- Then

$$
\mathcal{N}(E)=\lim _{\Lambda \uparrow \mathbf{R}^{d}} \frac{1}{|\Lambda|} \#\left\{\text { eigenvalues of }\left.H\right|_{\Lambda} \leq E\right\}
$$

is called the Integrated Density of States or IDoS.

- \mathcal{N} is non negative, non decreasing and constant on spectral gaps. $\mathcal{N}(E)=0$ for $E<\inf (S p H)$.
For $E \rightarrow \infty$ then $\mathcal{N}(E) \sim \mathcal{N}_{0}(E)$ where \mathcal{N}_{0} is the free particle IDoS.
- $d \mathcal{N} / d E=n_{\text {Dos }}$ defines a measure
(according to Stieljes) called
the Density of States or DOS.

IDoS for Fibonacci's chain.
(S. Roche et al. (1997))

Local Density of states (LDoS) :

If $\mid \psi>$ is an initial state :

$$
<\psi\left|(H-E)^{-1}\right| \psi>=\int d E^{\prime} \frac{n_{\text {LDos }}\left(E^{\prime}\right)}{E^{\prime}-E}
$$

g is called the Local Density of States or LDoS

Spectral Exponents :

Spectral Exponents are defined by

$$
\int_{E-\varepsilon}^{E+\varepsilon} d E^{\prime} n\left(E^{\prime}\right) \stackrel{\varepsilon \downarrow 0}{\sim} \varepsilon^{\alpha(E)}
$$

One associates $\alpha_{\mathrm{Dos}}(E)$ and $\alpha_{\mathrm{LDos}}(E)$ to the DoS and LDoS.

Lebesgue's Theorem :

Every "measure" can be decomposed as a sum of (i) an absolutely continuous measure $(\alpha(E)=1)$,
(ii) a pure point one (sum of Dirac peaks) and
(iii) a singular continuous one $(0<\alpha(E)<1)$

Some Results :

- Rigorous

For quasiperiodic chains (QC $1 D$):
both the LDoS and DoS are singular continuous,
the spectrum is a Cantor set of zero Lebesgue measure.
The exponent is model dependent.

- Exacts

For $D \geq 2$, the Labyrinth model (Sire et al.): there is a transition between a Cantor spectrum of zero Lebesgue measure and a gapless continuous spectrum, as the hopping parameters increases.

- Numerical

Tight-binding models behave like the labyrinth one But there is level repulsion (Quantum Chaos).

Interactions Effects :

Coulomb's interaction between electrons in a disordered system is responsible for a pseudo-gap at Fermi level :

- In the strong localized regime (Anderson insulator) :

$$
n_{\mathrm{Dos}}(E) \sim\left|E-E_{F}\right|^{D-1} \quad(\text { Efros \& Schklovsky })
$$

- In the weak localisation regime (Anderson metals) :

$$
n_{\mathrm{Dos}}(E) \sim \sqrt{\left|E-E_{F}\right|} \quad(\text { Altshuler \& Aronov })
$$

TRANSPORT PROPERTIES :

1. $A l, F e, C u, P d$ are good metals : why is the conductivity of QC's so low?
Why is it decreasing with temperature ?
2. At high enough temperature

$$
\sigma \propto \mathbf{T}^{\gamma} \quad \mathbf{1}<\gamma<\mathbf{1 . 5}
$$

this is a new mechanism!
3. At low temperature for $\mathrm{Al}_{\mathbf{7 0 . 5}} \mathrm{Pd}_{\mathbf{2 2}} \mathrm{Mn}_{7.5}$,

$$
\sigma \approx \sigma(\mathbf{0})>\mathbf{0}
$$

4. At low temperature for $\mathbf{A l}_{\mathbf{7 0 . 5}} \mathbf{P d}_{\mathbf{2 1}} \mathbf{R e}_{\mathbf{8 . 5}}$,

$$
\sigma \propto \mathbf{e}^{-\left(\mathbf{T}_{\mathbf{0}} / \mathbf{T}\right)^{1 / 4}}
$$

C. R. Wang et al. (1997); C. Berger et al. (1998)

Disorder seems to dominate at low temperature.

Comparison between conductivities of the two QC's

ANOMALOUS TRANSPORT :

J. Bellissard \& H. Schulz-Baldes, Rev. Math. Phys., 10, 1-46 (1998).

Transport Exponents

The diffusion exponents $\sigma_{\text {diff }}(E)$ are defined by

$$
\overline{<\psi_{E}\left|(\vec{X}(t)-\vec{X})^{2}>\right| \psi_{E}>} \stackrel{\text { disorder }}{t \uparrow \infty} t^{2 \beta(E)}
$$

where ψ_{E} is a typical eigenvector with energy E.

Guarneri's Inequality

$$
\alpha_{\mathrm{LDOS}}^{+}(\mathbf{E}) \leq \mathbf{D} \cdot \beta(\mathbf{E}),
$$

where D is the space dimension.

Anomalous Drude formula

At low temperature, the conductivity σ behaves like:

$$
\sigma \sim \tau^{\left(2 \beta_{\mathbf{F}}-1\right)}
$$

Here, τ is the inelastic relaxation time, E_{F} is the Fermi level and $\beta_{F}=\beta\left(E_{F}\right)$.

Interpretation

The inelastic relaxation time τ diverges at low temperature.

- $\beta(E)=1$ ballistic motion
ex. : free particles in a perfect crystal. $\sigma \sim \tau$ (Drude's law).
- $\beta(E)=0$ absence of diffusion
ex. : localisation.
$\sigma \sim 1 / \tau$ (anti-Drude).
- $\beta(E)=1 / 2$ quantum diffusion
ex. : weak localisation.
$\sigma \sim 1$ (residual conductivity).
- $0<\beta(E)<1 / 2$ subdiffusion
ex. : most quasicrystals 3D at Fermi level. $\sigma \sim 1 / \tau^{(1-2 \beta)} \downarrow 0$ (insulating behaviour).
- $1 / 2<\beta(E)<0$ overdiffusion ex. : quasiperiodic $2 D$ lattices. $\sigma \sim \tau^{(2 \beta-1)} \uparrow \infty$ (metallic behaviour) .

Conductivity in QC's

S. Roche \mathcal{E}^{2} Fujiwara, Phys. Rev., B58, 11338-11396, (1998).

1. LMTO ab initio computations for $i-A l C u C o$ give $\beta_{F}=0,375$
2. If only electron-phonon collisions are considered, Bloch's law leads to : $\tau \stackrel{T \uparrow \infty}{\sim} T^{-5}$.
3. Hence

$$
\sigma(\mathbf{T}) \stackrel{\mathbf{T} \uparrow \infty}{\sim} \mathbf{T}^{1.25}
$$

compatible with experimental results !
4. At low temperature ($T \leq T_{\text {dis }}$), if disorder dominates then :
(a) for $A l P d M n, T_{\text {dis }} \approx 300 K$. There should then be a high density of defects or impurities, implying weak localisation and a residual conductivity.
(b) fr $A l P d R e, T_{\text {dis }} \approx 10 \mathrm{~K}$. There should be a low density of defects or impurities implying strong localisation and une Mott's variable range hopping conductivity.

Variable range hopping conductivity

 (Mott (1968))In the strong localized regime and with a small DoS, the low temperature conductivity behaves like :

$$
\sigma \propto \mathbf{e}^{-\left(\mathbf{T}_{0} / \mathbf{T}\right)^{1 / \mathbf{D}+1}} \quad \text { Mott's law }
$$

Competing mechanism: quantum chaos

JB speculations

1. Numerical simulations performed for the octagonal lattice exhibit level repulsion and Wigner-Dyson's distribution (Zhong et al. 1998).
2. For a sample of size L :

Mean level spacing $\Delta \sim L^{-D}$.
Thus Heisenberg time $\tau_{H} \sim L^{D}$.
3. Thouless time for anomalous diffusion $L \sim t_{T h}^{\beta}$. Heisenberg's length $L_{H} \sim L^{D \beta}$.
4. Thus :
(a) if $\beta>1 / D$ level repulsion dominates implying - quantum diffusion $\left\langle x^{2}\right\rangle \sim t$

- residual conductivity
- absolutely continuous spectrum at Fermi level;
(b) if $\beta<1 / D$ level repulsion can be ignored and
- anomalous diffusion dominates $\left\langle x^{2}\right\rangle \sim t^{2 \beta}$
- insulating behaviour with scaling law
- singular continuous spectrum near Fermi level.

CONCLUSIONS

1. Forbiden symetries imply quasiperiodic lattices of atomic positions.
2. The Fermi sea stabilizes the structure thanks to the Hume-Rothery mechanism.
Thus appearance of a pseudo-gap at Fermi level.
3. Coulomb's interaction create a vanishing of the DOS at Fermi level with $n_{\text {Dos }} \sim \sqrt{\left|E-E_{F}\right|}$.
4. This pseudo-gap is partially filled probably due to impurities or defects.
5. At large enough temperature, the quasiperiodic structure leads to anomalous transport with $\beta<1 / 2$. Hence an insulating behaviour.
6. At low temperature two mechanisms compete: - the effect of disorder, like in semiconductors, may produce a metallic or insulating behaviour, with either a residual conductivity or
a Mott variable range hopping.

- the effect of level repulsion may produce a residual conductivity if $\beta>1 / D$ whereas anomalous transport dominates if $\beta<1 / D$.

[^0]: ${ }^{1}$ I.R.S.A.M.C., Université Paul Sabatier, 118, route de Narbonne, Toulouse Cedex 04, France
 ${ }^{2}$ e-mail: jeanbel@irsamc2.ups-tlse.fr

