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Inverse Limit

Let PR be the set of patches of radius R, modulo translation.

The tiling has finite local complexity (FLC), if and only if PR is a
finite set for all R. In particular R→ PR is locally constant and non-
decreasing. Thus there is a sequence R0 = 0 < R1 < · · · < Rn < · · ·
with Rn→∞ such that PR = Pn for Rn ≤ R < Rn+1.



Inverse Limit

There is a restriction map π : Pn+1 → Pn. Then the transversal is
defined by the inverse limit

Ξ = lim
←π

Pn



Inverse Limit

For The Fibonacci and Octagonal Tilings, as for all cut-and-project
tilings, the transversal coincides with the window provided the
window is endowed with a topology that makes all acceptance
domains closed and open



Rooted Tree
Since all the Pn’s are finite set, Ξ is a Cantor set.

A point of Ξ is an infinite sequence ξ = (pn)∞n=0 of compatible
patches, so it defines a unique tiling.

This inverse limit can be represented by a rooted tree



Rooted Tree
For the Fibonacci sequence this gives
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A spectral triple for a C∗-algebraA is a family X = (A,H ,D) where
H is a Hilbert space, D and unbounded operator onH such that

• there is a (faithful) representation π : A→ B(H)

• D is selfadjoint with compact resolvent (Dirac operator)

• the set C1(X) of elements a ∈ A leaving the domain of D invari-
ant and such that ‖[D, π(a)]‖ < ∞, is dense inA

Proposition: ThenC1(X) is a dense ∗-subalgebra ofA, invariant under
the holomorphic functional calculus.
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Example
Let M be a spinc Riemannian manifold, A = C(M), H the space
of L2-sections of the spin bundle and D the corresponding Dirac
operator, whereA acts by pointwise multiplication.

Theorem (Connes) The family XM = (A,H ,D) above is a spectral
triple. The geodesic distance between x, y ∈M can be recovered through

d(x, y) = sup{| f (x) − f (y)| ; f ∈ A, ‖[D, f ]‖ ≤ 1}

Actually ‖[D, f ]‖ = ‖∇ f ‖L∞ = ‖ f ‖CLip
and C1(X) = Lip(M).

Hence the algebra A encodes the space, the Dirac operator D
encodes the metric. H is needed to define D.
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Ultrametric on Ξ

A weight on the rooted tree associated with Ξ is an assignement
κ(p) ∈ (0,∞) on each patch p (vertex of the graph), such that

• κ(p) is non increasing as p changes from father to son,

• κ(p) converges to zero as p tends to the end of the path.

Theorem, (Michon ’84) If ξ, η ∈ Ξ let ξ ∧ η be the least common
ancestor of the path ξ and η. Then dκ(ξ, η) = κ(ξ ∧ η) defines an
ultrametric on Ξ.
Then κ(p) is the diameter of the set of tilings compatible with p.
Each ultrametric on Ξ can be obtained in such a way through a rooted
tree defined from the metric.
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Ultrametric on Ξ

Examples:

• If p is a patch of radius R, take κ(p) = 1/R,

• If p is a patch, take κ(p) to be the maximum potential energy
difference at the origin, produced by atoms outside p on all
tilings of Ξ compatible with p.
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The Pearson-Palmer Spectral Triple

Given p a patch, let Ξ(p) be the set of all tilings in Ξ compatible
with p at the origin. The family (Ξ(p))p∈P is a basis of clopen set
for the topology of Ξ.

A clopen coverP is a finite family of patches partitionning Ξ. Then

diamP = max{κ(p) ; p ∈ P}

An infinite sequence (Pn)n∈N of clopen cover is called resolving if
limn→∞ diamPn = 0.
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The Pearson-Palmer Spectral Triple
• Algebra: A = C(Ξ),

•Hilbert Space: H =
⊕

n∈N `
2(Pn) ⊗ C2, with (Pn)n∈N a re-

solving sequence of clopen covers.

•Dirac Operator: for ψ ∈ H

(Dψ)(p) =
1
κ(p)

[
0 1
1 0

]
ψ(p) .

• Choice: it is an assignement, for each p ∈
⋃

nPn of two points
τ(p) = (ξp, ηp), with ξp, ηp ∈ Ξ(p) and ξp ∧ ηp = p.

• Representation: for each choice τ and f ∈ C(Ξ)

(πτ( f )ψ)(p) =

[
f (ξp) 0

0 f (ηp)

]
ψ(p) .
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ζ-function
The ζ-function: is defined by

ζ(s) = Tr
(

1
|D|s

)
Theorem: There is a resolving sequence of clopen covers and an s > 0
such that ζ(s) < ∞ if and only if the metric space (Ξ, dκ) has finite
Hausdorff dimension.

If so, the abscissa of convergence, defined by s0 = inf{s > 0 ; ζ(s) < ∞}
satisfies

s0 ≥ dimH(Ξ)

There exists a (non unique) resolving sequence of clopen covers (Pn)n∈N,
called a Hausdorff sequence, such that s0 = dimH(Ξ).
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The Connes State
The Connes state is defined by

T ( f ) = lim
s→s0

1
ζ(s)

Tr
(

1
|D|s

πτ( f )
)
, f ∈ C(Ξ)

Theorem: If (Ξ, dκ) has finite Hausdorff dimension and if (Pn)n∈N is
a Hausdorff sequence, the Connes state exists if and only if Ξ has a finite
nonzero Hausdorff measure.
If so, T is independent of the choice τ.
If so, T coincides with the normalized Hausdorff measure on Ξ.
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Directional Derivative, Tangent Space
If τ(p) = (ξp, ηp) then

[D, πτ( f )] ψ (p) =
f (ξp) − f (ηp)

d(ξp, ηp)

[
0 −1
1 0

]
ψ(p)

The commutator with the Dirac operator is a coarse grained ver-
sion of a directional derivative. In particular

• τ(p) can be interpreted as a coarse grained version of a unit
tangent vector at p.

• the set Υ of all possible choices, can be seen as the set of sections
of the tangent sphere bundle.

• [D, πτ( f )] could be written as ∇τ f .
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Choice Averaging

• The choice space Υ is given by
∏

p Υ(p) where Υ(p) is a clopen
subset of Ξ(p) × Ξ(p).

• Let νp be the probability measure on Υ(p) induced by the Haus-
dorff measure µH ⊗ µH on Ξ(p) × Ξ(p).

• This leads to the probability

ν =
⊗

p
νp

Hence νp can be interpreted as the average over
the tangent unit sphere at p.
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The Pearson Quadratic Form
The Pearson quadratic form is defined by (if f , g ∈ C(Ξ))

Qs( f , g) =

∫
Υ

dν(τ) Tr
(

1
|D|s

[D, πτ( f )]∗ [D, πτ(g)]
)

Theorem: If (Ξ, dκ) has positive finite Hausdorff measure, for each
s ∈ R, the quadratic forms Qs is densely defined, closable in L2(X, µH)
and is a Dirichlet form.

The corresponding positive operator ∆s has pure point spectrum. It is
bounded if and only if s > dimH(Ξ) + 2 and has compact resolvent
otherwise.

The eigenspaces are common to all s’s and can be explicitly computed.
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Jump Process
∆s generates a Markov semigroup, thus a stochastic process
(Xt)t≥0 where the Xt’s takes on values in Ξ.

Given a patch p, its spine is the set of vertices located along the
finite path joining the root to p. The vine V(p) of p is the set of
patches, not in the spine, which are children of one vertex of the
spine.

If χp is the characteristic function of Ξ(p), the Pearson operator
acts as

∆sχp =
∑

q∈V(p)

M(p, q)(χq − χp)

where M(p, q) > 0 represents the
probability rate (per unit time) for Xt to jump from Ξ(p) to Ξ(q).



Jump process from v to w



Jump Process
Concretely, if q̂ denotes the father of q (which belongs to the spine)

M(p, q) = 2κ(q̂)s−2 µp

Zq̂
µp = µH(Ξ(p))

where Zq̂ is the normalization constant for the measure νq̂ on the set
of choices at q̂, namely

Zq̂ =
∑

q′,q”∈Ch(q̂)

µq′ µq”

where Ch(q̂) denotes the set of children of q̂.



Jump Process
The Markov semigroup e−t∆s plays the role of a Brownian motion
on the Cantor set. Thus dκ(Xt,Xt+τ) denotes the distance between
the process at times t and t + τ.

However this process is slightly overdiffusive, namely, in most ex-
amples computed the following holds

E
(
dκ(Xt,Xt+τ)2

) τ↓0
= C τ ln τ (1 + o(1))

if

s = dimH(Ξ)



Thanks for Listening !


