#### Sponsoring







# COHOMOLOGY

#### Jean BELLISSARD

Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics e-mail: jeanbel@math.gatech.edu

#### **Main References**

J. E. Anderson, I. F. Putnam, Ergod. Th, & Dynam. Sys., 18, (1998), 509-537.

J. KELLENDONK, *Pattern-equivariant functions and cohomology*, J. Phys. A, **36**, (2003), 5765-5772.

L. SADUN, *Topology of tiling spaces*, U. Lecture Series, **46**, American Mathematical Society, Providence, RI, (2008).

J. Bellissard, J. Savinien, Erg. Th. Dyn. Syst., 29, (2009), 997-1031.

J. Bellissard, A. Julien, J. Savinien, Ann. Henri Poincaré, 11, (2010), 69-99.

#### Content

- 1. Cohomology of The Hull
- 2. *K*-theory
- 3. Physical Interpretation

# I - Cohomology for the Hull

L. SADUN, *Topology of tiling spaces*, U. Lecture Series, **46**, American Mathematical Society, Providence, RI, (2008).

F. GÄHLER, J. R. HUNTON, J. KELLENDONK, *Torsion in Tiling Homology and Cohomology* arXiv:math-ph/0505048, (2005).

> F. GÄHLER, J. R. HUNTON, J. KELLENDONK, arXiv:0809.4442, (2008). Integer Čech Cohomology of Icosahedral Projection Tilings

# Čech Cohomology

- Let *X* be a *compact metrizable* space. Given an *open cover*  $\mathcal{U}$ , let  $C_k(\mathcal{U})$  be the free group generated by the families  $(U_0, \dots, U_k)$  of elements of  $\mathcal{U}$ , such that
  - $-U_0\cap\cdots\cap U_k\neq \emptyset$
  - for any permutation  $\sigma$ ,  $(U_{\sigma 0}, \dots, U_{\sigma k}) = (-1)^{\sigma}(U_0, \dots, U_k)$
- A boundary map  $\partial : C_k(\mathcal{U}) \to C_{k-1}(\mathcal{U})$  is defined by

$$\partial(U_0,\cdots,U_k) = \sum_{j=0}^k (-1)^j (U_0,\cdots,\bigvee^j,\cdots,U_k)$$

• The homology and the cohomology of this chain complex are denoted by  $H_k(\mathcal{U})$  and  $H^k(\mathcal{U})$ 

# Čech Cohomology

- If  $\mathcal{V} \leq \mathcal{U}$  is a *refinement* of  $\mathcal{U}$ , a *restriction* map  $\pi$  is a choice, for any  $V \in \mathcal{V}$  of an open set  $U \in \mathcal{U}$  such that  $V \subset U$ . Any such map induces a map  $\pi_k : C_k(\mathcal{V}) \to C_k(\mathcal{U})$ , commuting with the boundary. Hence it defines a map  $\pi_{\mathcal{U}}^k : H^k(\mathcal{U}) \to H^k(\mathcal{V})$ .
- **Theorem:** the maps  $(\pi_{\mathcal{U}\to\mathcal{V}}^k)_{k=0}^{\infty}$  are independent of the choice  $\pi$  for the restriction map
- The Čech cohomology groups are the direct limits

 $\check{H}^k(X) = \lim_{\to} (H^k(\mathcal{U}), \pi^k_{\mathcal{U} \to \mathcal{V}})$ 

# Čech Cohomology

#### • Theorem:

If X, Y are compact metrizable spaces and  $f : X \to Y$  is continuous, it induces a group homomorphism  $f^* : \check{H}^k(Y) \to \check{H}^k(X)$ .

#### • Theorem:

If  $\Omega$  is the inverse limit of a sequence  $X_n \xrightarrow{f_n} X_{n-1}$ , with  $f_n$  continuous, then

 $\check{H}^k(\Omega) = \lim_{\to} (H^k(X_n), f_n^*)$ 

• In particular, the Čech cohomology of the *Hull* can be computed from the Čech cohomology of the *Anderson-Putnam complexes* 

#### **Example: the Fibonacci chain**



 $\partial(aab) = C - A$   $\partial(bab) = C - B$   $\partial(baa) = A - B$  $\partial(aba) = B - C$ 

$$0 \to C_1 \simeq \mathbb{Z}^4 \xrightarrow{\partial} C_0 \simeq \mathbb{Z}^3 \to 0$$

 $H_1(X) = \operatorname{Ker}(\partial) \simeq \mathbb{Z}^2$ 

 $H_0(X) = \operatorname{Im}(\partial) \simeq \mathbb{Z}$ 

#### **Example: the Fibonacci chain**



Action of the substitution on the Anderson-Putnam complex

#### A Table of Results

| Tiling             | $\check{H}^0$ | $\check{H}^1$                            | $\check{H}^2$                                                   | $\check{H}^3$                            |
|--------------------|---------------|------------------------------------------|-----------------------------------------------------------------|------------------------------------------|
| Fibonacci 1D       | Z             | $\mathbb{Z}^2$                           |                                                                 |                                          |
| Thue-Morse 1D      | $\mathbb{Z}$  | $\mathbb{Z}[1/2] \oplus \mathbb{Z}$      |                                                                 |                                          |
| Penrose 2D         | $\mathbb{Z}$  | $\mathbb{Z}^5$                           | $\mathbb{Z}^8$                                                  |                                          |
| Chair 2D           | $\mathbb{Z}$  | $\mathbb{Z}[1/2] \oplus \mathbb{Z}[1/2]$ | $\mathbb{Z}[1/4] \oplus \mathbb{Z}[1/2] \oplus \mathbb{Z}[1/2]$ |                                          |
| AB. 2D plain       | $\mathbb{Z}$  | $\mathbb{Z}^5$                           | $\mathbb{Z}^9$                                                  |                                          |
| AB. 2D decorated   | $\mathbb{Z}$  | $\mathbb{Z}^9$                           | $\mathbb{Z}^{23}$                                               |                                          |
| Tübingen triangle  | $\mathbb{Z}$  | $\mathbb{Z}^5$                           | $\mathbb{Z}^{24}\oplus\mathbb{Z}_5^2$                           |                                          |
| Canonical $3D D_6$ | $\mathbb{Z}$  | $\mathbb{Z}^7$                           | $\mathbb{Z}^{72}$                                               | $\mathbb{Z}^{208} \oplus \mathbb{Z}_2^2$ |

Cohomology groups for some tilings in one, two and three dimensions.

"A.-B." stands for Ammann-Beenker (octagonal symmetry)

A. H. Forrest, J. R. Hunton, Erg. Th. Dyn. Syst., 19 (1999), 611-625.J. Bellissard, J. Savinien, Erg. Th. Dyn. Syst., 29, (2009), 997-1031.

#### The Thom-Connes Isomorphism

• The *Thom-Connes* isomorphism gives

 $K_i(C(\text{Hull}) \rtimes \mathbb{R}^d) \simeq K_{i+d}(C(\text{Hull}))$ 

- It follows that it is sufficient to compute the topological *K*-theory of the Hull.
- An analog of the *Atiyah-Hirzebruch spectral sequence* for *CW*-complexes, will permit to compute it from the computation of the *Čech cohomology*.

#### The Pimsner-Voiculescu Exact Sequence

Let  $\mathcal{A}$  be a C\*-algebra endowed with an action  $\alpha$  of  $\mathbb{Z}$ . Then there is a 6-*terms exact sequence* in *K*-theory

which allows to compute  $K_*(\mathcal{A} \rtimes \mathbb{Z})$ 

• Let  $\mathcal{A}$  be a C\*-algebra endowed with an action  $\alpha = (\alpha_1, \dots, \alpha_d)$  of  $\mathbb{Z}^d$ . If  $\{e_1, \dots, e_d\}$  are the generators of  $\mathbb{Z}^d$ , the *PV-complex* is given by

$$K_*(\mathcal{A}) \otimes \Lambda^* \mathbb{Z}^d \xrightarrow{d_{PV}} K_*(\mathcal{A}) \otimes \Lambda^* \mathbb{Z}^d \qquad d_{PV} = \sum_{i=1}^d (\alpha_{i*} - \mathbf{1}) \otimes e_i \wedge$$

- **Theorem:** There is a spectral sequence starting with the cohomology of the PV-complex and converging to the K-theory of  $\mathcal{A} \rtimes \mathbb{Z}^d$
- The proof uses the mapping torus  $M_{\alpha}(\mathcal{A})$ .

The keys to lift the previous result to the C\*-algebra of a tiling are

Mapping Torus $\longrightarrow$  C(Hull)Torus $\leftrightarrow$  Anderson-Putnam complex $\mathcal{A}$  $\longleftrightarrow$  C(Trans) $\mathbb{Z}^d$  - action $\longleftrightarrow$  Groupoid of the Transversal

• Let *T* be an aperiodic, repetitive, FLC tiling with polyhedral tiles. Let  $\Omega = \text{Hull}(T)$ .



Replace each tile by a *simplicial decomposition*  $\Delta$ . Each simplex  $\sigma$  is endowed with a *base point*  $x_{\sigma}$ (its barycenter) compatible with the equivalence by translation making a Delone set  $\mathcal{L}_{\Delta}$ .

• Let  $\Xi_{\Delta}$  be the *transversal* for  $\mathcal{L}_{\Delta}$  (it is a Cantor set). Let  $\Xi_{\Delta}^{n}$  be the part of the transversal corresponding to base points of *n*-simplices ( $0 \le n \le d$ ). The  $\Xi_{\Delta}^{n}$  make up a *partition* of  $\Xi_{\Delta}$ .

- Hence  $C(\Xi_{\Delta}, \mathbb{Z}) = \bigoplus_{n=0}^{d} C(\Xi_{\Delta}^{n}, \mathbb{Z})$
- The construction of the Anderson-Putnam complex  $X_0$  associated with the *collared prototiles* leads also to a simplicial decomposition. Let  $S_0^n$  be the set of *n*-simplices in  $X_0$ .
- For  $\sigma \in S_0^n$  there are
  - a *Delone* subset  $\mathcal{L}_{\sigma} \subset \mathcal{L}_{\Delta}$  of base point of the simplices in the tiling, translation equivalent to  $\sigma$ .
  - the corresponding *transversal*  $\Xi(\sigma) \subset \Xi_{\Delta}$  (acceptance domain)
  - the characteristic function  $\chi_{\sigma} \in C(\Xi_{\Delta}, \mathbb{Z})$  of  $\Xi(\sigma)$

• Given any pair  $(\sigma, \tau)$  of simplices in  $X_0$  such that  $\tau \subset \partial \sigma$ , there is a well defined *translation vector*  $x_{\sigma\tau} = x_{\tau} - x_{\sigma} \in \mathbb{R}^d$  translating the base point of a representative of  $\sigma$  in the tiling, to the corresponding one for  $\tau$ 



The translation vector  $x_{\sigma\tau}$ 

- Given any pair  $(\sigma, \tau)$  of simplices in  $X_0$  such that  $\tau \subset \partial \sigma$ , there is a well defined *translation vector*  $x_{\sigma\tau} = x_{\tau} x_{\sigma} \in \mathbb{R}^d$  translating the base point of a representative of  $\sigma$  in the tiling, to the corresponding one for  $\tau$
- Then define the *translation operator* acting on  $C(\Xi_{\Delta}, \mathbb{Z})$  by

$$\theta_{\sigma\tau} = \begin{cases} \chi_{\sigma} T^{\chi_{\sigma\tau}} \chi_{\tau} & \text{if } \tau \subset \partial \sigma \\ 0 & \text{otherwise} \end{cases}$$

 $\theta_{\sigma\tau}\theta^*_{\sigma\tau}=\chi_{\sigma}$ 

$$\sum_{\tau \subset \partial \sigma} \theta^*_{\sigma\tau} \theta_{\sigma;\tau \subset \partial \sigma} = \chi_{\tau}$$

• The following operator acting on  $C(\Xi_{\Delta}, \mathbb{Z}) = \bigoplus_{n=0}^{d} C(\Xi_{\Delta}^{n}, \mathbb{Z})$  defines a cochain complex

$$d_{PV} = \sum_{\sigma \in S_0^n} \sum_{j=1}^n (-1)^j \theta_{\sigma \partial_j \sigma} \qquad d_{PV}^2 = 0$$
$$C(\Xi_{\Delta}^0) \xrightarrow{d_{PV}} \cdots \xrightarrow{0} C(\Xi_{\Delta}^{n-1}) \xrightarrow{d_{PV}} C(\Xi_{\Delta}^n) \longrightarrow \cdots \xrightarrow{d_{PV}} C(\Xi_{\Delta}^d)$$

• It leads to the *PV-cohomology* groups

$$H^{n}_{_{PV}}(X_{0}; C(\Xi_{\Delta}, \mathbb{Z})) = \frac{\operatorname{Ker}\left\{C(\Xi_{\Delta}^{n}) \xrightarrow{d_{PV}} C(\Xi_{\Delta}^{n+1})\right\}}{\operatorname{Im}\left\{C(\Xi_{\Delta}^{n-1}) \xrightarrow{d_{PV}} C(\Xi_{\Delta}^{n})\right\}}$$



The main results are the following (Savinien-Bellissard '08)

- **Theorem:** the PV-cohomology of this complex coincides with the Čech cohomology of the Hull
- **Theorem:** There is a spectral sequence starting with the PVcohomology and converging to the K-theory of the Hull
- **Theorem:** If *d* = 1,2,3, the *K*-theory of the Hull coincides with the *PV-cohomology*

### Other Cohomologies

• **Longitudinal cohomology:** defined for foliated space *The de Rham complex* of differential form along the leaves with continuous coefficient on the space leads to this cohomology

(Connes '79, Moore-Schochet '88) The coefficient group is  $\mathbb{R}$  or  $\mathbb{C}$ .

- Pattern Equivariant cohomology: (Kellendonk '03, Sadun '06):
  - If  $\mathcal{L}$  is a Delone set, a continuous function  $f : \mathbb{R}^d \to \mathbb{C}$  is *strongly*  $\mathcal{L}$ -*pattern equivariant* whenever there is R > 0 such that f(x) = f(y) every time  $\overline{B}(0; R) \cap (\mathcal{L} x) = \overline{B}(0; R) \cap (\mathcal{L} y)$
  - The *de Rham complex* of differential forms on  $\mathbb{R}^d$  with strongly pattern equivariant coefficient defines the *PE-cohomology*
  - The *PE*-cohomology with coefficient in **Z** can also be defined



- **Theorem:** If *L* is aperiodic, repetitive and FLC, the PV-, the longitudinal and the PE-cohomologies coincide with the Čech cohomology of the Hull
- **Remark:** this result may not apply if the FLC condition is relaxed (*Bellissard-Ulgen-Weinberger '12, in preparation*)

# Is Cohomology Measurable ?

- Since the atomic positions in a solid define the Hull it should be possible to *"measure"* the Hull in some way. Such measurements could help physicists to identify the properties of the atomic arrangements.
- Diffraction Experiments:
  - X-ray diffraction (transmission or absorption), transmission electron microscopy (TEM), neutron diffraction, surface electron...
  - It intends to give the *Fourier transform* of the measure  $v^{\mathcal{L}}$ . Actually it gives only some amplitude and the phases are not accessible. Still, some part of the cohomology of the Hull should be "*visible*"

## Is Cohomology Measurable ?

#### • Electron Transport:

- the electron dynamics can be used, also since the Hull of the one-particle Hamiltonian coincides with the Hull of  $\mathcal{L}$ .
- This provides some information about the electronic energy spectrum, measurable in various ways, using for instance *X*-rays absorption or emission, or junction experiments
- As already seen, the *Gap Labeling Theorem* is a possible way to get some information about the cohomology of the Hull.
- Transport experiments can also provide some information. The *Quantum Hall Effect* is a spectacular example.

## Is Cohomology Measurable ?

- Other Degrees of Freedom: phonons, electron spin, atomic diffusion
  - The *phonon vibrational modes* are obtained through a bounded selfadjoint operator belonging toin the C\*-algebra of the transversal. It also contains the same information as the groupoid of the transversal. Hence the cohomology of the Hull should have some *measurable traces*. Here also the *Gap Labeling Theorem* applies.
  - Not much is known about the spin degrees of freedom, even though the recent topic of *Topological Insulators* suggests that some topological invariants might be available through them.

A. CLARK, L. SADUN, Ergodic Theory Dynam. Systems, 26, (2006), 69-86.

- Let *T* be a polyhedral tiling. An *edge* is a 1*D*-face of a prototile and can be seen as a subset of the Anderson-Putnam complex  $X_0$ . The free abelian group generated by edges is  $C_1(X_0)$ . A *displacement* is a map  $f : edges \to \mathbb{R}^d$ , such that
  - the displacements of the edges in any *k-cell* lie in a *kD*-subspace of  $\mathbb{R}^d$
  - the *sum* of the displacements along the edge of a 2-*cell* is zero
- A displacement can be seen as an element of  $C^1(X_0, \mathbb{R}^d) = \operatorname{Hom}(C_1(X_0), \mathbb{R}^d).$ Moreover,  $df(t) = f(\partial t) = 0$  implies that f defines an element  $I(f) \in H^1(X_0, \mathbb{R}^d)$  hence there is  $\check{I}(f) \in \check{H}^1(X_0, \mathbb{R}^d)$

• Given a displacement function f, a new tiling  $T_f$  is built,

• **Theorem:** *Hull(T) and* Hull(*T<sub>f</sub>*) *are homeomorphic* 

- A tilings *T'* is *locally derivable* from *T* if there is R > 0 such that for all  $x, y \in \mathbb{R}^d$  the condition  $(T x) \cap \overline{B}(0; R) = (T y) \cap \overline{B}(0; R)$  implies  $(T' x) \cap \overline{B}(0; 1) = (T' y) \cap \overline{B}(0; 1)$ .
- If *T* and *T*′ are locally derivable from each other that they are called *mutually locally derivable* (MLD).

#### • Theorem:

*If f, g are displacements with*  $\check{I}(f) = \check{I}(g)$  *then*  $T_f$  *and*  $T_g$  *are MLD* 

• There is a notion of an element  $\eta \in \check{H}^1(\operatorname{Hull}(T), \mathbb{R}^d)$  being *asymptotically negligible* leading to

#### • Theorem:

If f, g are displacements with  $\check{I}(f) - \check{I}(g)$  asymptotically negligible, then  $\operatorname{Hull}(T_f)$  and  $\operatorname{Hull}(T_g)$  are topologically conjugate



#### It is time for coffee !

