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[ - Why Revisiting Transport !

e It is a very old problem
BOLTZMANN (1872-80) for classical systems;
DRUDE (1900) for electrons.

e [t is treated in textbooks: phenomenology, pertur-
bation theory, numerical calculations.



[.1)- Motivations

Conceptual Difficulties

1. No mathematically rigorous proof of the Kubo
formulee for transport coefficients.
( However substantial progress for classical systems (LEBOWITZ’s school)

and for quantum ones (PILLET-JAKSIC, FROHLICH et. al.) )

2. Low temperature effects are difficult to describe
ex. : Mott’s variable range hopping

(soo e.g. EFROS & SCHKLOVSKY)

3. Aperiodic materials escape Bloch theory : need for
a more systematic treatment
(ex. : quasicrystals).

4. Aperiodic media exhibit anomalous quantum diffu-
sion



Transport is complex

e Thermodynamic quantities are much easier to
measure: experiments are cleaner, easier to control.
Ex. : heat capacity, magnetic susceptibility,
structure factors... .

But they do not separate various mechanisms.

e Transport measurements are mostly indirect:
harder to interpret (especially at low temperature).
Too many mechanisms occur at once.



Few mechanisms

1. For metals, o('T) increases as temperature decreases

110
O(T) f'\lJ ']_1_27 (Fermi liquid them“y).

2. For a thermally activated process

110
O(T) f'\lJ e_A/T (]f a gap holds at Ferms level).

3. For weakly disordered systems

T10
H

O(T) J(O) >0 <r€sz’dual conductimty) .

4. For strongly disordered systems in 3.0

o(T) 4 = (To/T)V*

variable range h()pp'lﬁﬂg).



[.2)- Mott’s variable range hopping

N. Mot (1968).

B. SHKLOVSKIL, A. L. EFFros, Electronic Properties of Doped Semiconductors,
Springer-Verlag, Berlin, (1984).

Energy
)
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F o o .
48/ - . distance
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e Strongly localized regime, dimension d

e Low electronic DOS, Low temperature



e Absorption-emission of a phonon of energy e

Prob o e ¢/kBT

e Tunnelling probability at distance r

Prob « e 1/¢

e Density of state at Fermi level np,

5HFI‘d%1

e Optimizing, the conductivity satisfies

(TO/T>1/d—|—1

ogxe Mott’s law

e Optimal energy eopt ~ Td/(d+1) > T
e Optimal distance ropg ~ 1/ T1/(d+1) 5 S



[.3)- Transport in Quasicrystals

Lectures on Quasicrystals,
F. Hippert & D. Gratias Eds., Editions de Physique, Les Ulis, (1994),

S. RochE, D. MAvou AND G. TRAMBLY DE LAISSARDIERE,
Electronic transport properties of quasicrystals, J. Math. Phys., 38, 1794-1822 (1997).

Quasicrystalline alloys :

Metastable QC’s: AlMn
(Shechtman D., Blech I., Gratias D. & Cahn J., PRL 53, 1951 (1984))
AlMnSi

AIMgT (T = Ag,Cu, Zn)

Defective stable QC7S: AlLiCu (Sainfort-Dubost, (1986))
GaMan (Holzen et al., (1989))

High quality QC’s: AlCuT (T = Fe, Ru,Os)
(Hz’mga, Zhang, Hirakoyashi, Inoue, (1988); Gurnan et al., Inoue et al., (1989);

Y. Calvayrac et al., (1990))

“Perfect” QC’s: AlIPdMn
AlPdRe
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Resistivity
(HQcm)

Semiconductors

Doped semiconductors

Stable perfect quasicrystals (aPdre)
High quality quasicrystals
(AIPdMn, AlCuFe, AlICuRu)

Defective stable quasicrytals (alcuLi, Gavgzn)

102 Metastable quasicrystals (amn, AiMgzn,...)
B Amorphous metals (CuZr,..)
10" |
Metallic crystals (...
10° |
= T (K)
4K 300K

Typical values of the resistivity

(Taken from C. Berger in ref. Lectures on Quasz’crystals)
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two QC’s
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For QC’s

1. Al, Fe, Cu, Pd are very good metals : why is the
conductivity of quasicrystalline alloys so low 7
Why is it decreasing 7

2. At high enough temperature

oo T 1<y<15

There is a new mechanism here!

3. At low temperature for Al7g sPdooMnry 5.

o~ac(0)>0

4. At low temperature for Al7g s5Pda1Reg 5,

—(Tp/T)Y/4

O X e C. BERGER et al. (1998)

Disorder may dominate in both alloys at very low
temperature.
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[I - Dissipation: Heuristics

H. B. CALLEN, Thermodynamics, John Wiley & Sons, Inc., New-York, London, (1963).

H. J. KrEUZER, Nonequilibrium Thermodynamics and its Statistical Foundations,
Clarendon Press Ed., Oxford, (1981).

e S is a system in a finite volume in R
e For simplicity it will be considered as classical.

e For a quantum one, the space of microstates is a
Hilbert space ‘H. Probabilities are replaced by den-
sity matrices.
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[L.1)- Gibbs States

e Space of microstates Q (a large but finite set).

e [volution and first integrals Xy, -+, X .
X1 = U is the energy.

e X is a fluctuating first integral if the system is par-
tially open and exchange X with the outside.

e An ensemble is given by a subset & C {1,---, K}
indexing the fluctuating variables.

e The space Q depends on {Xq; a ¢ O}
If a € &, X, becomes a function X (q).

e The state of the system is a probability on Q:
P(q) >0, VgqeQ, > Plg) = 1.
geQ
e The Shannon entropy of the state is

s(P) = (1)) P(q)InP(q).
qeQ

[t measures the lack of information contained in
the state.
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e The only information conserved under the evolution
is the values of the first integrals X, -+, X

e For a fluctuating variable this value is

Xo = <on> = ZP(CD X@(Q)-
qeQ

e 2nd Principle of Thermodynamics :
no information can be spontaneously created dur-
ing the evolution.

o A (Gibbs state is an equilibrium state.
[ts entropy must be mazimal among the states with

given Xq,---, Xg's. Using Lagrange multipliers,
0 .
7 s =S P =S "N, (X)) ] = 0.
6’1P’(q) ( ( ) 0 qzeg ( ) OEZI) < >)

e The solution is

e~ Lacd ra Xalg)

P(q) = Z

Z is a normalization: the partition function



[1.2)- Thermodynamics
e Boltzmann’s relation:
S = kps(P)  ky=138x10"2J. K~}
Where S is the Clausius entropy.

e Under an infinitesimal change of equilibrium:

K
TdS = dU + Z E, dX,

a=2

where F, are the conjugate variables
and T is the temperature.

e [t then follows

= )\a — F@/kBT OZE(I)

e The energy conjugate variable is F7 = 1.
e The thermodynamic potential is

Ap = kT InZ = Y FyXq—T8
acd

dAg = Y dFa Xo— Y FoadXe—SdT
acd a¢d



Name of X Notation X Average Conj. Var. ' | Name of F
Energy E(q) U 1 T =
temperature
Local pi(q) = (Pa Dys D) —i v = local
momentum 1 =2x,Y, % velocity
local
Angular Li(q) L= (L, L, L) —& ¢ = angular
momentum 1 =2,Y, % velocity
Volume V(q) %4 P P = pressure
Number of chemical
particles of N.(q) N, — g [ty = potential
species a of species a
Magneti- Ml(q) M = (M, M,, M) ~B B = magnetic
zation L =1x,Y, % field
Electric Q(q) Q -V )V = Electric
charge potential
Deformation %i.i(q) i 11, ; IT = stress
tensor i,j €{zr,y,z tensor

(in solids)

First Integrals and their Conjugate Variables in 3D

17
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[1.3)- Local Equilibrium Approximation

e Length Scales:
{ KL KL

¢ is a typical microscopic length scale
L the typical macroscopic length scale.
Then oL is called mesoscopic.

e T'ime Scales:
T <K 0 K 1

T, 18 a typical microscopic time scale
t the typical macroscopic time scale.
Then ot is called mesoscopic.

e The system is partitionned into mesoscopic cells
the time is partitionned into mesoscopic intervals.

e Mesoscopic cells are completely open systems
After a time O(dt) they return to equilibrium.
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e The Gibbs state for the mesoscopic cell centered at
7 € R at time t is:

o The T'(¥,t), Fo(Z,t)’s are the conjugate variables
attached to each cell and time interval.

e The average values of the first integrals are

0Xa(Zt) = > Pupla) Xalg).

qeQ(Z,t)

e The volume of the cell 0V (&, t) = 0V is mesoscopic
and chosen constant in space and time.

e Then 6 X (%, t) = O(dV) and

5 X o, 1)
SV

/004<f7 t) —

is the local density of X4
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[1.4)- Fluxes, Currents

A]_ n(o) n(l) AO
o N O
XG > X a
v
>— /

e Transfer of X, from cell AW to cell AO) across area
0% during time 0t gives a variation in time

SXo(Zt) = —ja(@, 1) - 7 1o%0t .

where 771 is the normal to area oriented from AL

to A),

o jo(Z, 1) is the local current associated with X4.
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e Since X, 1s conserved under evolution the balance
leads to the continuity equation

Dpey > o
%(w,t)%—v-j&(x,t) = 0.

e The entropy densityis s = %

The entropy variation is then given by

@ﬁFaﬁpa
Gt_oéle ot

e The current entropy is define through

=2 F - -
]S(xat> — Z ?Oé ]Oé(xat>°

a=1

e The entropy production rate is then

K
ds s = - > (Fo\ - .

a=1

and 1s positive thanks to the 2nd Principle.
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[1.5)- Linear Response

e A variation of the F,, /T’s produces currents.
In the local equilibrium approximation

K
F F
- — ﬁ — 5
- gl: Lo gV (—T> +0 { \Y (—T>

— The L, g's are d x d matrices called
Onsager ceefficients.

— The gradient of F,, /T is an affinity.
It plays a role similar to forces.

)

e By 2nd Principle, the positivity of entropy produc-
tion rate implies

L = (Lag)ages = L+L >0

e Reciprocity Relations: if, under time reversal
symmetry, X, Rk caX o then

L57&<parameters) — Eq 85 Lg 6(TR-pammeter3) .
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[1.5)- Dissipative & Nondissipative Response

e Dissipation = Loss of Information
Dissipation contributes to entropy production.
Hence

L(dz’ss) _ %(L—i—ﬂj)

e The nondissipative part
L(nondis) _ 1 (]L: L Lt)
2

contains quantities exhibiting quantization
at very low temperature !

— The Hall conductivity is nondissipative. It is
quantized a T' = 0.

— (Quantization of currents in superconductors.

e Warning: In mesoscopic systems, the quantiza-
tion of conductance, thermal conductance, mechan-
ical response, is due to the lack of dissipation.

The system is too small for the local equilibrium
approximation to hold.



