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Aperiodic Materials:
e Perfect Crystals
e Crystal with disorder (metals)
e Impurities in Semiconductors
e (Quasicrystals

e (Glasses



[IL.1)- The Hul

Equilibrium positions of atomic nuclei make up a point
set £ C RY the set of lattice sites. L may be:

1. Discrete.

2. Uniformly discrete: dr > 0 s.t. each ball of radius r contains
at most one point of £. Then L is r-discrete.

3. A Delone set: L is r-uniformly discrete and relatively dense :
3R > 0 s.t. each ball of radius R contains at least two points

of L. Then L is (r, R)-Delone.

4. A Meyer set: £ and £ — L are Delone sets. Correspondingly
Lis (r, R;r’, R')-Meyer.

Examples:

1. A random Poissonian set in R? is almost surely discrete but
not uniformly discrete nor relatively dense.

2. Due to Coulomb repulsion and Quantum Mechanics, lattices
of atoms are always uniformly discrete.

3. Impurities in semiconductors are not relatively dense.
4. In amorphous media L is Delone.

5. In a quasicrystal £ is Meyer.



Point Measures

W(Rd) is the set of Radon measures on R% namely
the dual space to C.(R%) (continuous functions with
compact support), endowed with the weak™ topology.

For £ a uniformly discrete point set in RY:

v o= V- = ZcS(x—y) e M(RY) .
yeL

The Hull is the closure in 9(RY)

() = {Tayﬁ;a € Rd} 7

where TV is the translated of v by a.
Facts:

1. Q is compact and R? acts by homeomorphisms.

2. If w € (), there is a uniformly discrete point set L,

in R? such that w coincides with v, = vt

3. If L is Delone (resp. Meyer) so are the L,’s.



Properties
(a) Minimality

L is repetitive if for any finite patch p there is R > 0
such that each ball of radius R contains an e-approxi-
mant of a translated of p.

Proposition 1 RY qets minimaly on ) if and only
if L 1s repetitive.

(b) Transversal

The closed subset X = {w € Q ; y,({0}) = 1} is
called the canonical transversal. Let G be the sub-
groupoid of {2 X R induced by X.

A Delone set £ has finite type if L — L is closed and
discrete.

(c) Cantorian Transversal

Proposition 2 If L has finite type, then the trans-
versal is completely discontinuous (Cantor).



[11.2)- Examples of Hulls

e For a pertect crystal £ in RY with period group I,
the Hull is the torus Q = R%/T" .

The transversal is ¥ = £/T". It is finite.

e The Hull of a quasicrystal can be built by the
cut-and-project method.
Its transversal 18 Cantorian.

e Impurities in a Si-crystal:

1. the lattice £ of S¢ has diamond type
1t 1s Z?’—invariant;

2.1t x € L, 0, € A denotes the impurity at x;

3. ={0=Si,P,I,---} is the alphabet labelling
impurities;

4.0=(04)ger, 0 €L =a-a=(04—a)per;

5. the transversal is ¥ = AL
it is Cantorian and Z3-invariant;

6. the Hull is the suspension Q = ¥ xR3 /73 with
action a : (o,y) — (ac,y + a).
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- The Penrose Tiling -



- A hole in icosahedral AlPdMn -
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- The Octagonal Tiling -
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- The Window of the Octagonal Tiling -

The intersections W N (W —aq)N---N (W —ay) are

clopen sets for any family aq,-- - a, in the Z-module
generated by elL, e ei.

= W 1s a Cantor set.



- The pinwheel tiling 1s NOT FPC ! -

Its Hull is invariant by U(1).



[1.3)- T =0 Gibbs States

e Let 91 be the space of Radon measure on RY
endowed with the weak*-topology with respect to

Co(R%).

o UD,(R%) is the set of Radon measures v, with £

being r-discrete. Set
UD(Rd> = Ur>o UDT(]Rd)-

o Del, g (R%) is the set of Radon measures v, with
L being (r, R)-Delone. Set

Del(R?) = Uper<r Dely py(R)

o Mey(, py' R/)(]Rd) is the set of Radon measures v,
with £ being (r, R;r’, R')-Meyer. Set
Mey(Rd> — UO<T§R,O<T’§R’ Mey(T,R;T’,R’)(Rd>'

o QD(R?) is the closure of UD(R%). An element of
QD is called a quasidiscrete set.



narpoo, 0-10 rebruary <zUUz

Theorem 1 (i) UD, D Del(,. py O Mey(,. .,/ g
are compact subsets of M for all 0 < r < R and
0<r <R.

(1) Uo<r'<pr Mey(, gy gy is dense in Del, py;

(1) Uy<p Dely gy is dense in UD;;

(iv) A Radon measure pu belongs to QD iff there is

a discrete point set L such that
Ho= Z ng (- — )
rxel
where ny € Ny for all x € L.

Thus a quasidiscrete set can be seen as a discrete sub-
set of RY with finitely many atoms on top of each other
at eachsite. If u € M, a € RY 7% denote the a-trans-
lated of u.

Theorem 2 QD, UD,, Del@,.,R) and Mey(,,nyR;,,n/’RQ
RY_invariant subsets of .



Gibbs measures are basic tools in Thermodynamics
and describe the equilibrium states of the atomic ar-
ray. They have the following properties:

1. A Gibbs state describing the atomic equilibrium is
given by a probability measure P on QD(]Rd).
(Note that QD(R?) is a polish space).

2. Whenever unique, P is R invariant and ergodic.

(Non-uniqueness means coexistence of phases).

3. To describe a solid, at 1" = 0, IP is expected to give
probability one to UD, Del or Mey.
P is called uniformly discrete, Delone or even
Meyerif it gives probability one to UD, Del, Mey
respectively:.



narpoo, 0-1o0 reoruary <UUz

Theorem 3 IfP isa R invariant ergodic uniform-
ly discrete probability measure on QD(Rd), then:
(i) There is r > 0 unique such that P{UD,} = 1
and for every v’ >r, P{UD,} = 0.

(ii) for P-almost all v € QD(RY), the Hull of v is
compact and given by the topological support of PP.

Thus a uniformly discrete Gibbs measure IP deter-
mines the Hull {2p with probability one.

Proposition 3 (i) If P is an R%-invariant ergodic
Delone probability measure on QD(Rd), there is 0 <
r < R unique such that P{Del py} = 1 and,
for every (r',R") # (r,R) with ' > r,R' < R,
P{DGZ(W)R/)} = 0.

(i) If P is a R invariant ergodic Meyer probabil-
ity measure, there are 0 < r < R, 0 < ' < R/
unique such that P{Mey g+ pny = 1 and, for
every (r1, Ry; 7y, RY) # (r, Ry ', R') with

ry >, 7“’127“’, R1 <R, R’ISR’,
P{Mey(’l“l,Rl;’ri,Rll)} — O



[11.4)- Diffraction Measure

For A a ball in Rd, the diffraction measure associated
with v, € UD is given by the density

1 L.
g0 = 3
zeLNA

Theorem 4 IfP is a R invariant ergodic uniform-
ly discrete probability measure on QD(Rd), then for

P-almost every v € QD the family (p(AE) )A rd €O
C

verges as A T R? to a measure pp € M(RP) such
that:

(i) pp is positive,

(i1) its Fourier transform is positive and supported

by the closure of L — L.

Thus the diffraction picture seen by an experimentalist
depends only upon the Gibbs measure describing the
atomic equilibrium.
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[11.4)- Bloch Theory

o If L is periodic with period group G, the Voronoi
cell, called the Bravais zone, can be identified with

V = RY/G

e The group GT orthogonal to G in the dual space
RY* is the reciprocal lattice. By Pontryagin duality

Gt ~V*

e The corresponding Voronoi cells are called Brillouin
zones. They can also be identified with the quotient

B = R**/G- ~ G*
B is topologically a torus T<.
It represents the momentum space of the crystal.



o Let now H = L?(R?). Translation ¢ € R — T(a)
on H: T(a)Y(x) = Y(x — a).

o textcolorequaH = H™ : selfadjoint operator on H
with G-invariant dense domain. H is G-periodic it

T(a)HT(a)" ' = H, a€G

e Example: the Schrodinger operator
H=-A+V Vir+a) = V(z) Vae G
with A = d-Laplacian, V € L'+ LP with p > d/2.
e Then

we g o= L
U, = LA(V), Hk:<v+k) V().

e The spectrum of Hy, is discrete. Eigenvalues Ey (k)
are continuous (analytic) on B

By, 1s called a band.



[11.5)- Noncommutative Brillouin Zone

e Here L is a uniformly discrete set with Hull €2 and
Re-action 7. (Q,RY,7) is a topological dynamical
system with at least one dense orbit.

e The crossed product
A = C(Q) x; R?

is (almost) the smallest C'*-algebra containing both
the space of continuous functions on {2 and the ac-
tion of R% submitted to the commutation rules (for

fec))
T(a)fT(a)”™' = for @, a € R

e For a crystal () =V, R acts by quotient action
C(V) xR ~ C(B)® K,
where /C is the algebra of compact operators.

o A is the Noncommutative version of the space of
IC-valued function over the Brillouin zone.



Construction of A:

Endow A, = Co(Q x R?) with (here A, B € Ay):

1. Product
A-Bloa)= [ dy A B Yo -y
yeRd

2. Involution

A¥(w,z) = A(T7%w, —1)

3. A faithfull family of representations in H = L2(R%)

rA)va) = [y Al — o) o)

if Ae Ay, v eH.

4. C*-norm

|A|l = sup [|[mw(A)]] -
wel)



Calculus on A:

Integration: Let IP be an R invariant ergodic prob-
ability measure on (2. Then set (for A € Ay)):

dis.

To(A) = /Q 0P A(w,0) = < 0, (A)0 >

Then Tp extends as a positive trace on A.

Trace per unit volume:
thanks to Birkhoft’s theorem:

To(A) = lim —Ti(mu(A) [n)  ae. w
ARE A

Differential calculus:
A commuting set of x-derivations is given by

0;A(w,x) =1x; Alw, )

on Ay. Then 7,(0;A) = —1|X;, m,(A)] where
X = (X4, -+, X,) is the position operator.



[11.6)- Electronic Hamiltonian

e The Schrodinger Hamiltonian for an electron in L is
typically
Hw:—AJrZU(X—y), w € ().
yeLy

acting on H = L*(R%).
v e LP(RY) N C(RY) is the atomic potential.

Theorem 5 For any z € C\ R there is R(z) € A

such that |

Z _ HCU
The algebraic spectrum ot H is defined by

mu(R(2) =

1
z— 2

L= |J o(Hs) & o(R(z) =
wel)



Density of States:

e The Density of States (DOS) is the positive measure
Np on R defined by

dNw(E)
| TEF = TEe)

o Set NVp(F) = f?oo dNp. If E is a continuity point
of Np, Shubin’s f0rmula holds P-almost all w’s:

Np(E) = lim —# {eigenvalues of H, [\< E'}
AR |A]

e The support of Np is contained in X.
It g = (E—,Ey) is a spectral gap, let Py be the
spectral projection of H on (—oo, E_], so that

ng = Ne(E-+0) = Np(Ey —0) = Te(Fy)

e Fact: P is a projection belonging to A !!



y

N(E)

- An example of DOS -



[11.7)- Tight Binding Representation

e Let X be the transversal of £. Then
D = {y = (w,a) e xR 77 % e %}

is a locally compact groupoid:

1. range, source: r(w,a) = w, s(w,a) =7 %W
r,s:1'+— 2.
2. product: v,v') are composable if s(vy) = r(vy).
Then
(w,a)o (17, d) = (w,a+d)
3. Units: e, = (w,0) are units
ev(w,a) = (w,a), (T"w,a)ey, = (7%, a)

4. inverse: (w,a)”! = (77%), —a).
e The fiberI'Y = {v €T'; r(y) = w} coincides with



narpoo, 0-10 rebruary <zUUz

~<——— orhiteof W ——>=

- Transversal and Groupoid Arrows -



Zi

e The C*-algebra C'*(I') is built from C¢(I") in a sim-
ilar way to A,. Just replace the integral over a by
the discrete sum.

e the representation 7, acts on ¢?(L,) through the
same formula.

e The translation maps £2(Ly) onto £*(Lra,,) unitar-
ly

e The rules for calculus are similar: P is replaced by
the transversal measure P induced by IP on 2.

e For periodic crystals, C*(I') ~ C(B)



[11.8)- Phonons

f .
. ;
= 7
Lk
y~ a,
«7

1. Phonons are acoustic waves produced by small dis-
placements of atomic nuclei.

2. These waves are polarized with d-directions of po-
larization: d — 1 are transverse one is longitudinal.

3. The nuclel motion is approximatively harmonic and
quantized according to the Bose-Liinstein statistics.

4. The charged nuclei interact with electrons, leading
to an electron-phonon interaction.



The Harmonic Approximation:

L.

It the nuclei motion is harmonic, the equations of
motion are
dQ ﬁ(w,x) — —
M(w,x) 9 — Z Kw<x7 y) (u(way) o u(wa$)>
dt
r#YELy

where M, ,) 1s the mass of the nucleus located at
T, U, o 15 its classical displacement and
K, (x,y) is the matrix of spring constants.

. Ky(x,y) decays fast in « — y, uniformly in w..

. Covariance gives

M,y =m(t"w)  Ky(z,y) = k(T w,y — z)
thus m € C(X) c C*(I'), k € C*(I') ® M (C).

. Let Q € C*(I") be defined by (for §, € C9).

Z m( ) \/SLW — %(Sw 8y) Ko(z,y)(8:—5y)

Then Qo‘(w,az)p y > 0ifa <2

. The spectrum of ) gives the phonon modes.

The density of phonon modes is defined like the
DOS with €2 replacing the Hamiltonian.



