Random Matrix Theory and the 2D Anderson Model

Jean BELLISSARD ${ }^{12}$

Georgia Institute of Technology, Atlanta,

Institut Universitaire de France

Collaborations:

J. Magnen, V. Rivasseau, (École Polytechnique, Palaiseau, France)

[^0]
Main References

This work

J. Bellissard, J. Maginen, V. Rivasseau, Supersymmetric Analysis of a Simplified Two Dimensional Anderson Model at Small Disorder, cond-mat/0210524, to be published in Markov Processes and Related Fields (2003).
J. Bellissard, Coherent and dissipative transport in aperiodic solids Published in Dynamics of Dissipation, P. Garbaczewski, R. Olkiewicz (Eds.), Lecture Notes in Physics, 597, Springer (2002), pp. 413-486.

Motivated by

M. Disertori, H. Pinson, T. Spencer, Density of states for Random Band Matrix math-ph/0111047, Commun. Math. Phys., 232, (2002), 83-124.

The Anderson Model:

For $\mathcal{H}=\ell^{2}\left(\mathbb{Z}^{D}\right)$

$$
H_{\omega} \psi(x)=\sum_{y ;|x-y|=1} \psi(y)+V(x) \psi(x)
$$

where $\omega=\{V(x)\}_{x \in \mathbb{Z}^{D}} \in \Omega$ is a family of i. i. d.'s with

$$
\langle V(x)\rangle=0 \quad\left\langle V(x)^{2}\right\rangle=W^{2}
$$

The Anderson conjecture:

1. $D \leq 2$ pure point spectrum, with finite localization length for $W>0$.
2. $D \geq 3$ there is a region of the phase space (E, W) in which the spectrum is absolutely continuous with positive residual conductivity.

- The 3D phase diagram of localization (after B. Kramer © A. MacKinnon ('81-'85))

Results:

1. Anderson (1958): localization. Gang of 4 (1979):

Anderson's transition for $D \geq 3$.
2. Wegner (1979)P: the n-orbital model;

Wegner \& Schaeffer (1980): Goldstone's boson.
3. Numerics: Pichard-Sarma (1981-84)

Kramer \& MacKinnon (1981-86).
4. Rigorous 1D: Pastur-Molchanov (1978),

Kunz-Souillard (1979).
5. Rigorous $D \geq 2$: Fröhlich-Spencer (1983),

Fröhlich-Spencer-Martinelli-Scoppola (1984),
. . ., Aizenman-Molchanov (1993).
\cdots, Klein-Germinet (2002).
6. Supersymmetry: Wegner, Efetov (1983).
7. Random Matrices: Altshuler-Shklovskii (1986), mesoscopic systems.
8. Universality: Quasicrystals Berger, Mayou et al. (1987-89)

Noncommutative Calculus:

A covariant operator is a family $A=\left\{A_{\omega}\right\}$ of operators on \mathcal{H} such that

1. $\omega \mapsto A_{\omega}$ is measurable,
2. $T(a) A_{\omega} T(a)^{-1}=A_{\mathrm{T}^{a} \omega}$
$\left(T(a)=\right.$ translation by $\left.a \in \mathbb{Z}^{D}, \mathrm{~T}^{a} \omega=\{V(x-a)\}_{x \in \mathbb{Z}^{D}}\right)$.

Trace per unit volume:

$$
\mathcal{I}_{\mathbb{P}}(A)=\int_{\Omega} \mathbb{P}(d \omega)\langle 0| A_{\omega}|0\rangle=\lim _{\Lambda \uparrow \mathbb{Z}^{D}} \frac{1}{|\Lambda|} \operatorname{Tr}_{\Lambda}\left(A_{\omega}\right)
$$

\mathbb{P}-almost surely $(\mathbb{P}=$ probability distribution of $\omega)$.

Derivatives:

$$
\left(\partial_{\mu} A\right)_{\omega}=\imath\left[X_{\mu}, A_{\omega}\right] \quad \vec{\nabla}=\left(\partial_{1}, \cdots, \partial_{D}\right)
$$

$X=\left(X_{1}, \cdots, X_{D}\right) \quad$ position operator.

IDS (Shubin's formula): IDS (Shubin's formula):

IDS $=$ Integrated Density of States

$$
\begin{aligned}
\mathcal{N}(E) & =\lim _{\Lambda \uparrow \mathbb{Z}^{D}} \frac{1}{|\Lambda|} \#\left\{\text { eigen. } \quad H_{\omega} \upharpoonright_{\Lambda} \leq E\right\} \\
& =\mathcal{T}_{\mathbb{P}}(\chi(H \leq E)) \quad \text { a.e. } \omega
\end{aligned}
$$

Current-Current correlation:
Current operator: $\quad \vec{J}=e^{2} / \hbar \vec{\nabla} H$.

$$
\begin{aligned}
& \mathcal{T}_{\mathbb{P}}\left(f(H) \partial_{\nu} H \quad g(H) \partial_{\nu^{\prime}} H\right) \\
& \quad=\int_{\mathbb{R} \times \mathbb{R}} m_{\nu, \nu^{\prime}}\left(d E, d E^{\prime}\right) f(E) g\left(E^{\prime}\right)
\end{aligned}
$$

Transport

Diffusion exponent:

$$
\begin{aligned}
\left(L_{\Delta}(t)\right)^{2} & =\int_{-t}^{+t} \frac{d s}{2 t} \int_{X} d \mathbb{P}_{t r}(\omega) \\
& \cdots\langle 0| \Pi_{\omega, \Delta}\left|\vec{X}_{\omega}(s)-\vec{X}\right|^{2} \Pi_{\omega, \Delta}|0\rangle \\
& \stackrel{t \uparrow \infty}{\sim} t^{2 \beta_{2}(\Delta)} .
\end{aligned}
$$

where $\Pi_{\omega, \Delta}=\chi\left(H_{\omega} \in \Delta\right)$. Equivalently (J. B. af H. Schulz-Baldes ('98)), if

$$
m\left(d E, d E^{\prime}\right)=\sum_{\nu=1}^{D} m_{\nu, \nu}\left(d E, d E^{\prime}\right)
$$

then
$m\left\{\left(E, E^{\prime} \in \Delta \times \mathbb{R} ;\left|E-E^{\prime}\right| \leq \epsilon\right\} \stackrel{\epsilon \downarrow 0}{\sim} \epsilon^{2\left(1-\beta_{2}(\Delta)\right)}\right.$.

Kubo's formula:

In the Relaxation Time Approximation

$$
\begin{aligned}
\sigma_{\nu, \nu^{\prime}} & =\frac{e^{2}}{\hbar} \int_{\mathbb{R}^{2}} m_{\nu, \nu^{\prime}}\left(d E, d E^{\prime}\right) \\
& \ldots \frac{f_{T, \mu}(E)-f_{T, \mu}\left(E^{\prime}\right)}{E^{\prime}-E} \frac{1}{\hbar / \tau_{\text {coll }}-\imath\left(E^{\prime}-E\right)},
\end{aligned}
$$

T = temperature,
$\mu=$ chemical potential
$\tau_{\text {coll }}=$ average collision time
$k_{B}=$ Boltzmann constant

$$
f_{T, \mu}(E)=\frac{1}{1+e^{(E-\mu) / k_{B} T}}
$$

Fermi level:

$$
\mathcal{N}\left(E_{F}\right)=n_{e l}
$$

where $n_{e l}$ is the charge carrier density.

Theorem 1 If $m_{\nu, \nu^{\prime}}=\rho_{\nu, \nu^{\prime}}^{(2)} d E d E^{\prime}$ with $\rho_{\nu, \nu^{\prime}}^{(2)}\left(E, E^{\prime}\right)$ continuous near $E=E^{\prime}=E_{F}$ then, for any Bored set $\Delta \subset \mathbb{R}$ small enough containing E_{F}

1. $\beta_{2}(\Delta)=1 / 2$
2. The diffusion constant $D(\Delta)=\lim _{t \uparrow \infty} L_{\Delta}(t)^{2} / t$ is finite and

$$
D(\Delta)=\pi \int_{\Delta} d E \sum_{\nu} \rho_{\nu, \nu}^{(2)}(E, E)
$$

3. The DC conductivity at zero temperature is finite and given by

$$
\sigma_{\nu, \nu}=\frac{\pi e^{2}}{\hbar} \rho_{\nu, \nu}^{(2)}\left(E_{F}, E_{F}\right)
$$

Universality:

1. Other systems like quasicrystals exhibit diffusion exponents smaller than $1 / 2$
2. At low temperature quasicrystals show a weak localization regime as for the Anderson model (Mayou et al. '98) suggesting $\beta_{2}=1 / 2$.
3. Numerics show a Wigner-Dyson spectral statistics (Schreiber et al. '99) for the octagonal tiling.

Conductivities of $A l P d M n$ and $A l P d R e$
C. Berger et al.

How can these observations be reconciled?

1. Spectral statistics requires finite size sample. For a sample of size L,
2. Heisenberg' time: it takes a time $t_{H}=O\left(L^{D}\right)$ to see the discretization of the spectrum.
3. Thouless time: it takes a time $t_{T h}=O\left(L^{1 / \beta_{2}}\right)$ for the wave packet to reach the boundary.
4. If $t_{T h} \ll t_{H}$ the wave packet feels only the finite size.

$$
\begin{gathered}
\beta_{2} \geq 1 / D \quad \Rightarrow \quad \text { weak localization } \\
\beta_{2}<1 / D \quad \Rightarrow \quad \text { scaling law }
\end{gathered}
$$

5. Guarneri's bound shows that $\beta_{2} \geq 1 / D$ is compatible with an absolute continuous spectrum. Whereas if $\beta_{2}<1 / D$ the spectrum near the Fermi level is singular.

Voiculescu's Free Calculus:

Let \mathcal{A} be unital algebra \mathcal{A}.

1. A distribution is a linear map $\phi: \mathcal{A} \mapsto \mathbb{C}$ such that $\phi(1)=1$,
2. A random variable is an element X of \mathcal{A}. Its distribution is the map $\phi_{X}: p \in \mathbb{C}[X] \mapsto \phi(p(X)) \in \mathbb{C}$. 3. X_{1}, \cdots, X_{n} are free if for any $\left(i_{1}, \cdots, i_{l}\right) \in[1, n]^{l}$ such that $i_{k} \neq i_{k+1}$ and any polynomials p_{1}, \cdots, p_{l}
$\phi\left(p_{k}\left(X_{i_{k}}\right)\right)=0 \forall k \Rightarrow \phi\left(p_{1}\left(X_{i_{1}}\right) \cdots p_{l}\left(X_{i_{l}}\right)\right)=0$
3. free convolution: if X, Y are free, ϕ_{X+Y} depends only upon ϕ_{X} and ϕ_{Y} and is denoted $\phi_{X} \boxplus \phi_{Y}$.
4. R-transform: if $G_{X}(z)=\phi\left((z-X)^{-1}\right)$

$$
G_{X}=\frac{1}{z-R_{X} \circ G_{X}(z)}
$$

Then X, Y free $\Rightarrow R_{X+Y}=R_{X}+R_{Y}$.

Examples:

1. Let X_{1}, \cdots, X_{n} be a family of $N \times N$ independent random matrices and $\phi=\mathbb{E}(1 / N \operatorname{Tr}()$.$) , then$ as $N \rightarrow \infty$ this family becomes free.
2. If, in the Anderson model, H and $\vec{\nabla} H$ are free with respect to $\mathcal{T}_{\mathbb{P}}$, then use

$$
\phi(X Y Z Y)=\phi(X) \phi\left(Y^{2}\right) \phi(Z)
$$

if $\phi(Y)=0$.Using this gives

$$
\begin{gathered}
\mathcal{T}_{\mathbb{P}}(f(H) \vec{\nabla} H g(H) \vec{\nabla} H)= \\
\mathcal{T}_{\mathbb{P}}(f(H)) \mathcal{T}_{\mathbb{P}}((g H)) \mathcal{T}_{\mathbb{P}}\left(\vec{\nabla} H^{2}\right)
\end{gathered}
$$

so that

$$
m\left(d E, d E^{\prime}\right)=\mathcal{T}_{\mathbb{P}}\left(\vec{\nabla} H^{2}\right) \mathcal{N}(d E) \mathcal{N}\left(d E^{\prime}\right)
$$

$d \mathcal{N}$ continuous \Rightarrow finite conductivity

Wegner's n-orbital Model:

$$
H_{\omega} \psi(x)=\sum_{y ;|x-y|=1} \psi(y)+V(x) \psi(x)
$$

where $\omega=\{V(x)\}_{x \in \mathbb{Z}^{D}}$ is a family of identically distributed random $n \times n$ matrices with

$$
\langle V(x)\rangle=0 \quad\left\langle(V(x))_{i, j}^{2}\right\rangle=\frac{W^{2}}{n}
$$

Theorem 2 1. In the limit $n \rightarrow \infty$ the $V(x)$'s become free variables.
2. In the limit $n \rightarrow \infty$ the density of states $d \mathcal{N}$ and the current-current correlation of the Wegne model are continuous.
(Weaner '81, Pastur-Khorunzhy '93, Neu-Speicher '94)

The DPS model:

$H=\left(H_{i j}\right)$ is a random gaussian matrix with zero average and covariance

$$
\left\langle H_{i j} H_{k l}\right\rangle=\delta_{i j} \delta_{k l} J_{i j}
$$

with

$$
J_{i j}=\left(\frac{1}{-W^{2} \Delta+1}\right)_{i j}
$$

where i, j vary in $\Lambda \cap \mathbb{Z}^{3}, \Lambda$ a set of cubes of size W and $W>0$ large but fixed. Δ is the discrete Laplacian with periodic b.c..

The DOS is defined by

$$
\rho_{\Lambda}(E)=\frac{1}{\pi} \lim _{\epsilon \downarrow 0} \Im\left\langle\left(\frac{1}{E+\imath \epsilon-H}\right)_{00}\right\rangle
$$

This model should behave like the 3D Anderson one.

The derivative of the DOS is the imaginary part of $\sum_{x} R\left(E+\imath 0^{+} ; 0, x\right) / \pi$ where $R(E+\imath \epsilon ; 0, x)$ is defined by

$$
\left\langle\left(\frac{1}{E+\imath \epsilon-H}\right)_{0 x}\left(\frac{1}{E+\imath \epsilon-H}\right)_{x 0}\right\rangle
$$

Theorem 3 For W large enough the DOS of this model is smooth and coincides, in $[-2,2]$, with the Wigner semicircle distribution modulo a correction of order W^{-2}. Moreover $R(E+\imath \epsilon ; 0, x)$ decays exponentially fast in x uniformly as $\epsilon \downarrow 0$ and as $\Lambda \uparrow \mathbb{Z}^{3}$.

Reference:

M. Disertori, H. Pinson, T. Spencer, Density of states for Random Band Matrix math-ph/0111047, Commun. Math. Phys., 232, (2002), 83-124.

RMT \& Anderson:

The Anderson's model at weak coupling:
(Poirot, Magnen, Rivasseau '98)

1. The unperturbed Hamiltonian is the discrete Laplacian H_{0}. Set $\left.\chi_{W}=\chi\left(\left|H_{0}-E_{F}\right| \leq c \cdot W^{2}\right)\right)$.
2. The part of the Hamiltonian with energies away from E_{F} by $O\left(W^{2}\right)$ can be treated as a perturbation. Let then $\chi_{W}=\chi\left(\left|H_{0}-E_{F}\right| \leq O\left(W^{2}\right)\right)$ and $H_{\text {eff }}=\chi_{W} H \chi_{W}$.
3. Divide \mathbb{Z}^{D} into boxes of size $O\left(W^{-2}\right)$. In each such box Λ, let V_{Λ} be the restriction of $H_{\text {eff }}$ to Λ.
4. The V_{Λ} 's play a role similar to the potential in the Wegner n-orbital model with $n=O\left(W^{-2}\right)$. The connecting operators between boxes play the role of the discrete Laplacian.
5. For $D=2$ and gaussian potential, the V_{Λ} 's are gaussian random matrices of the type GOE with an extra discrete symmetry: flip matrices

- Fermi Surface for the Flip Model -

$$
\text { here } V_{5,2}=V_{-2,-5}=\overline{V_{2,5}}=\overline{V_{-5,-2}}
$$

The Flip Matrix model for D = 2:
(Bellissard, Magnen, Rivasseau '02)

1. Since Λ is a finite box the quasimomentum space is discrete. The thicken Fermi surface defined by χ_{W} contains only $n=2 N=O\left(W^{-2}\right)$ quasimomenta denotes by $\alpha, \beta \in\{1, \cdots, N\} \cup\{-N, \cdots,-1\}$
2. V_{Λ} is a $2 N \times 2 N$ selfadjoint gaussian random matrix, indexed by quasimomenta

$$
V_{\alpha, \beta}=\overline{V_{\beta, \alpha}}
$$

3. Momentum conservation leads to

$$
V_{\alpha, \beta}=V_{-\beta,-\alpha} \quad V_{\alpha, \alpha}=V_{0}
$$

4. Modulo these constraints the matrix elements are independent and

$$
\left.\left\langle V_{\alpha, \beta}\right\rangle=\left.0 \quad\langle | V_{\alpha, \beta}\right|^{2}\right\rangle=W^{2}=O(1 / 2 N)
$$

5. Main result: The DOS od the flip model is a semicircular distribution.

About the Proof:

1. Using supersymmetry the DOS can be written as

$$
\frac{d \mathcal{N}}{d E}=\lim _{\Im m E \downarrow 0} \frac{1}{\pi} \int S_{+\alpha}^{+} S_{+\alpha} e^{L} \mathcal{D} \Psi^{\dagger} \mathcal{D} \Psi
$$

where $\Psi_{ \pm \alpha}=\left(S_{ \pm \alpha}, \chi_{ \pm \alpha}\right)$ is a superfield
L is a sum of quartic terms of the form
$\Psi_{ \pm \alpha}^{\dagger} \Psi_{ \pm \beta} \Psi_{ \pm \beta}^{\dagger} \Psi_{ \pm \alpha}$
2. Using commutation rules it can be written as a sum of terms of the form

$$
\Psi_{ \pm \alpha}^{\dagger} \Psi_{ \pm \alpha} \Psi_{ \pm \beta}^{\dagger} \Psi_{ \pm \beta}
$$

separating the α 's from the β 's.
3. Using a gaussian integral

$$
e^{L}=\int \mathcal{D} R e^{\imath W \sum_{\alpha} \Psi_{\alpha}^{\dagger} R \Psi_{\alpha}}
$$

where R varies in a set of 4×4 supermatrices.
4. The gaussian integral can be performed and gives rise to a 5 -dimensional integral of the form

$$
\int_{\mathbb{R}^{5}} d^{5} x(F(x))^{N}
$$

Since $1 \ll N=O\left(W^{-2}\right)$, this can be analyzed through a saddle point method.
5. Among the 4 saddle points only one contributes in the limit $N \rightarrow \infty$, giving rise to a semi-circle distribution.

Remark:

Such a Supermatrix R is attached to each box of size $O\left(W^{-2}\right)$. R is the order parameter. There is an effective lattice Hamiltonian connecting them similar to a spin system. The low energy excitations are given by spin waves: this is the famous Goldstone mode (Wegner '80)

Conclusion

1. The Anderson model in $2 D$ at low coupling W can be approximated by a Random Matrix of size $O\left(W^{-2}\right)$ for energies $\left|E-E_{F}\right| \leq O\left(W^{2}\right)$.
2. The rest of the Hamiltonian can be treated perturbatively: prove it.
3. Within this approximation the DOS is smooth: control the finite size correction.
4. For all $W>0$ localization is expected. This is because the Goldstone mode gets a mass $e^{-O\left(W^{-2}\right)}$. (a non perturbative result: hard to prove)

5 . For $D \geq 3$, the previous model has a bigger degeneracy. A power counting of Feynmann graphs for the SUSY theory shows that the dominant contribution comes from a flip matrix similar to the $D=2$ case: prove it.

6. The limit $W \downarrow 0$ looks similar to a Wegner model in any dimension: Prove it.
7. For $D \geq 3$ the Goldstone mode remains massless: an infra-red inequality, based upon OsterwalderSchrader positivity, is possibly a strategy for a rigorous proof.

[^0]: ${ }^{1}$ Georgia Institute of Technology, School of Mathematics, Atlanta, GA 30332-0160
 ${ }^{2} \mathrm{e}$-mail: jeanbel@math.gatech.edu

