The
 TRANSVERSEGEOMETRY
 of
 TILINGSPACES

Sponsoring

Jean BELLISSARD
Georgia Institute of Technology, Atlanta
School of Mathematics \& School of Physics
e-mail: jeanbel@math.gatech.edu

Collaborations

J. Pearson, (Gatech, Atlanta, GA)
J. Savinien, (U. Metz, Metz, France)
A. Julien, (U. Victoria, Victoria, BC)
I. Palmer, (NSA, Washington DC)
R. Parada, (Gatech, Atlanta, GA)

Main References

A. Beurling, J. Deny, Dirichlet spaces, Proc. Nat. Acad. Sci. U.S.A., 45, (1959), 208-215.
M. Fukushima, Dirichlet forms and Markoo processes,

North-Holland Math. Lib., 23., Amsterdam-New York;Kodansha, Ltd., Tokyo, 1980.
A. Connes, Noncommutative Geometry, Academic Press, 1994.
G. Michon, Les Cantors réguliers, C. R. Acad. Sci. Paris Sér. I Math., (19), 300, (1985) 673-675.
J. Pearson, J. Bellissard, Noncommutative Riemamnian Geometry and Diffusion on Ultrametric Cantor Sets, J. Noncommutative Geometry, 3, (2009), 447-480.
A. Julien, J. Savinien, Transverse Laplacians for substitution tilings, Comm. Math. Phys., 301, (2011), 285-318.
I. Palmer, Noncommutative Geometry and Compact Metric Spaces, PhD Thesis, Georgia Institute of Technology, May 2010

Content

1. Tilings and their Transversal
2. Spectral Triple
3. The Pearson Laplacian
4. Open Problems

I - Tilings and their Transversal

The Fibonacci Tiling

The Fibonacci Substitution

The Fibonacci Tiling

The Octagonal Tiling

The Octagonal Tiling

Octagonal

Lattice

The Octagonal Tiling

The Octagonal Tiling

Inverse Limit

Let \mathcal{P}_{R} be the set of patches of radius R, modulo translation.
The tiling has finite local complexity (FLC), if and only if \mathcal{P}_{R} is a finite set for all R. In particular $R \rightarrow \mathcal{P}_{R}$ is locally constant and nondecreasing. Thus there is a sequence $R_{0}=0<R_{1}<\cdots<R_{n}<\cdots$ with $R_{n} \rightarrow \infty$ such that $\mathcal{P}_{R}=\mathcal{P}_{n}$ for $R_{n} \leq R<R_{n+1}$.

Inverse Limit

restriction map
There is a restriction map $\pi: \mathcal{P}_{n+1} \rightarrow \mathcal{P}_{n}$. Then the transversal is defined by the inverse limit

$$
\Xi=\lim _{\leftarrow \pi} \mathcal{P}_{n}
$$

Inverse Limit

For The Fibonacci and Octagonal Tilings, as for all cut-and-project tilings, the transversal coincides with the window provided the window is endowed with a topology that makes all acceptance domains closed and open

Rooted Tree

Since all the \mathcal{P}_{n} 's are finite set, Ξ is a Cantor set.
A point of Ξ is an infinite sequence $\xi=\left(p_{n}\right)_{n=0}^{\infty}$ of compatible patches, so it defines a unique tiling.

This inverse limit can be represented by a rooted tree

Rooted Tree

For the Fibonacci sequence this gives

The Fibonacci Tree

II - Spectral Triples

Spectral Triples

A spectral triple for a C^{*}-algebra \mathcal{A} is a family $X=(\mathcal{A}, \mathcal{H}, D)$ where \mathcal{H} is a Hilbert space, D and unbounded operator on \mathcal{H} such that

Spectral Triples

A spectral triple for a C^{*}-algebra \mathcal{A} is a family $X=(\mathcal{A}, \mathcal{H}, D)$ where \mathcal{H} is a Hilbert space, D and unbounded operator on \mathcal{H} such that

- there is a (faithful) representation $\pi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H})$

Spectral Triples

A spectral triple for a C^{*}-algebra \mathcal{A} is a family $X=(\mathcal{A}, \mathcal{H}, D)$ where \mathcal{H} is a Hilbert space, D and unbounded operator on \mathcal{H} such that

- there is a (faithful) representation $\pi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H})$
- D is selfadjoint with compact resolvent (Dirac operator)

Spectral Triples

A spectral triple for a C^{*}-algebra \mathcal{A} is a family $X=(\mathcal{A}, \mathcal{H}, D)$ where \mathcal{H} is a Hilbert space, D and unbounded operator on \mathcal{H} such that

- there is a (faithful) representation $\pi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H})$
- D is selfadjoint with compact resolvent (Dirac operator)
- the set $C^{1}(X)$ of elements $a \in \mathcal{A}$ leaving the domain of D invariant and such that $\|[D, \pi(a)]\|<\infty$, is dense in \mathcal{A}

Spectral Triples

A spectral triple for a C^{*}-algebra \mathcal{A} is a family $X=(\mathcal{A}, \mathcal{H}, D)$ where \mathcal{H} is a Hilbert space, D and unbounded operator on \mathcal{H} such that

- there is a (faithful) representation $\pi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H})$
- D is selfadjoint with compact resolvent (Dirac operator)
- the set $C^{1}(X)$ of elements $a \in \mathcal{A}$ leaving the domain of D invariant and such that $\|[D, \pi(a)]\|<\infty$, is dense in \mathcal{A}

Proposition: Then $C^{1}(X)$ is a dense *-subalgebra of \mathcal{A}, invariant under the holomorphic functional calculus.

Example

Let M be a spin^{C} Riemannian manifold, $\mathcal{A}=C(M), \mathcal{H}$ the space of L^{2}-sections of the spin bundle and D the corresponding Dirac operator, where \mathcal{A} acts by pointwise multiplication.

Example

Let M be a spin^{C} Riemannian manifold, $\mathcal{A}=\mathcal{C}(M), \mathcal{H}$ the space of L^{2}-sections of the spin bundle and D the corresponding Dirac operator, where \mathcal{A} acts by pointwise multiplication.

Theorem (Connes) The family $X_{M}=(\mathcal{A}, \mathcal{H}, D)$ above is a spectral triple. The geodesic distance between $x, y \in M$ can be recovered through

Example

Let M be a spin^{C} Riemannian manifold, $\mathcal{A}=\mathcal{C}(M), \mathcal{H}$ the space of L^{2}-sections of the spin bundle and D the corresponding Dirac operator, where \mathcal{A} acts by pointwise multiplication.

Theorem (Connes) The family $X_{M}=(\mathcal{A}, \mathcal{H}, D)$ above is a spectral triple. The geodesic distance between $x, y \in M$ can be recovered through

$$
d(x, y)=\sup \{|f(x)-f(y)| ; f \in \mathcal{A},\|[D, f]\| \leq 1\}
$$

Example

Let M be a spin^{C} Riemannian manifold, $\mathcal{A}=\mathcal{C}(M), \mathcal{H}$ the space of L^{2}-sections of the spin bundle and D the corresponding Dirac operator, where \mathcal{A} acts by pointwise multiplication.

Theorem (Connes) The family $X_{M}=(\mathcal{A}, \mathcal{H}, D)$ above is a spectral triple. The geodesic distance between $x, y \in M$ can be recovered through

$$
d(x, y)=\sup \{|f(x)-f(y)| ; f \in \mathcal{A},\|[D, f]\| \leq 1\}
$$

Actually $\|[D, f]\|=\|\nabla f\|_{L^{\infty}}=\|f\|_{C_{\text {Lip }}}$ and $C^{1}(X)=\operatorname{Lip}(M)$.

Example

Let M be a spin^{c} Riemannian manifold, $\mathcal{A}=\mathcal{C}(M), \mathcal{H}$ the space of L^{2}-sections of the spin bundle and D the corresponding Dirac operator, where \mathcal{A} acts by pointwise multiplication.

Theorem (Connes) The family $X_{M}=(\mathcal{A}, \mathcal{H}, D)$ above is a spectral triple. The geodesic distance between $x, y \in M$ can be recovered through

$$
d(x, y)=\sup \{|f(x)-f(y)| ; f \in \mathcal{A},\|[D, f]\| \leq 1\}
$$

Actually $\|[D, f]\|=\|\nabla f\|_{L^{\infty}}=\|f\|_{C_{\text {Lip }}}$ and $C^{1}(X)=\operatorname{Lip}(M)$.
Hence the algebra \mathcal{A} encodes the space, the Dirac operator D encodes the metric. \mathcal{H} is needed to define D.

Ultrametric on Ξ

A weight on the rooted tree associated with Ξ is an assignement $\mathcal{K}(p) \in(0, \infty)$ on each patch p (vertex of the graph), such that

Ultrametric on Ξ

A weight on the rooted tree associated with Ξ is an assignement $\mathcal{K}(p) \in(0, \infty)$ on each patch p (vertex of the graph), such that

- $\kappa(p)$ is non increasing as p changes from father to son,

Ultrametric on Ξ

A weight on the rooted tree associated with Ξ is an assignement $\mathcal{K}(p) \in(0, \infty)$ on each patch p (vertex of the graph), such that

- $\kappa(p)$ is non increasing as p changes from father to son,
- $\mathcal{K}(p)$ converges to zero as p tends to the end of the path.

Ultrametric on Ξ

A weight on the rooted tree associated with Ξ is an assignement $\mathcal{K}(p) \in(0, \infty)$ on each patch p (vertex of the graph), such that

- $\mathcal{K}(p)$ is non increasing as p changes from father to son,
- $\mathcal{K}(p)$ converges to zero as p tends to the end of the path.

Theorem, (Michon '84) If $\xi, \eta \in \Xi$ let $\xi \wedge \eta$ be the least common ancestor of the path ξ and η. Then $d_{\kappa}(\xi, \eta)=\kappa(\xi \wedge \eta)$ defines an ultrametric on Ξ.

Ultrametric on Ξ

A weight on the rooted tree associated with Ξ is an assignement $\mathcal{K}(p) \in(0, \infty)$ on each patch p (vertex of the graph), such that

- $\mathcal{K}(p)$ is non increasing as p changes from father to son,
- $\mathcal{K}(p)$ converges to zero as p tends to the end of the path.

Theorem, (Michon '84) If $\xi, \eta \in \Xi$ let $\xi \wedge \eta$ be the least common ancestor of the path ξ and η. Then $d_{\kappa}(\xi, \eta)=\kappa(\xi \wedge \eta)$ defines an ultrametric on Ξ.
Then $\mathcal{k}(p)$ is the diameter of the set of tilings compatible with p.

Ultrametric on Ξ

A weight on the rooted tree associated with Ξ is an assignement $\mathcal{K}(p) \in(0, \infty)$ on each patch p (vertex of the graph), such that

- $\mathcal{K}(p)$ is non increasing as p changes from father to son,
- $\mathcal{K}(p)$ converges to zero as p tends to the end of the path.

Theorem, (Michon '84) If $\xi, \eta \in \Xi$ let $\xi \wedge \eta$ be the least common ancestor of the path ξ and η. Then $d_{\kappa}(\xi, \eta)=\kappa(\xi \wedge \eta)$ defines an ultrametric on Ξ.
Then $\mathcal{k}(p)$ is the diameter of the set of tilings compatible with p.
Each ultrametric on Ξ can be obtained in such a way through a rooted tree defined from the metric.

Ultrametric on Ξ

Ultrametric on Ξ

Examples:

- If p is a patch of radius R, take $\kappa(p)=1 / R$,

Ultrametric on Ξ

Examples:

- If p is a patch of radius R, take $\kappa(p)=1 / R$,
- If p is a patch, take $\kappa(p)$ to be the maximum potential energy difference at the origin, produced by atoms outside p on all tilings of Ξ compatible with p.

The Pearson-Palmer Spectral Triple

Given p a patch, let $\Xi(p)$ be the set of all tilings in Ξ compatible with p at the origin. The family $(\Xi(p))_{p \in \mathcal{P}}$ is a basis of clopen set for the topology of Ξ.

The Pearson-Palmer Spectral Triple

Given p a patch, let $\Xi(p)$ be the set of all tilings in Ξ compatible with p at the origin. The family $(\Xi(p))_{p \in \mathcal{P}}$ is a basis of clopen set for the topology of Ξ.

A clopen cover \mathcal{P} is a finite family of patches partitionning Ξ.

The Pearson-Palmer Spectral Triple

The Pearson-Palmer Spectral Triple

Given p a patch, let $\Xi(p)$ be the set of all tilings in Ξ compatible with p at the origin. The family $(\Xi(p))_{p \in \mathcal{P}}$ is a basis of clopen set for the topology of Ξ.

A clopen cover \mathcal{P} is a finite family of patches partitionning Ξ. Then

$$
\operatorname{diam} \mathcal{P}=\max \{\mathbb{K}(p) ; p \in \mathcal{P}\}
$$

An infinite sequence $\left(\mathcal{P}_{n}\right)_{n \in \mathbb{N}}$ of clopen cover is called resolving if $\lim _{n \rightarrow \infty} \operatorname{diam} \mathcal{P}_{n}=0$.

The Pearson-Palmer Spectral Triple

- Algebra: $\mathcal{A}=\mathcal{C}(\Xi)$,

The Pearson-Palmer Spectral Triple

- Algebra: $\mathcal{A}=\mathcal{C}(\Xi)$,
- Hilbert Space: $\mathcal{H}=\bigoplus_{n \in \mathbb{N}} \ell^{2}\left(\mathcal{P}_{n}\right) \otimes \mathbb{C}^{2}$, with $\left(\mathcal{P}_{n}\right)_{n \in \mathbb{N}}$ a resolving sequence of clopen covers.

The Pearson-Palmer Spectral Triple

- Algebra: $\mathcal{A}=\mathcal{C}(\Xi)$,
- Hilbert Space: $\mathcal{H}=\bigoplus_{n \in \mathbb{N}} \ell^{2}\left(\mathcal{P}_{n}\right) \otimes \mathbb{C}^{2}$, with $\left(\mathcal{P}_{n}\right)_{n \in \mathbb{N}}$ a resolving sequence of clopen covers.
- Dirac Operator: for $\psi \in \mathcal{H}$

$$
(D \psi)(p)=\frac{1}{\kappa(p)}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \psi(p)
$$

The Pearson-Palmer Spectral Triple

- Algebra: $\mathcal{A}=\mathcal{C}(\Xi)$,
- Hilbert Space: $\mathcal{H}=\bigoplus_{n \in \mathbb{N}} \ell^{2}\left(\mathcal{P}_{n}\right) \otimes \mathbb{C}^{2}$, with $\left(\mathcal{P}_{n}\right)_{n \in \mathbb{N}}$ a resolving sequence of clopen covers.
- Dirac Operator: for $\psi \in \mathcal{H}$

$$
(D \psi)(p)=\frac{1}{\mathcal{K}(p)}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \psi(p)
$$

- Choice: it is an assignement, for each $p \in \bigcup_{n} \mathcal{P}_{n}$ of two points $\tau(p)=\left(\xi_{p}, \eta_{p}\right)$, with $\xi_{p}, \eta_{p} \in \Xi(p)$ and $\xi_{p} \wedge \eta_{p}=p$.

The Pearson-Palmer Spectral Triple

- Algebra: $\mathcal{A}=C(\Xi)$,
- Hilbert Space: $\mathcal{H}=\bigoplus_{n \in \mathbb{N}} \ell^{2}\left(\mathcal{P}_{n}\right) \otimes \mathbb{C}^{2}$, with $\left(\mathcal{P}_{n}\right)_{n \in \mathbb{N}}$ a resolving sequence of clopen covers.
- Dirac Operator: for $\psi \in \mathcal{H}$

$$
(D \psi)(p)=\frac{1}{\mathcal{K}(p)}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \psi(p)
$$

- Choice: it is an assignement, for each $p \in \bigcup_{n} \mathcal{P}_{n}$ of two points $\tau(p)=\left(\xi_{p}, \eta_{p}\right)$, with $\xi_{p}, \eta_{p} \in \Xi(p)$ and $\xi_{p} \wedge \eta_{p}=p$.
- Representation: for each choice τ and $f \in C(\Xi)$

$$
\left(\pi_{\tau}(f) \psi\right)(p)=\left[\begin{array}{cc}
f\left(\xi_{p}\right) & 0 \\
0 & f\left(\eta_{p}\right)
\end{array}\right] \psi(p)
$$

ζ.function

The ζ-function: is defined by

$$
\zeta(s)=\operatorname{Tr}\left(\frac{1}{\mid D^{\mid}}\right)
$$

ζ,function

The ζ-function: is defined by

$$
\zeta(s)=\operatorname{Tr}\left(\frac{1}{|D|^{s}}\right)
$$

Theorem: There is a resolving sequence of clopen covers and an $s>0$ such that $\zeta(s)<\infty$ if and only if the metric space $\left(\Xi, d_{\mathcal{K}}\right)$ has finite Hausdorff dimension.

ζ,function

The ζ-function: is defined by

$$
\zeta(s)=\operatorname{Tr}\left(\frac{1}{|D|^{s}}\right)
$$

Theorem: There is a resolving sequence of clopen covers and an $s>0$ such that $\zeta(s)<\infty$ if and only if the metric space $\left(\Xi, d_{\mathcal{K}}\right)$ has finite Hausdorff dimension.

If so, the abscissa of convergence, defined by $s_{0}=\inf \{s>0 ; \zeta(s)<\infty\}$ satisfies

$$
s_{0} \geq \operatorname{dim}_{H}(\Xi)
$$

ζ,function

The ζ-function: is defined by

$$
\zeta(s)=\operatorname{Tr}\left(\frac{1}{|D|^{s}}\right)
$$

Theorem: There is a resolving sequence of clopen covers and an $s>0$ such that $\zeta(s)<\infty$ if and only if the metric space $\left(\Xi, d_{\mathcal{K}}\right)$ has finite Hausdorff dimension.
If so, the abscissa of convergence, defined by $s_{0}=\inf \{s>0 ; \zeta(s)<\infty\}$ satisfies

$$
s_{0} \geq \operatorname{dim}_{H}(\Xi)
$$

There exists a (non unique) resolving sequence of clopen covers $\left(\mathcal{P}_{n}\right)_{n \in \mathbb{N}}$, called a Hausdorff sequence, such that $s_{0}=\operatorname{dim}_{H}(\Xi)$.

The Connes State

The Connes state is defined by

$$
\mathcal{T}(f)=\lim _{s \rightarrow s_{0}} \frac{1}{\zeta(s)} \operatorname{Tr}\left(\frac{1}{|D|^{s}} \pi_{\tau}(f)\right), \quad f \in C(\Xi)
$$

The Connes State

The Connes state is defined by

$$
\mathcal{T}(f)=\lim _{s \rightarrow s_{0}} \frac{1}{\zeta(s)} \operatorname{Tr}\left(\frac{1}{|D|^{s}} \pi_{\tau}(f)\right), \quad f \in C(\Xi)
$$

Theorem: If $\left(\Xi, d_{\mathcal{K}}\right)$ has finite Hausdorff dimension and if $\left(\mathcal{P}_{n}\right)_{n \in \mathbb{N}}$ is a Hausdorff sequence, the Connes state exists if and only if Ξ has a finite nonzero Hausdorff measure.

The Connes State

The Connes state is defined by

$$
\mathcal{T}(f)=\lim _{s \rightarrow s_{0}} \frac{1}{\zeta(s)} \operatorname{Tr}\left(\frac{1}{|D|^{s}} \pi_{\tau}(f)\right), \quad f \in \mathcal{C}(\Xi)
$$

Theorem: If $\left(\Xi, d_{\mathcal{K}}\right)$ has finite Hausdorff dimension and if $\left(\mathcal{P}_{n}\right)_{n \in \mathbb{N}}$ is a Hausdorff sequence, the Connes state exists if and only if Ξ has a finite nonzero Hausdorff measure.
If so, \mathcal{T} is independent of the choice τ.

The Connes State

The Connes state is defined by

$$
\mathcal{T}(f)=\lim _{s \rightarrow s_{0}} \frac{1}{\zeta(s)} \operatorname{Tr}\left(\frac{1}{|D|^{s}} \pi_{\tau}(f)\right), \quad f \in \mathcal{C}(\Xi)
$$

Theorem: If $\left(\Xi, d_{\mathcal{K}}\right)$ has finite Hausdorff dimension and if $\left(\mathcal{P}_{n}\right)_{n \in \mathbb{N}}$ is a Hausdorff sequence, the Connes state exists if and only if Ξ has a finite nonzero Hausdorff measure.
If so, \mathcal{T} is independent of the choice τ.
If so, \mathcal{T} coincides with the normalized Hausdorff measure on Ξ.

III - The Pearson Laplacian

Directional Derivative, Tangent Space

If $\tau(p)=\left(\xi_{p}, \eta_{p}\right)$ then

$$
\left[D, \pi_{\tau}(f)\right] \psi(p)=\frac{f\left(\xi_{p}\right)-f\left(\eta_{p}\right)}{d\left(\xi_{p}, \eta_{p}\right)}\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \psi(p)
$$

Directional Derivative, Tangent Space

If $\tau(p)=\left(\xi_{p}, \eta_{p}\right)$ then

$$
\left[D, \pi_{\tau}(f)\right] \psi(p)=\frac{f\left(\xi_{p}\right)-f\left(\eta_{p}\right)}{d\left(\xi_{p}, \eta_{p}\right)}\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \psi(p)
$$

The commutator with the Dirac operator is a coarse grained version of a directional derivative.

Directional Derivative, Tangent Space

If $\tau(p)=\left(\xi_{p}, \eta_{p}\right)$ then

$$
\left[D, \pi_{\tau}(f)\right] \psi(p)=\frac{f\left(\xi_{p}\right)-f\left(\eta_{p}\right)}{d\left(\xi_{p}, \eta_{p}\right)}\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \psi(p)
$$

The commutator with the Dirac operator is a coarse grained version of a directional derivative. In particular

- $\tau(p)$ can be interpreted as a coarse grained version of a unit tangent vector at p.

Directional Derivative, Tangent Space

If $\tau(p)=\left(\xi_{p}, \eta_{p}\right)$ then

$$
\left[D, \pi_{\tau}(f)\right] \psi(p)=\frac{f\left(\xi_{p}\right)-f\left(\eta_{p}\right)}{d\left(\xi_{p}, \eta_{p}\right)}\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \psi(p)
$$

The commutator with the Dirac operator is a coarse grained version of a directional derivative. In particular

- $\tau(p)$ can be interpreted as a coarse grained version of a unit tangent vector at p.
- the set Υ of all possible choices, can be seen as the set of sections of the tangent sphere bundle.

Directional Derivative, Tangent Space

If $\tau(p)=\left(\xi_{p}, \eta_{p}\right)$ then

$$
\left[D, \pi_{\tau}(f)\right] \psi(p)=\frac{f\left(\xi_{p}\right)-f\left(\eta_{p}\right)}{d\left(\xi_{p}, \eta_{p}\right)}\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \psi(p)
$$

The commutator with the Dirac operator is a coarse grained version of a directional derivative. In particular

- $\tau(p)$ can be interpreted as a coarse grained version of a unit tangent vector at p.
- the set Υ of all possible choices, can be seen as the set of sections of the tangent sphere bundle.
- $\left[D, \pi_{\tau}(f)\right]$ could be written as $\nabla_{\tau} f$.

Choice Averaging

- The choice space Υ is given by $\Pi_{p} \Upsilon(p)$ where $\Upsilon(p)$ is a clopen subset of $\Xi(p) \times \Xi(p)$.

Choice Averaging

- The choice space Υ is given by $\Pi_{p} \Upsilon(p)$ where $\Upsilon(p)$ is a clopen subset of $\Xi(p) \times \Xi(p)$.
- Let v_{p} be the probability measure on $\Upsilon(p)$ induced by the Hausdorff measure $\mu_{H} \otimes \mu_{H}$ on $\Xi(p) \times \Xi(p)$.

Choice Averaging

- The choice space Υ is given by $\Pi_{p} \Upsilon(p)$ where $\Upsilon(p)$ is a clopen subset of $\Xi(p) \times \Xi(p)$.
- Let v_{p} be the probability measure on $\Upsilon(p)$ induced by the Hausdorff measure $\mu_{H} \otimes \mu_{H}$ on $\Xi(p) \times \Xi(p)$.
- This leads to the probability

$$
v=\bigotimes_{p} v_{p}
$$

Choice Averaging

- The choice space Υ is given by $\Pi_{p} \Upsilon(p)$ where $\Upsilon(p)$ is a clopen subset of $\Xi(p) \times \Xi(p)$.
- Let v_{p} be the probability measure on $\Upsilon(p)$ induced by the Hausdorff measure $\mu_{H} \otimes \mu_{H}$ on $\Xi(p) \times \Xi(p)$.
- This leads to the probability

$$
v=\bigotimes_{p} v_{p}
$$

Hence v_{p} can be interpreted as the average over the tangent unit sphere at p.

The Pearson Quadratic Form

The Pearson quadratic form is defined by (if $f, g \in \mathcal{C}(\Xi)$)

$$
Q_{s}(f, g)=\int_{\Upsilon} d v(\tau) \operatorname{Tr}\left(\frac{1}{|D|^{\mid}}\left[D, \pi_{\tau}(f)\right]^{*}\left[D, \pi_{\tau}(g)\right]\right)
$$

The Pearson Quadratic Form

The Pearson quadratic form is defined by (if $f, g \in C(\Xi)$)

$$
Q_{s}(f, g)=\int_{\Upsilon} d v(\tau) \operatorname{Tr}\left(\frac{1}{|D|^{\mid}}\left[D, \pi_{\tau}(f)\right]^{*}\left[D, \pi_{\tau}(g)\right]\right)
$$

Theorem: If $\left(\Xi, d_{\mathcal{K}}\right)$ has positive finite Hausdorff measure, for each $s \in \mathbb{R}$, the quadratic forms Q_{s} is densely defined, closable in $L^{2}\left(X, \mu_{H}\right)$ and is a Dirichlet form.

The Pearson Quadratic Form

The Pearson quadratic form is defined by (if $f, g \in C(\Xi)$)

$$
Q_{S}(f, g)=\int_{\Upsilon} d v(\tau) \operatorname{Tr}\left(\frac{1}{|D|^{S}}\left[D, \pi_{\tau}(f)\right]^{*}\left[D, \pi_{\tau}(g)\right]\right)
$$

Theorem: If $\left(\Xi, d_{\mathcal{K}}\right)$ has positive finite Hausdorff measure, for each $s \in \mathbb{R}$, the quadratic forms Q_{s} is densely defined, closable in $L^{2}\left(X, \mu_{H}\right)$ and is a Dirichlet form.
The corresponding positive operator Δ_{S} has pure point spectrum. It is bounded if and only if $s>\operatorname{dim}_{H}(\Xi)+2$ and has compact resolvent otherwise.

The Pearson Quadratic Form

The Pearson quadratic form is defined by (if $f, g \in C(\Xi)$)

$$
Q_{S}(f, g)=\int_{\Upsilon} d v(\tau) \operatorname{Tr}\left(\frac{1}{|D|^{\mid}}\left[D, \pi_{\tau}(f)\right]^{*}\left[D, \pi_{\tau}(g)\right]\right)
$$

Theorem: If $\left(\Xi, d_{\mathcal{K}}\right)$ has positive finite Hausdorff measure, for each $s \in \mathbb{R}$, the quadratic forms Q_{s} is densely defined, closable in $L^{2}\left(X, \mu_{H}\right)$ and is a Dirichlet form.
The corresponding positive operator Δ_{s} has pure point spectrum. It is bounded if and only if $s>\operatorname{dim}_{H}(\Xi)+2$ and has compact resolvent otherwise.

The eigenspaces are common to all s's and can be explicitly computed.

Jump Process

Δ_{s} generates a Markov semigroup, thus a stochastic process $\left(X_{t}\right)_{t \geq 0}$ where the X_{t} 's takes on values in Ξ.

Jump Process

Δ_{s} generates a Markov semigroup, thus a stochastic process $\left(X_{t}\right)_{t \geq 0}$ where the X_{t} 's takes on values in Ξ.

Given a patch p, its spine is the set of vertices located along the finite path joining the root to p. The vine $\mathcal{V}(p)$ of p is the set of patches, not in the spine, which are children of one vertex of the spine.

The vine of p

The vine of a vertex v

Jump Process

Δ_{s} generates a Markov semigroup, thus a stochastic process $\left(X_{t}\right)_{t \geq 0}$ where the X_{t} 's takes on values in Ξ.

Given a patch p, its spine is the set of vertices located along the finite path joining the root to p. The vine $\mathcal{V}(p)$ of p is the set of patches, not in the spine, which are children of one vertex of the spine.
If χ_{p} is the characteristic function of $\Xi(p)$, the Pearson operator acts as

$$
\Delta_{s} \chi_{p}=\sum_{q \in \mathcal{V}(p)} M(p, q)\left(\chi_{q}-\chi_{p}\right)
$$

Jump Process

Δ_{s} generates a Markov semigroup, thus a stochastic process $\left(X_{t}\right)_{t \geq 0}$ where the X_{t} 's takes on values in Ξ.

Given a patch p, its spine is the set of vertices located along the finite path joining the root to p. The vine $\mathcal{V}(p)$ of p is the set of patches, not in the spine, which are children of one vertex of the spine.
If χ_{p} is the characteristic function of $\Xi(p)$, the Pearson operator acts as

$$
\Delta_{s} \chi_{p}=\sum_{q \in \mathcal{V}(p)} M(p, q)\left(\chi_{q}-\chi_{p}\right)
$$

where $M(p, q)>0$ represents the probability rate (per unit time) for X_{t} to jump from $\Xi(p)$ to $\Xi(q)$.

Jump from p to q

Jump process from v to w

Jump Process

Concretely, if \hat{q} denotes the father of q (which belongs to the spine)

$$
M(p, q)=2 \kappa(\hat{q})^{s-2} \frac{\mu_{p}}{Z_{\hat{q}}} \quad \mu_{p}=\mu_{H}(\Xi(p))
$$

where $Z_{\hat{q}}$ is the normalization constant for the measure $v_{\hat{q}}$ on the set of choices at \hat{q}, namely

$$
Z_{\hat{q}}=\sum_{q^{\prime} \neq q^{\prime \prime} \in \operatorname{Ch}(\hat{q})} \mu_{q^{\prime}} \mu_{q^{\prime \prime}}
$$

where $\operatorname{Ch}(\hat{q})$ denotes the set of children of \hat{q}.

Jump Process

The Markov semigroup $e^{-t \Delta_{s}}$ plays the role of a Brownian motion on the Cantor set. Thus $d_{\mathcal{K}}\left(X_{t}, X_{t+\tau}\right)$ denotes the distance between the process at times t and $t+\tau$.

However this process is slightly overdiffusive, namely, in most examples computed the following holds

$$
\mathbb{E}\left(d_{\kappa}\left(X_{t}, X_{t+\tau}\right)^{2}\right) \stackrel{\tau \downarrow 0}{=} C \tau \ln \tau(1+o(1))
$$

if

$$
s=\operatorname{dim}_{H}(\Xi)
$$

Thanks for Listening!

