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The Anderson Model:

For H = `2(ZD)

Hω ψ (x) =
∑

y;|x−y|=1

ψ(y) + V (x)ψ(x)

where ω = {V (x)}x∈ZD ∈ Ω is a family of i. i. d.’s
with

〈V (x)〉 = 0 〈V (x)2〉 = W 2

The Anderson conjecture:
1.D ≤ 2 pure point spectrum, with finite localization

length for W > 0.

2.D ≥ 3 there is a region of the phase space (E,W )
in which the spectrum is absolutely continuous with
positive residual conductivity.
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- The 3D phase diagram of localization -
(after B. Kramer & A. MacKinnon (’81-’85))
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Results:

1. Anderson (1958): localization. Gang of 4 (1979):
Anderson’s transition for D ≥ 3.

2. Wegner (1979)P: the n-orbital model;
Wegner & Schaeffer (1980): Goldstone’s boson.

3. Numerics: Pichard-Sarma (1981-84)
Kramer & MacKinnon (1981-86).

4. Rigorous 1D: Pastur-Molchanov (1978),
Kunz-Souillard (1979).

5. Rigorous D ≥ 2: Fröhlich-Spencer (1983),
Fröhlich-Spencer-Martinelli-Scoppola (1984),
· · ·, Aizenman-Molchanov (1993).
· · ·, Klein-Germinet (2002).

6. Supersymmetry: Wegner, Efetov (1983).

7. Random Matrices: Altshuler-Shklovskii (1986),
mesoscopic systems.

8. Universality: Quasicrystals Berger, Mayou et al. (1987-89)
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Noncommutative Calculus:

A covariant operator is a family A = {Aω} of opera-
tors on H such that

1. ω 7→ Aω is measurable,

2. T (a)AωT (a)−1 = Ataω

(T (a) = translation by a ∈ ZD, taω = {V (x− a)}x∈ZD).

Trace per unit volume:

TP(A) =

∫

Ω
P(dω)〈0|Aω|0〉 = lim

Λ↑ZD

1

|Λ|
TrΛ(Aω)

P-almost surely (P = probability distribution of ω).

Derivatives:

(∂µA)ω = ı[Xµ , Aω] ~∇ = (∂1, · · · , ∂D)

X = (X1, · · · ,XD) position operator.
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IDS (Shubin’s formula): IDS (Shubin’s formula):

IDS = Integrated Density of States

N (E) = lim
Λ↑ZD

1

|Λ|
#{eigen. Hω �Λ≤ E}

= TP(χ(H ≤ E)) a.e. ω

Current-Current correlation:

Current operator: ~J = e2/~ ~∇H .

TP(f (H) ∂νH g(H) ∂ν′H)

=

∫

R×R

mν,ν′(dE, dE
′) f (E) g(E′)
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Transport

Diffusion exponent:

(L∆(t))2 =

∫ +t

−t

ds

2t

∫

X
dPtr(ω)

· · · 〈0|Πω,∆ | ~Xω(s) − ~X|2 Πω,∆|0〉

t↑∞
∼ t2β2(∆) .

where Πω,∆ = χ(Hω ∈ ∆). Equivalently (J. B. & H.

Schulz-Baldes (‘98)), if

m(dE, dE′) =

D
∑

ν=1

mν,ν(dE, dE
′)

then

m{(E,E′ ∈ ∆ × R ; |E − E′| ≤ ε}
ε↓0
∼ ε2(1−β2(∆)) .
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Kubo’s formula:

In the Relaxation Time Approximation

σν,ν′ =
e2

~

∫

R2
mν,ν′(dE, dE

′)

· · ·
fT,µ(E) − fT,µ(E′)

E′ − E

1

~/τcoll − ı(E′ − E)
,

T = temperature,
µ = chemical potential
τcoll = average collision time
kB = Boltzmann constant

fT,µ(E) =
1

1 + e(E−µ)/kBT

Fermi level:

N (EF) = nel
where nel is the charge carrier density.
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Theorem 1 If mν,ν′ = ρ
(2)
ν,ν′

dEdE′ with ρ
(2)
ν,ν′

(E,E′)

continuous near E = E′ = EF then, for any Borel
set ∆ ⊂ R small enough containing EF

1. β2(∆) = 1/2

2. The diffusion constant D(∆) = limt↑∞L∆(t)2/t
is finite and

D(∆) = π

∫

∆

dE
∑

ν

ρ
(2)
ν,ν(E,E)

3. The DC conductivity at zero temperature is finite
and given by

σν,ν =
πe2

~
ρ

(2)
ν,ν(EF , EF)
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Universality:
1. Other systems like quasicrystals exhibit diffusion

exponents smaller than 1/2

2. At low temperature quasicrystals show a weak lo-
calization regime as for the Anderson model (Mayou

et al. ‘98) suggesting β2 = 1/2.

3. Numerics show a Wigner-Dyson spectral statistics
(Schreiber et al. ‘99) for the octagonal tiling.
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How can these observations be reconciled ?

1. Spectral statistics requires finite size sample. For
a sample of size L,

2. Heisenberg’ time: it takes a time tH = O(LD) to
see the discretization of the spectrum.

3. Thouless time: it takes a time tTh = O(L1/β2)
for the wave packet to reach the boundary.

4. If tTh � tH the wave packet feels only the finite
size.

β2 ≥ 1/D ⇒ weak localization

β2 < 1/D ⇒ scaling law

5. Guarneri’s bound shows that β2 ≥ 1/D is compat-
ible with an absolute continuous spectrum.
Whereas if β2 < 1/D the spectrum near the Fermi
level is singular.
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Voiculescu’s Free Calculus:

Let A be unital algebra A.

1. A distribution is a linear map φ : A 7→ C such that
φ(1) = 1,

2. A random variable is an elementX of A. Its distri-
bution is the map φX : p ∈ C[X ] 7→ φ(p(X)) ∈ C.

3.X1, · · · , Xn are free if for any (i1, · · · , il) ∈ [1, n]l

such that ik 6= ik+1 and any polynomials p1, · · · , pl

φ(pk(Xik)) = 0 ∀k ⇒ φ
(

p1(Xi1) · · · pl(Xil)
)

= 0

4. free convolution: if X,Y are free, φX+Y depends
only upon φX and φY and is denoted φX � φY .

5. R-transform: if GX(z) = φ((z −X)−1)

GX =
1

z −RX ◦GX(z)

Then X,Y free ⇒ RX+Y = RX +RY .
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Examples:

1. Let X1, · · · , Xn be a family of N ×N independent
random matrices and φ = E(1/NTr(.)), then
as N → ∞ this family becomes free.

2. If, in the Anderson model, H and ~∇H are free with
respect to TP, then use

φ(XY ZY ) = φ(X)φ(Y 2)φ(Z)

if φ(Y ) = 0.Using this gives

TP(f (H)~∇Hg(H)~∇H) =

TP(f (H))TP((gH))TP(~∇H
2)

so that

m(dE, dE′) = TP(~∇H
2) N (dE)N (dE′)

dN continuous ⇒ finite conductivity



Anderson & RMT Como 17-22 June 2003 15

Wegner’s n-orbital Model:

Hω ψ (x) =
∑

y;|x−y|=1

ψ(y) + V (x)ψ(x)

where ω = {V (x)}x∈ZD is a family of identically dis-
tributed random n× n matrices with

〈V (x)〉 = 0 〈(V (x))2i,j〉 =
W 2

n

Theorem 2 1. In the limit n → ∞ the V (x)’s be-
come free variables.

2. In the limit n → ∞ the density of states dN
and the current-current correlation of the Weg-
ner model are continuous.

(Wegner ‘81, Pastur-Khorunzhy ’93, Neu-Speicher ’94)
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The DPS model:

H = (Hij) is a random gaussian matrix with zero av-
erage and covariance

〈HijHkl〉 = δijδklJij

with

Jij =

(

1

−W 2∆ + 1

)

ij

where i, j vary in Λ ∩ Z
3, Λ a set of cubes of size W

and W > 0 large but fixed. ∆ is the discrete Laplacian
with periodic b.c..

The DOS is defined by

ρΛ(E) =
1

π
lim
ε↓0

=〈

(

1

E + ıε−H

)

00
〉

This model should behave like the 3D Anderson one.
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The derivative of the DOS is the imaginary part of
∑

xR(E+ ı0+; 0, x)/π where R(E+ ıε; 0, x) is defined
by

〈

(

1

E + ıε−H

)

0x

(

1

E + ıε−H

)

x0
〉

Theorem 3 For W large enough the DOS of this
model is smooth and coincides, in [−2, 2], with the
Wigner semicircle distribution modulo a correction
of order W−2. Moreover R(E+ıε; 0, x) decays expo-
nentially fast in x uniformly as ε ↓ 0 and as Λ ↑ Z

3.

Reference:

M. Disertori, H. Pinson, T. Spencer, Density of states for Random Band Matrix
math-ph/0111047, Commun. Math. Phys., 232, (2002), 83-124.
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RMT & Anderson:

The Anderson’s model at weak coupling:
(Poirot, Magnen, Rivasseau ’98)

1. The unperturbed Hamiltonian is the discrete Lapla-
cian H0. Set χW = χ(|H0 − EF | ≤ c ·W 2)).

2. The part of the Hamiltonian with energies away
from EF by O(W 2) can be treated as a perturba-
tion. Let then χW = χ(|H0 − EF | ≤ O(W 2)) and
Heff = χWHχW .

3. Divide Z
D into boxes of size O(W−2). In each such

box Λ, let VΛ be the restriction of Heff to Λ.
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4. The VΛ’s play a role similar to the potential in the
Wegner n-orbital model with n = O(W−2). The
connecting operators between boxes play the role of
the discrete Laplacian.

5. For D = 2 and gaussian potential, the VΛ’s are
gaussian random matrices of the type GOE with an
extra discrete symmetry: flip matrices
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The Flip Matrix model for D = 2:
(Bellissard, Magnen, Rivasseau ’02)

1. Since Λ is a finite box the quasimomentum space is
discrete. The thicken Fermi surface defined by χW

contains only n = 2N = O(W−2) quasimomenta
denotes by α, β ∈ {1, · · · , N} ∪ {−N, · · · ,−1}

2. VΛ is a 2N×2N selfadjoint gaussian random matrix,
indexed by quasimomenta

Vα,β = Vβ,α

3. Momentum conservation leads to

Vα,β = V−β,−α Vα,α = V0

4. Modulo these constraints the matrix elements are
independent and

〈Vα,β〉 = 0 〈|Vα,β|
2〉 = W 2 = O(1/2N )

5. Main result: The DOS od the flip model is a
semicircular distribution.
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About the Proof:

1. Using supersymmetry the DOS can be written as

dN

dE
= lim

=mE↓0

1

π

∫

S+
+αS+α e

L DΨ†DΨ

where Ψ±α = (S±α, χ±α) is a superfield

L is a sum of quartic terms of the form

Ψ
†
±αΨ±βΨ

†
±βΨ±α

2. Using commutation rules it can be written as a sum
of terms of the form

Ψ
†
±αΨ±αΨ

†
±βΨ±β

separating the α’s from the β’s.

3. Using a gaussian integral

eL =

∫

DR eıW
∑

αΨ
†
αRΨα

where R varies in a set of 4 × 4 supermatrices.
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4. The gaussian integral can be performed and gives
rise to a 5-dimensional integral of the form

∫

R5
d5x (F (x))N

Since 1 � N = O(W−2), this can be analyzed
through a saddle point method.

5. Among the 4 saddle points only one contributes in
the limit N → ∞, giving rise to a semi-circle dis-
tribution.

Remark:

Such a Supermatrix R is attached to each box of size
O(W−2). R is the order parameter. There is an ef-
fective lattice Hamiltonian connecting them similar to
a spin system. The low energy excitations are given
by spin waves: this is the famous Goldstone mode
(Wegner ’80)
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Conclusion

1. The Anderson model in 2D at low coupling W can
be approximated by a Random Matrix
of size O(W−2) for energies |E − EF | ≤ O(W 2).

2. The rest of the Hamiltonian can be treated pertur-
batively: prove it.

3. Within this approximation the DOS is smooth:
control the finite size correction.

4. For all W > 0 localization is expected. This is

because the Goldstone mode gets a mass e−O(W−2).
(a non perturbative result: hard to prove)
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5. ForD ≥ 3, the previous model has a bigger degener-
acy. A power counting of Feynmann graphs for the
SUSY theory shows that the dominant contribution
comes from a flip matrix similar to the D = 2 case:
prove it.

kx

ky

kz

pairs

Twisted

6. The limit W ↓ 0 looks similar to a Wegner model
in any dimension: Prove it.

7. For D ≥ 3 the Goldstone mode remains massless:
an infra-red inequality, based upon Osterwalder-
Schrader positivity, is possibly a strategy for a
rigorous proof.


