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I - Why Revisiting Transport ?

• It is a very old problem
Boltzmann (1872-80) for classical systems;
Drude (1900) for electrons.

• It is treated in textbooks: phenomenology, pertur-
bation theory, numerical calculations.
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I.1)- Motivations

Conceptual Difficulties

1. No mathematically rigorous proof of the Kubo
formulæ for transport coefficients.
( However substantial progress for classical systems (Lebowitz’s school)

and for quantum ones (Pillet-Jaksic, Fröhlich et. al.) ).

2. Low temperature effects are difficult to describe
ex. : Mott’s variable range hopping
(see e.g. Efros & Schklovsky)

3. Aperiodic materials escape Bloch theory : need for
a more systematic treatment
(ex. : quasicrystals).

4. Aperiodic media exhibit anomalous quantum diffu-
sion
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Transport is complex

• Thermodynamic quantities are much easier to
measure: experiments are cleaner, easier to control.
Ex. : heat capacity, magnetic susceptibility,
structure factors... .
But they do not separate various mechanisms.

• Transport measurements are mostly indirect:
harder to interpret (especially at low temperature).
Too many mechanisms occur at once.
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Few mechanisms

1. For metals, σ(T) increases as temperature decreases
�

σ(T)
T↓0
∼ T−2, (Fermi liquid theory).

2. For a thermally activated process
�

σ(T)
T↓0
∼ e−∆/T (If a gap holds at Fermi level).

3. For weakly disordered systems
�

σ(T)
T↓0
→ σ(0) > 0 (residual conductivity).

4. For strongly disordered systems in 3D
�

σ(T)
T↓0
∼ e−(T0/T)1/4

(variable range hopping).
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I.2)- Mott’s variable range hopping
N. Mott, (1968).

B. Shklovskii, A. L. Effros, Electronic Properties of Doped Semiconductors,
Springer-Verlag, Berlin, (1984).

2
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• Strongly localized regime, dimension d

• Low electronic DOS, Low temperature



Karp38, 6-15 February 2002 8

• Absorption-emission of a phonon of energy ε

Prob ∝ e−ε/kBT

• Tunnelling probability at distance r

Prob ∝ e−r/ξ

• Density of state at Fermi level nF ,

εnF rd ≈ 1

• Optimizing, the conductivity satisfies

σ ∝ e−(T0/T)1/d+1
Mott’s law

• Optimal energy εopt ∼ Td/(d+1) � T

• Optimal distance ropt ∼ 1/T1/(d+1) � ξ
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I.3)- Transport in Quasicrystals
Lectures on Quasicrystals,
F. Hippert & D. Gratias Eds., Editions de Physique, Les Ulis, (1994),

S. Roche, D. Mayou and G. Trambly de Laissardière,
Electronic transport properties of quasicrystals, J. Math. Phys., 38, 1794-1822 (1997).

Quasicrystalline alloys :

Metastable QC’s: AlMn
(Shechtman D., Blech I., Gratias D. & Cahn J., PRL 53, 1951 (1984))

AlMnSi

AlMgT (T = Ag,Cu, Zn)

Defective stable QC’s: AlLiCu (Sainfort-Dubost, (1986))

GaMgZn (Holzen et al., (1989))

High quality QC’s: AlCuT (T = Fe,Ru,Os)
(Hiraga, Zhang, Hirakoyashi, Inoue, (1988); Gurnan et al., Inoue et al., (1989);

Y. Calvayrac et al., (1990))

“Perfect” QC’s: AlPdMn

AlPdRe
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For QC’s

1. Al, Fe, Cu, Pd are very good metals : why is the
conductivity of quasicrystalline alloys so low ?
Why is it decreasing ?

2. At high enough temperature

σ ∝ Tγ 1 < γ < 1.5

There is a new mechanism here!

3. At low temperature for Al70.5Pd22Mn7.5,

σ ≈ σ(0) > 0

4. At low temperature for Al70.5Pd21Re8.5,

σ ∝ e−(T0/T)1/4
C. Berger et al. (1998)

Disorder may dominate in both alloys at very low
temperature.
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II - Dissipation: Heuristics

H. B. Callen, Thermodynamics, John Wiley & Sons, Inc., New-York, London, (1963).

H. J. Kreuzer, Nonequilibrium Thermodynamics and its Statistical Foundations,
Clarendon Press Ed., Oxford, (1981).

• S is a system in a finite volume in R
d.

• For simplicity it will be considered as classical.

• For a quantum one, the space of microstates is a
Hilbert space H. Probabilities are replaced by den-
sity matrices.
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II.1)- Gibbs States
• Space of microstates Q (a large but finite set).

• Evolution and first integrals X1, · · · , XK .
X1 = U is the energy.

• X is a fluctuating first integral if the system is par-
tially open and exchange X with the outside.

• An ensemble is given by a subset Φ ⊂ {1, · · · ,K}
indexing the fluctuating variables.

• The space Q depends on {Xα ; α /∈ Φ}.
If α ∈ Φ, Xα becomes a function X̂α(q).

• The state of the system is a probability on Q:

P(q) ≥ 0, ∀q ∈ Q ,
∑

q∈Q

P(q) = 1 .

• The Shannon entropy of the state is

s(P) = (−1)
∑

q∈Q

P(q) ln P(q) .

It measures the lack of information contained in
the state.
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• The only information conserved under the evolution
is the values of the first integrals X1, · · · , XK .

• For a fluctuating variable this value is

Xα = 〈X̂α〉 =
∑

q∈Q

P(q) X̂α(q) .

• 2nd Principle of Thermodynamics :
no information can be spontaneously created dur-
ing the evolution.

• A Gibbs state is an equilibrium state.
Its entropy must be maximal among the states with
given X1, · · · , XK ’s. Using Lagrange multipliers,

∂

∂P(q)



s(P) − λ0

∑

q∈Q

P(q) −
∑

α∈Φ

λα 〈X̂α〉



 = 0 .

• The solution is

P(q) =
e−

∑

α∈Φ λα X̂α(q)

Z

Z is a normalization: the partition function
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II.2)- Thermodynamics
• Boltzmann’s relation:

S = kB s(P) kB = 1.38 × 10−23 J · K−1

Where S is the Clausius entropy.

• Under an infinitesimal change of equilibrium:

TdS = dU +

K
∑

α=2

Fα dXα

where Fα are the conjugate variables
and T is the temperature.

• It then follows

⇒ λα = Fα/kBT α ∈ Φ

• The energy conjugate variable is F1 = 1.

• The thermodynamic potential is

AΦ = −kBT lnZ =
∑

α∈Φ

Fα Xα − T S

dAΦ =
∑

α∈Φ

dFα Xα −
∑

α/∈Φ

Fα dXα − S dT
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Name of X Notation X̂ Average Conj. Var. F Name of F

Energy Ê(q) U 1 T =
temperature

Local p̂i(q) ~p = (px, py, pz) −~v ~v = local
momentum i = x, y, z velocity

local

Angular L̂i(q) ~L = (Lx, Ly, Lz) −~ω ~ω = angular
momentum i = x, y, z velocity

Volume V̂ (q) V P P = pressure

Number of chemical
particles of N̂a(q) Na −µa µa = potential
species a of species a

Magneti- M̂i(q) ~M = (Mx, My, Mz) − ~B ~B = magnetic
zation i = x, y, z field

Electric Q̂(q) Q −V V = Electric
charge potential

Deformation Σ̂i,j(q) Σi,j Πi,j Π = stress
tensor i, j ∈ {x, y, z} tensor
(in solids)

First Integrals and their Conjugate Variables in 3D
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II.3)- Local Equilibrium Approximation

• Length Scales:

` � δL � L

` is a typical microscopic length scale
L the typical macroscopic length scale.
Then δL is called mesoscopic.

• Time Scales:

τrel � δt � t

τrel is a typical microscopic time scale
t the typical macroscopic time scale.
Then δt is called mesoscopic.

• The system is partitionned into mesoscopic cells
the time is partitionned into mesoscopic intervals.

• Mesoscopic cells are completely open systems
After a time O(δt) they return to equilibrium.
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• The Gibbs state for the mesoscopic cell centered at
~x ∈ R

d at time t is:

P(~x,t)(q) =
1

Z(~x, t)
e
−

∑K
α=1 Fα(~x,t) X̂α(q)

kBT (~x,t)

• The T (~x, t), Fα(~x, t)’s are the conjugate variables
attached to each cell and time interval.

• The average values of the first integrals are

δXα(~x, t) =
∑

q∈Q(~x,t)

P(~x,t)(q) X̂α(q) .

• The volume of the cell δV (~x, t) = δV is mesoscopic
and chosen constant in space and time.

• Then δXα(~x, t) = O(δV ) and

ρα(~x, t) =
δXα(~x, t)

δV
.

is the local density of Xα
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II.4)- Fluxes, Currents

∆ 1 ∆ 0

X
(1)

α

(0)

αX

Σ

n n(0) (1)

• Transfer of Xα from cell ∆(1) to cell ∆(0) across area
δΣ during time δt gives a variation in time

δXα(~x, t) = −~jα(~x, t) · ~n(1)δΣδt .

where ~n(1) is the normal to area oriented from ∆(1)

to ∆(0).

•~jα(~x, t) is the local current associated with Xα.
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• Since Xα is conserved under evolution the balance
leads to the continuity equation

∂ρα

∂t
(~x, t) + ~∇ ·~jα(~x, t) = 0 .

• The entropy density is s = δS
δV

The entropy variation is then given by

∂s

∂t
=

K
∑

α=1

Fα

T

∂ρα

∂t
.

• The current entropy is define through

~js(~x, t) =

K
∑

α=1

Fα

T
~jα(~x, t) .

• The entropy production rate is then

ds

dt
=

∂s

∂t
+ ~∇ ·~js =

K
∑

α=1

~∇

(

Fα

T

)

~jα(~x, t) .

and is positive thanks to the 2nd Principle.
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II.5)- Linear Response

• A variation of the Fα/T ’s produces currents.
In the local equilibrium approximation

~jα =

K
∑

β=1

Lα,β
~∇

(

Fβ

T

)

+ O

{

∣

∣

∣

∣

~∇

(

Fβ

T

)∣

∣

∣

∣

2
}

– The Lα,β’s are d × d matrices called
Onsager cœfficients.

– The gradient of Fα/T is an affinity.
It plays a role similar to forces.

• By 2nd Principle, the positivity of entropy produc-
tion rate implies

L = ((Lα,β))Kα,β=1 ⇒ L + L
t ≥ 0

• Reciprocity Relations: if, under time reversal

symmetry, Xα
TR
→ εαXα then

Lβ,α(parameters) = εα εβ Lt
α,β(TR-parameters) .
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II.5)- Dissipative & Nondissipative Response

• Dissipation = Loss of Information

Dissipation contributes to entropy production.
Hence

L
(diss) =

1

2

(

L + L
t
)

• The nondissipative part

L
(nondis) =

1

2

(

L − L
t
)

contains quantities exhibiting quantization
at very low temperature !

– The Hall conductivity is nondissipative. It is
quantized a T = 0.

– Quantization of currents in superconductors.

• Warning: In mesoscopic systems, the quantiza-
tion of conductance, thermal conductance, mechan-
ical response, is due to the lack of dissipation.
The system is too small for the local equilibrium
approximation to hold.


