REDANNANGEOMETRY

on

METRCCANTORSETS

Jean BELLISSARD ${ }^{1}$

Georgia Institute of Technology, Atlanta
School of Mathematics \mathcal{E} School of Physics
Collaboration:
J. PEARSON (Georgia Tech, Atlanta)

Main References

J. Pearson, J. Bellissard,

Noncommutative Riemannian Geometry and Diffusion on Ultrametric Cantor Sets, J. Noncommutative Geometry, 3, (2009), 447-480.
A. Connes,

Noncommutative Geometry,
Academic Press, 1994.
G. Michon,

Les Cantors réguliers,
C. R. Acad. Sci. Paris Sér. I Math., (19), 300, (1985) 673-675.
K. Falconer,

Fractal Geometry: Mathematical Foundations and Applications, John Wiley and Sons 1990.

Content

1. Michon's Trees
2. Spectral Triples
3. ζ-function and Metric Measure
4. The Laplace-Beltrami Operator
5. To conclude

I - Michon's Trees

G. Michon, "Les Cantors réguliers", C. R. Acad. Sci. Paris Sér. I Math., (19), 300, (1985) 673-675.

I.1)- Cantor sets

I.1)- Cantor sets

The triadic Cantor set

Definition A Cantor set is a compact, completely disconnected set without isolated points

Definition A Cantor set is a compact, completely disconnected set without isolated points

Theorem Any Cantor set is homeomorphic to $\{0,1\}^{\mathbb{N}}$.
L. Brouwer, "On the structure of perfect sets of points", Proc. Akad. Amsterdam, 12, (1910), 785-794.

Definition A Cantor set is a compact, completely disconnected set without isolated points

Theorem Any Cantor set is homeomorphic to $\{0,1\}^{\mathbb{N}}$.
L. Brouwer, "On the structure of perfect sets of points", Proc. Akad. Amsterdam, 12, (1910), 785-794.

Hence without extra structure there is only one Cantor set.

I.2) - Metrics

Definition Let X be a set. A metric d on X is a map d: $X \times X \mapsto \mathbb{R}_{+}$ such that, for all $x, y, z \in X$
(i) $d(x, y)=0$ if and only if $x=y$,
(ii) $d(x, y)=d(y, x)$,
(iii) $d(x, y) \leq d(x, z)+d(z, y)$.

I.2) - Metrics

Definition Let X be a set. A metric d on X is a map d: $X \times X \mapsto \mathbb{R}_{+}$ such that, for all $x, y, z \in X$
(i) $d(x, y)=0$ if and only if $x=y$,
(ii) $d(x, y)=d(y, x)$,
(iii) $d(x, y) \leq d(x, z)+d(z, y)$.

Definition A metric d on a set X is an ultrametric if it satisfies

$$
d(x, y) \leq \max \{d(x, z), d(z, y)\}
$$

for all family x, y, z of points of C.

Given (C, d) a metric space, for $\epsilon>0$ let $\stackrel{\epsilon}{\sim}$ be the equivalence relation defined by

$$
x \stackrel{\epsilon}{\sim} y \quad \Leftrightarrow \quad \exists x_{0}=x, x_{1}, \cdots, x_{n-1}, x_{n}=y \quad d\left(x_{k-1}, x_{k}\right)<\epsilon
$$

Given (C, d) a metric space, for $\epsilon>0$ let $\stackrel{\epsilon}{\sim}$ be the equivalence relation defined by

$$
x \stackrel{\epsilon}{\sim} y \quad \Leftrightarrow \quad \exists x_{0}=x, x_{1}, \cdots, x_{n-1}, x_{n}=y \quad d\left(x_{k-1}, x_{k}\right)<\epsilon
$$

Theorem Let (C, d) be a metric Cantor set. Then there is a sequence $\epsilon_{1}>\epsilon_{2}>\cdots \epsilon_{n}>\cdots \geq 0$ converging to 0 , such that $\stackrel{\mathcal{E}}{\sim}=\stackrel{\epsilon_{n}}{\sim}$ whenever $\epsilon_{n} \geq \epsilon>\epsilon_{n+1}$.

Given (C, d) a metric space, for $\epsilon>0$ let $\stackrel{\epsilon}{\sim}$ be the equivalence relation defined by

$$
x \stackrel{\epsilon}{\sim} y \quad \Leftrightarrow \quad \exists x_{0}=x, x_{1}, \cdots, x_{n-1}, x_{n}=y \quad d\left(x_{k-1}, x_{k}\right)<\epsilon
$$

Theorem Let (C, d) be a metric Cantor set. Then there is a sequence $\epsilon_{1}>\epsilon_{2}>\cdots \epsilon_{n}>\cdots \geq 0$ converging to 0 , such that $\stackrel{\mathcal{E}}{\sim}=\stackrel{\epsilon_{n}}{\sim}$ whenever $\epsilon_{n} \geq \epsilon>\epsilon_{n+1}$.
For each $\epsilon>0$ there is a finite number of equivalence classes and each of them is close and open.

Given (C, d) a metric space, for $\epsilon>0$ let $\stackrel{\epsilon}{\sim}$ be the equivalence relation defined by

$$
x \stackrel{\epsilon}{\sim} y \quad \Leftrightarrow \quad \exists x_{0}=x, x_{1}, \cdots, x_{n-1}, x_{n}=y \quad d\left(x_{k-1}, x_{k}\right)<\epsilon
$$

Theorem Let (C, d) be a metric Cantor set. Then there is a sequence $\epsilon_{1}>\epsilon_{2}>\cdots \epsilon_{n}>\cdots \geq 0$ converging to 0 , such that $\stackrel{\mathcal{E}}{\sim}=\stackrel{\epsilon_{n}}{\sim}$ whenever $\epsilon_{n} \geq \epsilon>\epsilon_{n+1}$.
For each $\epsilon>0$ there is a finite number of equivalence classes and each of them is close and open.
Moreover, the sequence $[x]_{e_{n}}$ of clopen sets converges to $\{x\}$ as $n \rightarrow \infty$.

I.3)- Michon's graph

I.3)- Michon's graph

Set

- $\mathcal{V}_{0}=\{C\}$ (called the root),
I.3)- Michon's graph

Set

- $\mathcal{V}_{0}=\{C\}$ (called the root),
- for $n \geq 1, \mathcal{V}_{n}=\left\{[x]_{\epsilon_{n}} ; x \in C\right\}$,
1.3)- Michon's graph

Set

- $\mathcal{V}_{0}=\{C\}$ (called the root),
- for $n \geq 1, \mathcal{V}_{n}=\left\{[x]_{\epsilon_{n}} ; x \in C\right\}$,
- \mathcal{V} is the disjoint union of the $\nu_{n}{ }^{\prime} \mathrm{s}$,
I.3)- Michon's graph

Set

- $\mathcal{V}_{0}=\{C\}$ (called the root),
- for $n \geq 1, \mathcal{V}_{n}=\left\{[x]_{\epsilon_{n}} ; x \in C\right\}$,
- \mathcal{V} is the disjoint union of the $\nu_{n}{ }^{\prime} \mathrm{s}$,
- $\mathcal{E}=\left\{\left(v, v^{\prime}\right) \in \mathcal{V} \times \mathcal{V} ; \exists n \in \mathbb{N}, v \in \mathcal{V}_{n}, v^{\prime} \in \mathcal{V}_{n+1}, v^{\prime} \subset v\right\}$,
1.3)- Michon's graph

Set

- $\mathcal{V}_{0}=\{C\}$ (called the root),
- for $n \geq 1, \mathcal{V}_{n}=\left\{[x]_{\epsilon_{n}} ; x \in C\right\}$,
- \mathcal{V} is the disjoint union of the $\nu_{n}{ }^{\prime} \mathrm{s}$,
- $\mathcal{E}=\left\{\left(v, v^{\prime}\right) \in \mathcal{V} \times \mathcal{V} ; \exists n \in \mathbb{N}, v \in \mathcal{V}_{n}, v^{\prime} \in \mathcal{V}_{n+1}, v^{\prime} \subset v\right\}$,
- $\delta(v)=\operatorname{diam}\{v\}$.
1.3)- Michon's graph

Set

- $\mathcal{V}_{0}=\{C\}$ (called the root),
- for $n \geq 1, \mathcal{V}_{n}=\left\{[x]_{\epsilon_{n}} ; x \in C\right\}$,
- \mathcal{V} is the disjoint union of the $\nu_{n}{ }^{\prime} \mathrm{s}$,
- $\mathcal{E}=\left\{\left(v, v^{\prime}\right) \in \mathcal{V} \times \mathcal{V} ; \exists n \in \mathbb{N}, v \in \mathcal{V}_{n}, v^{\prime} \in \mathcal{V}_{n+1}, v^{\prime} \subset v\right\}$,
- $\delta(v)=\operatorname{diam}\{v\}$.

The family $\mathcal{T}=(C, \mathcal{V}, \mathcal{E}, \delta)$ defines a weighted rooted tree, with $\operatorname{root} C$, set of vertices \mathcal{V}, set of edges \mathcal{E} and weight δ

$$
\begin{gathered}
\mathrm{C}=\text { root } \\
\varepsilon_{1}=1 / 3
\end{gathered}
$$

The Michon tree for the triadic Cantor set

The Michon tree for the triadic ring $\mathbb{Z}(3)$

The Michon tree for the triadic ring $\mathbb{Z}(3)$

The Michon tree for the triadic ring $\mathbb{Z}(3)$

The Michon tree for the triadic ring $\mathbb{Z}(3)$

I.4)- The boundary of a triee

I.4)- The boundary of a tree

Let $\mathcal{T}=(0, \mathcal{V}, \mathcal{E})$ be a rooted tree. It will be called Cantorian if

1.4)-The boundary of a tree

Let $\mathcal{T}=(0, \mathcal{V}, \mathcal{E})$ be a rooted tree. It will be called Cantorian if

- Each vertex admits one descendant with more than one child

1.4)-The boundary of a tree

Let $\mathcal{T}=(0, \mathcal{V}, \mathcal{E})$ be a rooted tree. It will be called Cantorian if

- Each vertex admits one descendant with more than one child
- Each vertex has only a finite number of children.
I.4)- The boundary of a triee

Let $\mathcal{T}=(0, \mathcal{V}, \mathcal{E})$ be a rooted tree. It will be called Cantorian if

- Each vertex admits one descendant with more than one child
- Each vertex has only a finite number of children.

Then $\partial \mathcal{T}$ is the set of infinite path starting form the root. If $v \in \mathcal{V}$ then $[v]$ will denote the set of such paths passing through v
1.4)- The boundary of a tree

Let $\mathcal{T}=(0, \mathcal{V}, \mathcal{E})$ be a rooted tree. It will be called Cantorian if

- Each vertex admits one descendant with more than one child
- Each vertex has only a finite number of children.

Then $\partial \mathcal{T}$ is the set of infinite path starting form the root. If $v \in \mathcal{V}$ then $[v]$ will denote the set of such paths passing through v

Theorem The family $\{[v] ; v \in \mathcal{V}\}$ is the basis of a topology making $\partial \mathcal{T}$ a Cantor set.

A weight on \mathcal{T} is a map $\delta: \mathcal{V} \mapsto \mathbb{R}_{+}$such that

A weight on \mathcal{T} is a map $\delta: \mathcal{V} \mapsto \mathbb{R}_{+}$such that

- If $w \in \mathcal{V}$ is a child of v then $\delta(v) \geq \delta(w)$,

A weight on \mathcal{T} is a map $\delta: \mathcal{V} \mapsto \mathbb{R}_{+}$such that

- If $w \in \mathcal{V}$ is a child of v then $\delta(v) \geq \delta(w)$,
- If $v \in \mathcal{V}$ has only one child w then $\delta(v)=\delta(w)$,

A weight on \mathcal{T} is a map $\delta: \mathcal{V} \mapsto \mathbb{R}_{+}$such that

- If $w \in \mathcal{V}$ is a child of v then $\delta(v) \geq \delta(w)$,
- If $v \in \mathcal{V}$ has only one child w then $\delta(v)=\delta(w)$,
- If v_{n} is the decreasing sequence of vertices along an infinite path $x \in \partial \mathcal{T}$ then $\lim _{n \rightarrow \infty} \delta\left(v_{n}\right)=0$.

A weight on \mathcal{T} is a map $\delta: \mathcal{V} \mapsto \mathbb{R}_{+}$such that

- If $w \in \mathcal{V}$ is a child of v then $\delta(v) \geq \delta(w)$,
- If $v \in \mathcal{V}$ has only one child w then $\delta(v)=\delta(w)$,
- If v_{n} is the decreasing sequence of vertices along an infinite path $x \in \partial \mathcal{T}$ then $\lim _{n \rightarrow \infty} \delta\left(v_{n}\right)=0$.

Theorem If \mathcal{T} is a Cantorian rooted tree with a weight δ, then $\partial \mathcal{T}$ admits a canonical ultrametric d_{δ} defined by.

$$
d_{\delta}(x, y)=\delta([x \wedge y])
$$

where $[x \wedge y]$ is the least common ancestor of x and y.

Theorem Let \mathcal{T} be a Cantorian rooted tree with weight δ. Then if $v \in \mathcal{V}$, $\delta(v)$ coincides with the diameter of $[v]$ for the canonical metric.

Theorem Let \mathcal{T} be a Cantorian rooted tree with weight δ. Then if $v \in \mathcal{V}$, $\delta(v)$ coincides with the diameter of $[v]$ for the canonical metric.
Conversely, if \mathcal{T} is the Michon tree of a metric Cantor set (C, d), with weight $\delta(v)=\operatorname{diam}(v)$, then there is a contracting homeomorphism from (C, d) onto $\left(\partial \mathcal{T}, d_{\delta}\right)$ and d_{δ} is the smallest ultrametric dominating d.

Theorem Let \mathcal{T} be a Cantorian rooted tree with weight δ. Then if $v \in \mathcal{V}$, $\delta(v)$ coincides with the diameter of $[v]$ for the canonical metric.
Conversely, if \mathcal{T} is the Michon tree of a metric Cantor set (C, d), with weight $\delta(v)=\operatorname{diam}(v)$, then there is a contracting homeomorphism from (C, d) onto $\left(\partial \mathcal{T}, d_{\delta}\right)$ and d_{δ} is the smallest ultrametric dominating d.

In particular, if d is an ultrametric, then $d=d_{\delta}$ and the homeomorphism is an isometry.

Theorem Let \mathcal{T} be a Cantorian rooted tree with weight δ. Then if $v \in \mathcal{V}$, $\delta(v)$ coincides with the diameter of $[v]$ for the canonical metric.
Conversely, if \mathcal{T} is the Michon tree of a metric Cantor set (C, d), with weight $\delta(v)=\operatorname{diam}(v)$, then there is a contracting homeomorphism from (C, d) onto $\left(\partial \mathcal{T}, d_{\delta}\right)$ and d_{δ} is the smallest ultrametric dominating d.

In particular, ifd is an ultrametric, then $d=d_{\delta}$ and the homeomorphism is an isometry.

This gives a representation of all ultrametric Cantor sets together with a parametrization of the space of ultrametrics.

II - Spectral Triples

A. Conses, Noncommutative Geometry, Academic Press, 1994.

II.1)-Spectral Triples

II.1)-Spectral Triples

A spectral triple is a family $(\mathcal{H}, \mathcal{A}, D)$, such that

II.1)-Spectral Triples

A spectral triple is a family $(\mathcal{H}, \mathcal{A}, D)$, such that

- \mathcal{H} is a Hilbert space

II.1)-Spectral Triples

A spectral triple is a family $(\mathcal{H}, \mathcal{A}, D)$, such that

- \mathcal{H} is a Hilbert space
- \mathcal{A} is a *-algebra invariant by holomorphic functional calculus, with a representation π into \mathcal{H} by bounded operators

II.1)-Spectral Triples

A spectral triple is a family $(\mathcal{H}, \mathcal{A}, D)$, such that

- \mathcal{H} is a Hilbert space
- \mathcal{A} is a *-algebra invariant by holomorphic functional calculus, with a representation π into \mathcal{H} by bounded operators
- D is a self-adjoint operator on \mathcal{H} with compact resolvent such that $[D, \pi(f)] \in \mathcal{B}(\mathcal{H})$ is a bounded operator for all $f \in \mathcal{A}$.

II.1)- Spectral Triples

A spectral triple is a family $(\mathcal{H}, \mathcal{A}, D)$, such that

- \mathcal{H} is a Hilbert space
- \mathcal{A} is a *-algebra invariant by holomorphic functional calculus, with a representation π into \mathcal{H} by bounded operators
- D is a self-adjoint operator on \mathcal{H} with compact resolvent such that $[D, \pi(f)] \in \mathcal{B}(\mathcal{H})$ is a bounded operator for all $f \in \mathcal{A}$.
- $(\mathcal{H}, \mathcal{A}, D)$ is called even if there is $G \in \mathcal{B}(\mathcal{H})$ such that

II.1)- Spectral Triples

A spectral triple is a family $(\mathcal{H}, \mathcal{A}, D)$, such that

- \mathcal{H} is a Hilbert space
- \mathcal{A} is a *-algebra invariant by holomorphic functional calculus, with a representation π into \mathcal{H} by bounded operators
- D is a self-adjoint operator on \mathcal{H} with compact resolvent such that $[D, \pi(f)] \in \mathcal{B}(\mathcal{H})$ is a bounded operator for all $f \in \mathcal{A}$.
- $(\mathcal{H}, \mathcal{A}, D)$ is called even if there is $G \in \mathcal{B}(\mathcal{H})$ such that
$-G=G^{*}=G^{-1}$

II.1)- Spectral Triples

A spectral triple is a family $(\mathcal{H}, \mathcal{A}, D)$, such that

- \mathcal{H} is a Hilbert space
- \mathcal{A} is a *-algebra invariant by holomorphic functional calculus, with a representation π into \mathcal{H} by bounded operators
- D is a self-adjoint operator on \mathcal{H} with compact resolvent such that $[D, \pi(f)] \in \mathcal{B}(\mathcal{H})$ is a bounded operator for all $f \in \mathcal{A}$.
- $(\mathcal{H}, \mathcal{A}, D)$ is called even if there is $G \in \mathcal{B}(\mathcal{H})$ such that

$$
\begin{aligned}
& -G=G^{*}=G^{-1} \\
& -[G, \pi(f)]=0 \text { for } f \in \mathcal{A}
\end{aligned}
$$

II.1)- Spectral Triples

A spectral triple is a family $(\mathcal{H}, \mathcal{A}, D)$, such that

- \mathcal{H} is a Hilbert space
- \mathcal{A} is a *-algebra invariant by holomorphic functional calculus, with a representation π into \mathcal{H} by bounded operators
- D is a self-adjoint operator on \mathcal{H} with compact resolvent such that $[D, \pi(f)] \in \mathcal{B}(\mathcal{H})$ is a bounded operator for all $f \in \mathcal{A}$.
- $(\mathcal{H}, \mathcal{A}, D)$ is called even if there is $G \in \mathcal{B}(\mathcal{H})$ such that
$-G=G^{*}=G^{-1}$
$-[G, \pi(f)]=0$ for $f \in \mathcal{A}$
$-G D=-D G$

II.2)- The spectral triple of an ultrametric Cantor set

II.2) - The spectral triple of an ultrametric Cantor set

Let $\mathcal{T}=(C, \mathcal{V}, \mathcal{E}, \delta)$ be the reduced Michon tree associated with an ultrametric Cantor set (C, d). Then

II.2) - The spectral triple of an ultrametric Cantor set

Let $\mathcal{T}=(C, \mathcal{V}, \mathcal{E}, \delta)$ be the reduced Michon tree associated with an ultrametric Cantor set (C, d). Then

- $\mathcal{H}=\ell^{2}(\mathcal{V}) \otimes \mathbb{C}^{2}$: any $\psi \in \mathcal{H}$ will be seen as a sequence $\left(\psi_{v}\right)_{v \in \mathcal{V}}$ with $\psi_{v} \in \mathbb{C}^{2}$

II.2)- The spectral triple of an ultrametric Cantor set

Let $\mathcal{T}=(C, \mathcal{V}, \mathcal{E}, \delta)$ be the reduced Michon tree associated with an ultrametric Cantor set (C, d). Then

- $\mathcal{H}=\ell^{2}(\mathcal{V}) \otimes \mathbb{C}^{2}$: any $\psi \in \mathcal{H}$ will be seen as a sequence $\left(\psi_{v}\right)_{v \in \mathcal{V}}$ with $\psi_{v} \in \mathbb{C}^{2}$
- G, D are defined by

$$
(D \psi)_{v}=\frac{1}{\delta(v)}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \psi_{v} \quad(G \psi)_{v}=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right] \psi_{v}
$$

so that they anticommute.

II.2)- The spectral triple of an ultrametric Cantor set

Let $\mathcal{T}=(C, \mathcal{V}, \mathcal{E}, \delta)$ be the reduced Michon tree associated with an ultrametric Cantor set (C, d). Then

- $\mathcal{H}=\ell^{2}(\mathcal{V}) \otimes \mathbb{C}^{2}$: any $\psi \in \mathcal{H}$ will be seen as a sequence $\left(\psi_{v}\right)_{v \in \mathcal{V}}$ with $\psi_{v} \in \mathbb{C}^{2}$
- G, D are defined by

$$
(D \psi)_{v}=\frac{1}{\delta(v)}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \psi_{v} \quad(G \psi)_{v}=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right] \psi_{v}
$$

so that they anticommute.

- $\mathcal{A}=C_{\text {Lip }}(C)$ is the space of Lipshitz continuous functions on (C, d)

II.3)-Choices

II.3)- Choices

The tree \mathcal{T} is reduced, meaning that only the vertices with more than one child are considered.

II.3)- Choices

The tree \mathcal{T} is reduced, meaning that only the vertices with more than one child are considered.

A choice will be a function $\tau: \mathcal{V} \mapsto C \times C$ such that if $\tau(v)=(x, y)$ then

II.3)- Choices

The tree \mathcal{T} is reduced, meaning that only the vertices with more than one child are considered.

A choice will be a function $\tau: \mathcal{V} \mapsto C \times C$ such that if $\tau(v)=(x, y)$ then

- $x, y \in[v]$

II.3)-Choices

The tree \mathcal{T} is reduced, meaning that only the vertices with more than one child are considered.

A choice will be a function $\tau: \mathcal{V} \mapsto C \times C$ such that if $\tau(v)=(x, y)$ then

- $x, y \in[v]$
- $d(x, y)=\delta(v)=\operatorname{diam}([v])$

II.3)-Choices

The tree \mathcal{T} is reduced, meaning that only the vertices with more than one child are considered.

A choice will be a function $\tau: \mathcal{V} \mapsto C \times C$ such that if $\tau(v)=(x, y)$ then

- $x, y \in[v]$
- $d(x, y)=\delta(v)=\operatorname{diam}([v])$

Let $\mathrm{Ch}(v)$ be the set of children of v. Consequently, the set $\Upsilon(C)$ of choices is given by

$$
\Upsilon(C)=\prod_{v \in \mathcal{V}} \Upsilon_{v} \quad \Upsilon_{v}=\bigsqcup_{w \neq w^{\prime} \in \operatorname{Ch}(v)}[w] \times\left[w^{\prime}\right]
$$

The set \mathcal{V} of vertices can be seen as a coarse-grained approximation of the Cantor set C.

The set \mathcal{V} of vertices can be seen as a coarse-grained approximation of the Cantor set C.

Similarly, the set Υ_{v} can be seen as a coarse-grained approximation the unit tangent vectors at v.

The set \mathcal{V} of vertices can be seen as a coarse-grained approximation of the Cantor set C.

Similarly, the set Υ_{v} can be seen as a coarse-grained approximation the unit tangent vectors at v.

Within this interpretation, the set $\Upsilon(C)$ can be seen as the unit sphere bundle inside the tangent bundle.

II.4)-Representations of \mathcal{H}

II.4)-Representations of \mathcal{A}

Let $\tau \in \Upsilon(C)$ be a choice. If $v \in \mathcal{V}$ write $\tau(v)=\left(\tau_{+}(v), \tau_{-}(v)\right)$. Then π_{τ} is the representation of $C_{\text {Lip }}(C)$ into \mathcal{H} defined by

II.4)-Representations of \mathcal{H}

Let $\tau \in \Upsilon(C)$ be a choice. If $v \in \mathcal{V}$ write $\tau(v)=\left(\tau_{+}(v), \tau_{-}(v)\right)$. Then π_{τ} is the representation of $C_{\text {Lip }}(C)$ into \mathcal{H} defined by

$$
\left(\pi_{\tau}(f) \psi\right)_{v}=\left[\begin{array}{cc}
f\left(\tau_{+}(v)\right) & 0 \\
0 & f\left(\tau_{-}(v)\right)
\end{array}\right] \psi_{v} \quad f \in C_{\text {Lip }}(C)
$$

II.4)- Representations of \mathcal{A}

Let $\tau \in \Upsilon(C)$ be a choice. If $v \in \mathcal{V}$ write $\tau(v)=\left(\tau_{+}(v), \tau_{-}(v)\right)$. Then π_{τ} is the representation of $C_{\text {Lip }}(C)$ into \mathcal{H} defined by

$$
\left(\pi_{\tau}(f) \psi\right)_{v}=\left[\begin{array}{cc}
f\left(\tau_{+}(v)\right) & 0 \\
0 & f\left(\tau_{-}(v)\right)
\end{array}\right] \psi_{v} \quad f \in C_{\text {Lip }}(C)
$$

Theorem The distance d on C can be recovered from the following Connes formula

$$
d(x, y)=\sup \left\{|f(x)-f(y)| ; \sup _{\tau \in \Upsilon(C)}\left\|\left[D, \pi_{\tau}(f)\right]\right\| \leq 1\right\}
$$

Remark: the commutator $\left[D, \pi_{\tau}(f)\right]$ is given by

$$
\left(\left[D, \pi_{\tau}(f)\right] \psi\right)_{v}=\frac{f\left(\tau_{+}(v)\right)-f\left(\tau_{-}(v)\right)}{d_{\delta}\left(\tau_{+}(v), \tau_{-}(v)\right)}\left[\begin{array}{cc}
0 & -1 \\
+1 & 0
\end{array}\right] \psi_{v}
$$

Remark: the commutator $\left[D, \pi_{\tau}(f)\right]$ is given by

$$
\left(\left[D, \pi_{\tau}(f)\right] \psi\right)_{v}=\frac{f\left(\tau_{+}(v)\right)-f\left(\tau_{-}(v)\right)}{d_{\delta}\left(\tau_{+}(v), \tau_{-}(v)\right)}\left[\begin{array}{cc}
0 & -1 \\
+1 & 0
\end{array}\right] \psi_{v}
$$

In particular $\sup _{\tau}\left\|\left[D, \pi_{\tau}(f)\right]\right\|$ is the Lipshitz norm of f

$$
\|f\|_{\text {Lip }}=\sup _{x \neq y \in C}\left|\frac{f(x)-f(y)}{d_{\delta}(x, y)}\right|
$$

III - ζ-function and Metric Measure

A. Conses, Noncommutative Geometry, Academic Press, 1994.
K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, John Wiley and Sons 1990.
G.H. Hardy \& M. Riesz, The General Theory of Dirichlet's Series, Cambridge University Press (1915).
III.1)- C-function

III.1)- ऽ-function

The ζ-function of the Dirac operator is defined by

$$
\zeta(s)=\operatorname{Tr}\left(\frac{1}{|D|^{s}}\right) \quad s \in \mathbb{C}
$$

III.1)- C-function

The ζ-function of the Dirac operator is defined by

$$
\zeta(s)=\operatorname{Tr}\left(\frac{1}{|D|^{s}}\right) \quad s \in \mathbb{C}
$$

The abscissa of convergence is a positive real number $s_{0}>0$ so that the series defined by the trace above converges for $\mathfrak{R}(s)>s_{0}$.

III.1)- ऍ-function

The ζ-function of the Dirac operator is defined by

$$
\zeta(s)=\operatorname{Tr}\left(\frac{1}{|D|^{s}}\right) \quad s \in \mathbb{C}
$$

The abscissa of convergence is a positive real number $s_{0}>0$ so that the series defined by the trace above converges for $\mathfrak{R}(s)>s_{0}$.

Theorem Let (C, d) be an ultrametric Cantor set. The abscissa of convergence of the ζ-function of the corresponding Dirac operator coincides with the upper box dimension of (C, d).

- The upper box dimension of a compact metric space (X, d) is defined by

$$
\overline{\operatorname{dim}}_{B}(C)=\limsup _{\delta \downarrow 0} \frac{\log N_{\delta}(C)}{-\log \delta}
$$

where $N_{\delta}(X)$ is the least number of sets of diameter at most δ that cover X.

- The upper box dimension of a compact metric space (X, d) is defined by

$$
\overline{\operatorname{dim}}_{B}(C)=\limsup _{\delta \downarrow 0} \frac{\log N_{\delta}(C)}{-\log \delta}
$$

where $N_{\delta}(X)$ is the least number of sets of diameter at most δ that cover X.

- Thanks to the definition of the Dirac operator

$$
\zeta(s)=2 \sum_{v \in \mathcal{V}} \delta(v)^{s}
$$

- The upper box dimension of a compact metric space (X, d) is defined by

$$
\overline{\operatorname{dim}}_{B}(C)=\limsup _{\delta \downarrow 0} \frac{\log N_{\delta}(C)}{-\log \delta}
$$

where $N_{\delta}(X)$ is the least number of sets of diameter at most δ that cover X.

- Thanks to the definition of the Dirac operator

$$
\zeta(s)=2 \sum_{v \in \mathcal{V}} \delta(v)^{s}
$$

- There are examples of metric Cantor sets with infinite upper box dimension. This is the case for the transversal of tilings with positive entropy.

III.2)- Dixmier Trace \& Metric Measure

III.2)- Dixmier Trace \& Metric Measure

If the abscissa of convergence is finite, then a probability measure μ on (C, d) can be defined as follows (if the limit exists)

$$
\mu(f)=\lim _{s \downarrow s_{0}} \frac{\operatorname{Tr}\left(|D|^{-s} \pi_{\tau}(f)\right)}{\operatorname{Tr}\left(|D|^{-s}\right)} \quad f \in C_{\mathrm{Lip}}(C)
$$

III.2)- Dixmier Trace \& Metric Measure

If the abscissa of convergence is finite, then a probability measure μ on (C, d) can be defined as follows (if the limit exists)

$$
\mu(f)=\lim _{s \downarrow s_{0}} \frac{\operatorname{Tr}\left(|D|^{-s} \pi_{\tau}(f)\right)}{\operatorname{Tr}\left(|D|^{-s}\right)} \quad f \in C_{\mathrm{Lip}}(C)
$$

This limit coincides with the normalized Dixmier trace

$$
\frac{\operatorname{Tr}_{\text {Dix }}\left(|D|^{-s_{0}} \pi_{\tau}(f)\right)}{\operatorname{Tr}_{\text {Dix }}\left(|D|^{-s_{0}}\right)}
$$

III.2)- Dixmier Trace \& Metric Measure

If the abscissa of convergence is finite, then a probability measure μ on (C, d) can be defined as follows (if the limit exists)

$$
\mu(f)=\lim _{s \downarrow s_{0}} \frac{\operatorname{Tr}\left(|D|^{-s} \pi_{\tau}(f)\right)}{\operatorname{Tr}\left(|D|^{-s}\right)} \quad f \in C_{\mathrm{Lip}}(C)
$$

This limit coincides with the normalized Dixmier trace

$$
\frac{\operatorname{Tr}_{\mathrm{Dix}}\left(|D|^{-s_{0}} \pi_{\tau}(f)\right)}{\operatorname{Tr}_{\mathrm{Dix}}\left(|D|^{-s_{0}}\right)}
$$

Theorem The definition of the Metric Measure μ is independent of the choice τ.

- If ζ admits an isolated simple pole at $s=s_{0}$, then $|D|^{-1}$ belongs to the Mačaev ideal $\mathcal{L}^{s_{0}+}(\mathcal{H})$. Therefore the measure μ is well defined.
- If ζ admits an isolated simple pole at $s=s_{0}$, then $|D|^{-1}$ belongs to the Mačaev ideal $\mathcal{L}^{s_{0}+}(\mathcal{H})$. Therefore the measure μ is well defined.
- There is a large class of Cantor sets (such as Iterated Function System) for which the measure μ coincides with the Hausdorff measure associated with the upper box dimension.
- If ζ admits an isolated simple pole at $s=s_{0}$, then $|D|^{-1}$ belongs to the Mačaev ideal $\mathcal{L}^{s_{0}+}(\mathcal{H})$. Therefore the measure μ is well defined.
- There is a large class of Cantor sets (such as Iterated Function System) for which the measure μ coincides with the Hausdorff measure associated with the upper box dimension.
- In particular μ is the metric analog of the Lebesgue measure class on a Riemannian manifold, in that the measure of a ball of radius r behaves like $r^{s_{0}}$ for r small

$$
\mu(B(x, r)) \stackrel{r \downarrow 0}{\sim} r^{s_{0}}
$$

- If ζ admits an isolated simple pole at $s=s_{0}$, then $|D|^{-1}$ belongs to the Mačaev ideal $\mathcal{L}^{s_{0}+}(\mathcal{H})$. Therefore the measure μ is well defined.
- There is a large class of Cantor sets (such as Iterated Function System) for which the measure μ coincides with the Hausdorff measure associated with the upper box dimension.
- In particular μ is the metric analog of the Lebesgue measure class on a Riemannian manifold, in that the measure of a ball of radius r behaves like $r^{s_{0}}$ for r small

$$
\mu(B(x, r)) \stackrel{r \downarrow 0}{\sim} r^{s_{0}}
$$

- μ is the analog of the volume form on a Riemannian manifold.

As a consequence μ defines a canonical probability measure v on the space of choices Υ as follows

$$
v=\bigotimes_{v \in \mathcal{V}} v_{v} \quad v_{v}=\left.\frac{1}{Z_{v}} \sum_{w \neq w^{\prime} \in \operatorname{Ch}(v)} \mu \otimes \mu\right|_{[w] \times[w]}
$$

where Z_{v} is a normalization constant given by

$$
Z_{v}=\sum_{w \neq w^{\prime} \in \operatorname{Ch}(v)} \mu([w]) \mu\left(\left[w^{\prime}\right]\right)
$$

IV - The Laplace-Beltrami Operator

M. Fukushima, Dirichlet Forms and Markou Processes, North-Holland (1980).
J. Pearson, J. Bellissard,

Noncommutative Riemannian Geometry and Diffusion on Ulltrametric Cantor Sets,
J. Noncommutative Geometry, 3, (2009), 447-480.
A. Julien, J. Savinien,

Transverse Laplacians for Substitution Tilings, arXiv:0008. 1095, August 2009.

IV.1)-Dirichlef Forms

IV.1)-Dirichlef Forms

Let (X, μ) be a probability space space. For f a real valued measurable function on X, let \hat{f} be the function obtained as

$$
\hat{f}(x)=\left\{\begin{array}{lll}
1 & \text { if } & f(x) \geq 1 \\
f(x) & \text { if } & 0 \leq f(x) \leq 1 \\
0 & \text { if } & f(x) \leq 0
\end{array}\right.
$$

Markovian cut-off of a real valued function

IV.1)-Dirichlef Forms

Let (X, μ) be a probability space space. For f a real valued measurable function on X, let \hat{f} be the function obtained as

$$
\hat{f}(x)=\left\{\begin{array}{lll}
1 & \text { if } & f(x) \geq 1 \\
f(x) & \text { if } & 0 \leq f(x) \leq 1 \\
0 & \text { if } & f(x) \leq 0
\end{array}\right.
$$

A Dirichlet form Q on X is a positive definite sesquilinear form $Q: L^{2}(X, \mu) \times L^{2}(X, \mu) \mapsto \mathbb{C}$ such that

IV.1)- Dirichlef Forms

Let (X, μ) be a probability space space. For f a real valued measurable function on X, let \hat{f} be the function obtained as

$$
\hat{f}(x)=\left\{\begin{array}{lll}
1 & \text { if } & f(x) \geq 1 \\
f(x) & \text { if } & 0 \leq f(x) \leq 1 \\
0 & \text { if } & f(x) \leq 0
\end{array}\right.
$$

A Dirichlet form Q on X is a positive definite sesquilinear form $Q: L^{2}(X, \mu) \times L^{2}(X, \mu) \mapsto \mathbb{C}$ such that

- Q is densely defined with domain $\mathcal{D} \subset L^{2}(X, \mu)$

IV.1)- Dirichlet Forms

Let (X, μ) be a probability space space. For f a real valued measurable function on X, let \hat{f} be the function obtained as

$$
\hat{f}(x)=\left\{\begin{array}{lll}
1 & \text { if } & f(x) \geq 1 \\
f(x) & \text { if } & 0 \leq f(x) \leq 1 \\
0 & \text { if } & f(x) \leq 0
\end{array}\right.
$$

A Dirichlet form Q on X is a positive definite sesquilinear form $Q: L^{2}(X, \mu) \times L^{2}(X, \mu) \mapsto \mathbb{C}$ such that

- Q is densely defined with domain $\mathcal{D} \subset L^{2}(X, \mu)$
- Q is closed

IV.1)- Dirichlef Forms

Let (X, μ) be a probability space space. For f a real valued measurable function on X, let \hat{f} be the function obtained as

$$
\hat{f}(x)=\left\{\begin{array}{lll}
1 & \text { if } & f(x) \geq 1 \\
f(x) & \text { if } & 0 \leq f(x) \leq 1 \\
0 & \text { if } & f(x) \leq 0
\end{array}\right.
$$

A Dirichlet form Q on X is a positive definite sesquilinear form $Q: L^{2}(X, \mu) \times L^{2}(X, \mu) \mapsto \mathbb{C}$ such that

- Q is densely defined with domain $\mathcal{D} \subset L^{2}(X, \mu)$
- Q is closed
- Q is Markovian, namely if $f \in \mathcal{D}$, then $Q(\hat{f}, \hat{f}) \leq Q(f, f)$

The simplest typical example of Dirichlet form is related to the Laplacian Δ_{Ω} on a bounded domain $\Omega \subset \mathbb{R}^{D}$

$$
Q_{\Omega}(f, g)=\int_{\Omega} d^{\mathrm{D}} x \overline{\nabla f(x)} \cdot \nabla g(x)
$$

with domain $\mathcal{D}=C_{0}^{1}(\Omega)$ the space of continuously differentiable functions on Ω vanishing on the boundary.

This form is closeable in $L^{2}(\Omega)$ and its closure defines a Dirichlet form.

Any closed positive sesquilinear form Q on a Hilbert space, defines canonically a positive self-adjoint operator $-\Delta_{Q}$ satisfying

$$
\left\langle f \mid-\Delta_{Q} g\right\rangle=Q(f, g)
$$

Any closed positive sesquilinear form Q on a Hilbert space, defines canonically a positive self-adjoint operator $-\Delta_{Q}$ satisfying

$$
\left\langle f \mid-\Delta_{Q} g\right\rangle=Q(f, g)
$$

In particular $\Phi_{t}=\exp \left(t \Delta_{Q}\right)$ (defined for $\left.t \in \mathbb{R}_{+}\right)$is a strongly continuous contraction semigroup.

Any closed positive sesquilinear form Q on a Hilbert space, defines canonically a positive self-adjoint operator $-\Delta_{Q}$ satisfying

$$
\left\langle f \mid-\Delta_{Q} g\right\rangle=Q(f, g)
$$

In particular $\Phi_{t}=\exp \left(t \Delta_{e}\right)$ (defined for $\left.t \in \mathbb{R}_{+}\right)$is a strongly continuous contraction semigroup.

If Q is a Dirichlet form on X, then the contraction semigroup $\Phi=\left(\Phi_{t}\right)_{t \geq 0}$ is a Markov semigroup.

A Markov semi-group Φ on $L^{2}(X, \mu)$ is a family $\left(\Phi_{t}\right)_{t \in[0,+\infty)}$ where

A Markov semi-group Φ on $L^{2}(X, \mu)$ is a family $\left(\Phi_{t}\right)_{t \in[0,+\infty)}$ where

- For each $t \geq 0, \Phi_{t}$ is a contraction from $L^{2}(X, \mu)$ into itself

A Markov semi-group Φ on $L^{2}(X, \mu)$ is a family $\left(\Phi_{t}\right)_{t \in[0,+\infty)}$ where

- For each $t \geq 0, \Phi_{t}$ is a contraction from $L^{2}(X, \mu)$ into itself
- (Markov property) $\Phi_{t} \circ \Phi_{s}=\Phi_{t+s}$

A Markov semi-group Φ on $L^{2}(X, \mu)$ is a family $\left(\Phi_{t}\right)_{t \in[0,+\infty)}$ where

- For each $t \geq 0, \Phi_{t}$ is a contraction from $L^{2}(X, \mu)$ into itself
- (Markov property) $\Phi_{t} \circ \Phi_{s}=\Phi_{t+s}$
- (Strong continuity) the map $t \in[0,+\infty) \mapsto \Phi_{t}$ is strongly continuous

A Markov semi-group Φ on $L^{2}(X, \mu)$ is a family $\left(\Phi_{t}\right)_{t \in[0,+\infty)}$ where

- For each $t \geq 0, \Phi_{t}$ is a contraction from $L^{2}(X, \mu)$ into itself
- (Markov property) $\Phi_{t} \circ \Phi_{s}=\Phi_{t+s}$
- (Strong continuity) the map $t \in[0,+\infty) \mapsto \Phi_{t}$ is strongly continuous
- $\forall t \geq 0, \Phi_{t}$ is positivity preserving : $f \geq 0 \Rightarrow \Phi_{t}(f) \geq 0$

A Markov semi-group Φ on $L^{2}(X, \mu)$ is a family $\left(\Phi_{t}\right)_{t \in[0,+\infty)}$ where

- For each $t \geq 0, \Phi_{t}$ is a contraction from $L^{2}(X, \mu)$ into itself
- (Markov property) $\Phi_{t} \circ \Phi_{s}=\Phi_{t+s}$
- (Strong continuity) the map $t \in[0,+\infty) \mapsto \Phi_{t}$ is strongly continuous
- $\forall t \geq 0, \Phi_{t}$ is positivity preserving : $f \geq 0 \Rightarrow \Phi_{t}(f) \geq 0$
- Φ_{t} is normalized, namely $\Phi_{t}(1)=1$.

A Markov semi-group Φ on $L^{2}(X, \mu)$ is a family $\left(\Phi_{t}\right)_{t \in[0,+\infty)}$ where

- For each $t \geq 0, \Phi_{t}$ is a contraction from $L^{2}(X, \mu)$ into itself
- (Markov property) $\Phi_{t} \circ \Phi_{s}=\Phi_{t+s}$
- (Strong continuity) the map $t \in[0,+\infty) \mapsto \Phi_{t}$ is strongly continuous
- $\forall t \geq 0, \Phi_{t}$ is positivity preserving : $f \geq 0 \Rightarrow \Phi_{t}(f) \geq 0$
- Φ_{t} is normalized, namely $\Phi_{t}(1)=1$.

Theorem (Fukushima) A contraction semi-group on $L^{2}(X, \mu)$ is a Markov semi-group if and only if its generator is defined by a Dirichlet form.

IV.2). The Laplace-Beltrami Form

IV.2) The Laplace-Beltrami Form

Let M be a Riemannian manifold of dimension D. The LaplaceBeltrami operator is associated with the Dirichlet form

IV.2) The Laplace-Beltrami Form

Let M be a Riemannian manifold of dimension D. The LaplaceBeltrami operator is associated with the Dirichlet form

$$
Q_{\mathrm{M}}(f, g)=\sum_{i, j=1}^{D} \int_{M} d^{\mathrm{D} x} \sqrt{\operatorname{det}(g(x))} g^{i j}(x) \overline{\partial_{i} f(x)} \partial_{j} g(x)
$$

where g is the metric.

IV.2)- The Laplace-Bettrami Form

Let M be a Riemannian manifold of dimension D. The LaplaceBeltrami operator is associated with the Dirichlet form

$$
Q_{\mathrm{M}}(f, g)=\sum_{i, j=1}^{D} \int_{M} d^{\mathrm{D} x} \sqrt{\operatorname{det}(g(x))} g^{i j}(x) \overline{\partial_{i} f(x)} \partial_{j} g(x)
$$

where g is the metric. Equivalently (in local coordinates)

$$
Q_{M}(f, g)=\int_{M} d^{\mathrm{D}} x \sqrt{\operatorname{det}(g(x))} \int_{S(x)} d v_{x}(u) \overline{u \cdot \nabla f(x)} u \cdot \nabla g(x)
$$

IV.2) The Laplace-Bettrami Form

Let M be a Riemannian manifold of dimension D. The LaplaceBeltrami operator is associated with the Dirichlet form

$$
Q_{\mathrm{M}}(f, g)=\sum_{i, j=1}^{D} \int_{M} d^{\mathrm{D}} x \sqrt{\operatorname{det}(g(x))} g^{i j}(x) \overline{\partial_{i} f(x)} \partial_{j} g(x)
$$

where g is the metric. Equivalently (in local coordinates)

$$
Q_{\mathrm{M}}(f, g)=\int_{M} d^{\mathrm{D}} x \sqrt{\operatorname{det}(g(x))} \int_{S(x)} d v_{x}(u) \overline{u \cdot \nabla f(x)} u \cdot \nabla g(x)
$$

where $S(x)$ represent the unit sphere in the tangent space whereas v_{x} is the normalized Haar measure on $S(x)$.

Similarly, if (C, d) is an ultrametric Cantor set, the expression

$$
\left[D, \pi_{\tau}(f)\right]
$$

can be interpreted as a directional derivative, analogous to $u \cdot \nabla f$, since a choice τ has been interpreted as a unit tangent vector.

Similarly, if (C, d) is an ultrametric Cantor set, the expression

$$
\left[D, \pi_{\tau}(f)\right]
$$

can be interpreted as a directional derivative, analogous to $u \cdot \nabla f$, since a choice τ has been interpreted as a unit tangent vector.

The Laplace-Pearson operators are defined, by analogy, by

$$
Q_{s}(f, g)=\int_{\Upsilon} d v(\tau) \operatorname{Tr}\left\{\frac{1}{|D|^{S}}\left[D, \pi_{\tau}(f)\right]^{*}\left[D, \pi_{\tau}(g)\right]\right\}
$$

for $f, g \in C_{\text {Lip }}(C)$ and $s>0$.

Let \mathcal{D} be the linear subspace of $L^{2}(C, \mu)$ generated by the characteristic functions of the clopen sets $[v], v \in \mathcal{V}$. Then

Let \mathcal{D} be the linear subspace of $L^{2}(C, \mu)$ generated by the characteristic functions of the clopen sets $[v], v \in \mathcal{V}$. Then

Theorem For any $s \in \mathbb{R}$, the form Q_{s} defined on \mathcal{D} is closeable on $L^{2}(C, \mu)$ and its closure is a Dirichlet form.

Let \mathcal{D} be the linear subspace of $L^{2}(C, \mu)$ generated by the characteristic functions of the clopen sets $[v], v \in \mathcal{V}$. Then

Theorem For any $s \in \mathbb{R}$, the form Q_{s} defined on \mathcal{D} is closeable on $L^{2}(C, \mu)$ and its closure is a Dirichlet form.
The corresponding operator $-\Delta_{s}$ leaves \mathcal{D} invariant, has a discrete spectrum.

Let \mathcal{D} be the linear subspace of $L^{2}(C, \mu)$ generated by the characteristic functions of the clopen sets $[v], v \in \mathcal{V}$. Then

Theorem For any $s \in \mathbb{R}$, the form Q_{s} defined on \mathcal{D} is closeable on $L^{2}(C, \mu)$ and its closure is a Dirichlet form.
The corresponding operator $-\Delta_{s}$ leaves \mathcal{D} invariant, has a discrete spectrum.

For $s<s_{0}+2,-\Delta_{s}$ is unbounded with compact resolvent.

IV.3) - Jumps Process over Gaps

IV.3). Jumps Process over Gaps

Δ_{s} generates a Markov semigroup, thus a stochastic process $\left(X_{t}\right)_{t \geq 0}$ where the X_{t} 's takes on values in C.

IV.3). Jumps Process over Gaps

Δ_{s} generates a Markov semigroup, thus a stochastic process $\left(X_{t}\right)_{t \geq 0}$ where the X_{t} 's takes on values in C.

Given $v \in \mathcal{V}$, its spine is the set of vertices located along the finite path joining the root to v.

IV.3). Jumps Process over Gaps

Δ_{s} generates a Markov semigroup, thus a stochastic process $\left(X_{t}\right)_{t \geq 0}$ where the X_{t} 's takes on values in C.

Given $v \in \mathcal{V}$, its spine is the set of vertices located along the finite path joining the root to v. The vine $\mathcal{V}(v)$ of v is the set of vertices w, not in the spine, which are children of one vertex of the spine.

IV.3)- Jumps Process over Gaps

Δ_{s} generates a Markov semigroup, thus a stochastic process $\left(X_{t}\right)_{t \geq 0}$ where the X_{t} 's takes on values in C.

Given $v \in \mathcal{V}$, its spine is the set of vertices located along the finite path joining the root to v. The vine $\mathcal{V}(v)$ of v is the set of vertices w, not in the spine, which are children of one vertex of the spine.
Then if χ_{v} is the characteristic function of $[v]$

$$
\Delta_{s} \chi_{v}=\sum_{w \in \mathcal{Y}(v)} p(v, w)\left(\chi_{w}-\chi_{v}\right)
$$

IV.3)- Jumps Process over Gaps

Δ_{s} generates a Markov semigroup, thus a stochastic process $\left(X_{t}\right)_{t \geq 0}$ where the X_{t} 's takes on values in C.

Given $v \in \mathcal{V}$, its spine is the set of vertices located along the finite path joining the root to v. The vine $\mathcal{V}(v)$ of v is the set of vertices w, not in the spine, which are children of one vertex of the spine.
Then if χ_{v} is the characteristic function of $[v]$

$$
\Delta_{s} \chi_{v}=\sum_{w \in \mathcal{Y}(v)} p(v, w)\left(\chi_{w}-\chi_{v}\right)
$$

where $p(v, w)>0$ represents the probability for X_{t} to jump from v to w per unit time.

The vine of a vertex v

Jump process from v to w

The tree for the triadic ring $\mathbb{Z}(3)$

Jump process in $\mathbb{Z}(3)$

Jump process in $\mathbb{Z}(3)$

Jump process in $\mathbb{Z}(3)$

Concretely, if \hat{w} denotes the father of w (which belongs to the spine)

$$
p(v, w)=2 \delta(\hat{w})^{s-2} \frac{\mu([v])}{Z_{\hat{w}}}
$$

where $Z_{\hat{w}}$ is the normalization constant for the measure $v_{\hat{w}}$ on the set of choices at \hat{w}, namely

$$
Z_{\hat{w}}=\sum_{u \neq u^{\prime} \in \operatorname{Ch}(\hat{w})} \mu([u]) \mu\left(\left[u^{\prime}\right]\right)
$$

IV.4)- Eigenspaces

Let v be a vertex of the Michon graph with $\operatorname{Ch}(v)$ as its set of children.

IV.4) - Eigenspaces

Let v be a vertex of the Michon graph with $\mathrm{Ch}(v)$ as its set of children. Let \mathcal{E}_{v} be the linear space generated by the characteristic function χ_{w} of the $[w]$'s with $w \in \operatorname{Ch}(v)$.

IV.4)-Eigenspaces

Let v be a vertex of the Michon graph with $\mathrm{Ch}(v)$ as its set of children. Let \mathcal{E}_{v} be the linear space generated by the characteristic function χ_{w} of the $[w]$'s with $w \in \mathrm{Ch}(v)$. In particular

$$
\chi_{v}=\sum_{w \in \operatorname{Ch}(v)} \chi_{w} \in \mathcal{E}_{v}
$$

IV.4)-Eigenspaces

Let v be a vertex of the Michon graph with $\mathrm{Ch}(v)$ as its set of children. Let \mathcal{E}_{v} be the linear space generated by the characteristic function χ_{w} of the $[w]$'s with $w \in \operatorname{Ch}(v)$. In particular

$$
\chi_{v}=\sum_{w \in \operatorname{Ch}(v)} \chi_{w} \in \mathcal{E}_{v}
$$

Theorem For any $s \in \mathbb{R}$, the eigenspaces of $-\Delta_{s}$ are the spaces of the form $\left\{\chi_{v}\right\}^{\perp} \subset \mathcal{E}_{v}$, namely, the orthogonal complement of χ_{v} is \mathcal{E}_{v}.

IV.5)-The Triadic Cantor Set

IV.5)-The Triadic Cantor Set

If C is the triadic Cantor set

IV.5)-The Triadic Cantor Set

If C is the triadic Cantor set

- The eigenvalues $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ of Δ_{S} can be computed explicitly

More precisely, the eigenvalues are

$$
\lambda_{n}=-2\left(1+3^{s_{0}+2-s}+\cdots+3^{\left(s_{0}+2-s\right)(n-2)}+2 \cdot 3^{\left(s_{0}+2-s\right)(n-1)}\right)
$$

with $n \geq 1$ and with multiplicity

$$
g_{n}=2^{n-1}
$$

IV.5)- The Triadic Cantor Set

If C is the triadic Cantor set

- The eigenvalues $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ of Δ_{S} can be computed explicitly
- The eigenfunctions can also be computed explicitly

In the triadic Cantor set a vertex v at level n of the hierarchy, can be labeled by a finite string 0110001 of 0's and 1's of length n.

The eigenfunctions are given by the Haar functions defined by

$$
\varphi_{\omega}=\sum_{v \in\{0,1\}^{n}}(-1)^{\omega \cdot v} \chi_{v}
$$

where $\omega \in\{0,1\}^{\mathbb{N}}$ and $|\omega| \leq n$ if $|\omega|$ denotes the maximum index k such that $\omega_{k}=1$.

IV.4)-The Triadic Cantor Set

If C is the triadic Cantor set

- The eigenvalues $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ of Δ_{S} can be computed explicitly
- The eigenfunctions can also be computed explicitly
- The density of state $\mathcal{N}(\lambda)=\#\left\{n \in \mathbb{N} ; \lambda_{n} \leq \lambda\right\}$ satisfies the Weyl asymptotics (where $k>0$ is explicit)

IV.4)-The Triadic Cantor Set

If C is the triadic Cantor set

- The eigenvalues $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ of Δ_{S} can be computed explicitly
- The eigenfunctions can also be computed explicitly
- The density of state $\mathcal{N}(\lambda)=\#\left\{n \in \mathbb{N} ; \lambda_{n} \leq \lambda\right\}$ satisfies the Weyl asymptotics (where $k>0$ is explicit)

$$
\mathcal{N}(\lambda) \stackrel{\lambda \uparrow \infty}{=} 2\left(\frac{\lambda}{k}\right)^{s_{0} /\left(2+s_{0}-s\right)}(1+o(1))
$$

IV.4)-The Triadic Cantor Set

If C is the triadic Cantor set

- The eigenvalues $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ of Δ_{S} can be computed explicitly
- The eigenfunctions can also be computed explicitly
- The density of state $\mathcal{N}(\lambda)=\#\left\{n \in \mathbb{N} ; \lambda_{n} \leq \lambda\right\}$ satisfies the Weyl asymptotics (where $k>0$ is explicit)

$$
\mathcal{N}(\lambda) \stackrel{\lambda \uparrow \infty}{=} 2\left(\frac{\lambda}{k}\right)^{s_{0} /\left(2+s_{0}-s\right)}(1+o(1))
$$

- If $s=s_{0}$ then $\mathcal{N}(\lambda) \sim \lambda^{s_{0} / 2}$ suggesting that s_{0} is the right dimension for the noncommutative Riemannian manifold (C, d).

In addition, the stochastic process has an anomalous diffusion

$$
\mathbb{E}\left\{d\left(X_{t_{0}}, X_{t_{0}+t}\right)^{2}\right\} \stackrel{t \downarrow 0}{=} D t \ln (1 / t)(1+o(1))
$$

for some explicit positive D.

V - To conclude

- Ultrametric Cantor sets can be described as Riemannian manifolds, through Noncommutative Geometry.
- An analog of the tangent unit sphere is given by choices
- The upper box dimension plays the role of the dimension
- A volume measure is defined through the Dixmier trace
- A Laplace-Beltrami operator is defined with compact resolvent and Weyl asymptotics
- It generates a jump process playing the role of the Brownian motion.
- This process exhibits anomalous diffusion.

