COHERENT and DISSIPATIVE TRANSPORT

in

APERIODIC SOLIDS: B

Jean BELLISSARD 1 2

Université Paul Sabatier, Toulouse
&
Institut Universitaire de France

Collaborations:

- I. GUARNERI (Università di Como)
- R. MOSSERI (CNRS, Univ. Paris VI-VII)
- R. REBOLLEDO (Pontificia Universidad de Chile
- H. SCHULZ-BALDES (TU Berlin)
- D. SPEHNER (Essen)
- J. VIDAL (CNRS, Univ. Paris VI-VII)
- W. von WALDENFELS (Heidelberg)
- X.J. ZHONG (Oak Ridge)

¹I.R.S.A.M.C. & Laboratoire Émile Picard, Université Paul Sabatier, 118, route de Narbonne, Toulouse Cedex 04, France ²e-mail: jeanbel@irsamc.ups-tlse.fr

T

III - Aperiodic Solids

- J. Bellissard, The Gap Labelling Theorems for Schrödinger's Operators, in From Number Theory to Physics, pp. 538-630, Les Houches March 89, Springer, J.M. Luck, P. Moussa & M. Waldschmidt Eds., (1993).
- J. Bellissard, D. Herrmann, M. Zarrouati, Hull of Aperiodic Solids and Gap Labelling Theorems, In Directions in Mathematical Quasicrystals, CRM Monograph Series, Volume 13, (2000), 207-259, M.B. Baake & R.V. Moody Eds., AMS Providence.

Aperiodic Materials:

- Perfect Crystals
- Crystal with disorder (metals)
- Impurities in Semiconductors
- Quasicrystals
- Glasses

III.1)- The Hull

Equilibrium positions of atomic nuclei make up a point set $\mathcal{L} \subset \mathbb{R}^d$ the set of lattice sites. \mathcal{L} may be:

- 1. Discrete.
- 2. Uniformly discrete: $\exists r > 0 \text{ s.t.}$ each ball of radius r contains at most one point of \mathcal{L} . Then \mathcal{L} is r-discrete.
- 3. A *Delone* set: \mathcal{L} is r-uniformly discrete and relatively dense: $\exists R > 0$ s.t. each ball of radius R contains at least two points of \mathcal{L} . Then \mathcal{L} is (r, R)-Delone.
- 4. A *Meyer* set: \mathcal{L} and $\mathcal{L} \mathcal{L}$ are Delone sets. Correspondingly \mathcal{L} is (r, R; r', R')-Meyer.

Examples:

- 1. A random Poissonian set in \mathbb{R}^d is almost surely discrete but not uniformly discrete nor relatively dense.
- 2. Due to Coulomb repulsion and Quantum Mechanics, lattices of atoms are always uniformly discrete.
- 3. Impurities in semiconductors are not relatively dense.
- 4. In amorphous media \mathcal{L} is Delone.
- 5. In a quasicrystal \mathcal{L} is Meyer.

Point Measures

 $\mathfrak{M}(\mathbb{R}^d)$ is the set of Radon measures on \mathbb{R}^d namely the dual space to $\mathcal{C}_c(\mathbb{R}^d)$ (continuous functions with compact support), endowed with the weak* topology.

For \mathcal{L} a uniformly discrete point set in \mathbb{R}^d :

$$\nu := \nu^{\mathcal{L}} = \sum_{y \in \mathcal{L}} \delta(x - y) \in \mathfrak{M}(\mathbb{R}^d).$$

The *Hull* is the closure in $\mathfrak{M}(\mathbb{R}^d)$

$$\Omega = \overline{\left\{ \mathbf{T}^a \nu^{\mathcal{L}}; a \in \mathbb{R}^d \right\}} \ ,$$

where $T^a \nu$ is the translated of ν by a.

Facts:

- 1. Ω is compact and \mathbb{R}^d acts by homeomorphisms.
- 2. If $\omega \in \Omega$, there is a uniformly discrete point set \mathcal{L}_{ω} in \mathbb{R}^d such that ω coincides with $\nu_{\omega} = \nu^{\mathcal{L}_{\omega}}$.
- 3. If \mathcal{L} is Delone (resp. Meyer) so are the \mathcal{L}_{ω} 's.

Properties

(a) Minimality

 \mathcal{L} is repetitive if for any finite patch p there is R > 0 such that each ball of radius R contains an ϵ -approximant of a translated of p.

Proposition 1 \mathbb{R}^d acts minimaly on Ω if and only if \mathcal{L} is repetitive.

(b) Transversal

The closed subset $X = \{\omega \in \Omega : \nu_{\omega}(\{0\}) = 1\}$ is called the *canonical transversal*. Let G be the subgroupoid of $\Omega \rtimes \mathbb{R}^d$ induced by X.

A Delone set \mathcal{L} has *finite type* if $\mathcal{L} - \mathcal{L}$ is closed and discrete.

(c) Cantorian Transversal

Proposition 2 If \mathcal{L} has finite type, then the transversal is completely discontinuous (Cantor).

III.2)- Examples of Hulls

- For a perfect crystal \mathcal{L} in \mathbb{R}^d with period group Γ , the Hull is the torus $\Omega = \mathbb{R}^d/\Gamma$.

 The transversal is $\Sigma = \mathcal{L}/\Gamma$. It is finite.
- The Hull of a quasicrystal can be built by the cut-and-project method.

 Its transversal is Cantorian.
- \bullet Impurities in a Si-crystal:
 - 1. the lattice \mathcal{L} of Si has diamond type it is \mathbb{Z}^3 -invariant;
 - 2. if $x \in \mathcal{L}$, $\sigma_x \in \mathfrak{A}$ denotes the impurity at x;
 - 3. $\mathfrak{A} = \{0 = Si, P, I, \dots\}$ is the *alphabet* labelling impurities;
 - 4. $\underline{\sigma} = (\sigma_x)_{x \in \mathcal{L}}, \quad a \in \mathbb{Z}^3 \Rightarrow a \cdot \underline{\sigma} = (\sigma_{x-a})_{x \in \mathcal{L}};$
 - 5. the transversal is $\Sigma = \mathfrak{A}^{\mathcal{L}}$ it is Cantorian and \mathbb{Z}^3 -invariant;
 - 6. the Hull is the suspension $\Omega = \Sigma \times \mathbb{R}^3/\mathbb{Z}^3$, with action $a: (\underline{\sigma}, y) \mapsto (a\underline{\sigma}, y + a)$.

- The Penrose Tiling -

- A hole in icosahedral AlPdMn -

- The Octagonal Tiling -

The cut-and-project construction –

- The Window of the Octagonal Tiling -

The intersections $W \cap (W - a_1) \cap \cdots \cap (W - a_n)$ are clopen sets for any family $a_1, \cdots a_n$ in the \mathbb{Z} -module generated by $e_1^{\perp}, \cdots, e_4^{\perp}$.

 $\Rightarrow W$ is a Cantor set.

- The pinwheel tiling is NOT FPC!-

Its Hull is invariant by U(1).

III.3)- T = 0 Gibbs States

- Let \mathfrak{M} be the space of Radon measure on \mathbb{R}^d endowed with the weak*-topology with respect to $\mathcal{C}_c(\mathbb{R}^d)$.
- $UD_r(\mathbb{R}^d)$ is the set of Radon measures $\nu_{\mathcal{L}}$ with \mathcal{L} being r-discrete. Set $UD(\mathbb{R}^d) = \bigcup_{r>0} UD_r(\mathbb{R}^d)$.
- $Del_{(r,R)}(\mathbb{R}^d)$ is the set of Radon measures $\nu_{\mathcal{L}}$ with \mathcal{L} being (r,R)-Delone. Set $Del(\mathbb{R}^d) = \bigcup_{0 < r \leq R} Del_{(r,R)}(\mathbb{R}^d)$.
- $Mey_{(r,R;r',R')}(\mathbb{R}^d)$ is the set of Radon measures $\nu_{\mathcal{L}}$ with \mathcal{L} being (r,R;r',R')-Meyer. Set $Mey(\mathbb{R}^d) = \bigcup_{0 < r \leq R, 0 < r' \leq R'} Mey_{(r,R;r',R')}(\mathbb{R}^d)$.
- $QD(\mathbb{R}^d)$ is the closure of $UD(\mathbb{R}^d)$. An element of QD is called a *quasidiscrete set*.

Theorem 1 (i) $UD_r \supset Del_{(r,R)} \supset Mey_{(r,R;r',R')}$ are compact subsets of \mathfrak{M} for all $0 < r \leq R$ and $0 < r' \leq R'$.

- (ii) $\bigcup_{0 < r' \leq R'} Mey_{(r,R;r',R')}$ is dense in $Del_{(r,R)}$;
- (iii) $\bigcup_{0 \le R} Del_{(r,R)}$ is dense in UD_r ;
- (iv) A Radon measure μ belongs to QD iff there is

a discrete point set \mathcal{L} such that

$$\mu = \sum_{x \in \mathcal{L}} n_x \, \delta(\,\cdot\, -x)$$

where $n_x \in \mathbb{N}_*$ for all $x \in \mathcal{L}$.

Thus a *quasidiscrete set* can be seen as a discrete subset of \mathbb{R}^d with finitely many atoms on top of each other at each site. If $\mu \in \mathfrak{M}$, $a \in \mathbb{R}^d$, $\tau^a \mu$ denote the a-translated of μ .

Theorem 2 QD, UD_r , $Del_{(r,R)}$ and $Mey_{(r,R;r',R')}$ \mathbb{R}^d -invariant subsets of \mathfrak{M} .

Gibbs measures are basic tools in Thermodynamics and describe the equilibrium states of the atomic array. They have the following properties:

- 1. A Gibbs state describing the atomic equilibrium is given by a probability measure \mathbb{P} on $QD(\mathbb{R}^d)$. (Note that $QD(\mathbb{R}^d)$ is a polish space).
- 2. Whenever unique, \mathbb{P} is \mathbb{R}^d -invariant and ergodic. (Non-uniqueness means coexistence of phases).
- 3. To describe a solid, at T = 0, P is expected to give probability one to UD, Del or Mey.
 P is called uniformly discrete, Delone or even Meyer if it gives probability one to UD, Del, Mey respectively.

Theorem 3 If \mathbb{P} is a \mathbb{R}^d -invariant ergodic uniformly discrete probability measure on $QD(\mathbb{R}^d)$, then:

- (i) There is r > 0 unique such that $\mathbb{P}\{UD_r\} = 1$ and for every r' > r, $\mathbb{P}\{UD_{r'}\} = 0$.
- (ii) for \mathbb{P} -almost all $\nu \in QD(\mathbb{R}^d)$, the Hull of ν is compact and given by the topological support of \mathbb{P} .

Thus a uniformly discrete Gibbs measure \mathbb{P} determines the Hull $\Omega_{\mathbb{P}}$ with probability one.

Proposition 3 (i) If \mathbb{P} is an \mathbb{R}^d -invariant ergodic Delone probability measure on $QD(\mathbb{R}^d)$, there is $0 < r \leq R$ unique such that $\mathbb{P}\{Del_{(r,R)}\} = 1$ and, for every $(r',R') \neq (r,R)$ with $r' \geq r,R' \leq R$, $\mathbb{P}\{Del_{(r',R')}\} = 0$.

(i) If \mathbb{P} is a \mathbb{R}^d -invariant ergodic Meyer probability measure, there are $0 < r \le R, \ 0 < r' \le R'$ unique such that $\mathbb{P}\{Mey_{(r,R;r',R')}\} = 1$ and, for every $(r_1, R_1; r'_1, R'_1) \ne (r, R; r', R')$ with $r_1 \ge r, \ r'_1 \ge r', \ R_1 \le R, \ R'_1 \le R',$ $\mathbb{P}\{Mey_{(r_1,R_1;r'_1,R'_1)}\} = 0.$

III.4)- Diffraction Measure

For Λ a ball in \mathbb{R}^d , the diffraction measure associated with $\nu_{\mathcal{L}} \in UD$ is given by the density

$$\rho_{\Lambda}^{(\mathcal{L})}(k) = \frac{1}{|\Lambda|} \left| \sum_{x \in \mathcal{L} \cap \Lambda} e^{ik \cdot x} \right|^{2}$$

Theorem 4 If \mathbb{P} is a \mathbb{R}^d -invariant ergodic uniformly discrete probability measure on $QD(\mathbb{R}^d)$, then for \mathbb{P} -almost every $\nu \in QD$ the family $\left(\rho_{\Lambda}^{(\mathcal{L})}\right)_{\Lambda \subset \mathbb{R}^d}$ converges as $\Lambda \uparrow \mathbb{R}^d$ to a measure $\rho_{\mathbb{P}} \in \mathfrak{M}(\mathbb{R}^{d*})$ such that:

- (i) $\rho_{\mathbb{P}}$ is positive,
- (ii) its Fourier transform is positive and supported by the closure of $\mathcal{L} - \mathcal{L}$.

Thus the diffraction picture seen by an experimentalist depends only upon the Gibbs measure describing the atomic equilibrium.

III.4)- Bloch Theory

• If \mathcal{L} is periodic with period group \mathbb{G} , the Voronoi cell, called *the Bravais zone*, can be identified with

$$V = \mathbb{R}^d/\mathbb{G}$$

• The group \mathbb{G}^{\perp} orthogonal to \mathbb{G} in the dual space \mathbb{R}^{d} * is the reciprocal lattice. By Pontryagin duality

$$\mathbb{G}^{\perp} \simeq \mathbb{V}^*$$

• The corresponding Voronoi cells are called *Brillouin* zones. They can also be identified with the quotient

$$\mathbb{B} = \mathbb{R}^{d*}/\mathbb{G}^{\perp} \simeq \mathbb{G}^{*}$$

 \mathbb{B} is topologically a torus \mathbb{T}^d .

It represents the *momentum space* of the crystal.

- Let now $\mathcal{H} = L^2(\mathbb{R}^d)$. Translation $a \in \mathbb{R} \mapsto T(a)$ on \mathcal{H} : $T(a)\psi(x) = \psi(x-a)$.
- textcolorequa $H = H^*$: selfadjoint operator on \mathcal{H} with \mathbb{G} -invariant dense domain. H is \mathbb{G} -periodic if

$$T(a)HT(a)^{-1} = H, \qquad a \in \mathbb{G}$$

• Example: the Schrödinger operator

$$H = -\Delta + V$$
 $V(x+a) = V(x) \ \forall a \in \mathbb{G}$ with $\Delta = d$ -Laplacian, $V \in L^1 + L^p$ with $p > d/2$.

• Then

$$\mathcal{H} \simeq \int_{\mathbb{B}}^{\oplus} \frac{d^d k}{|\mathbb{B}|} \,\mathcal{H}_k \qquad H \simeq \int_{\mathbb{B}}^{\oplus} \frac{d^d k}{|\mathbb{B}|} \,H_k$$

$$\mathcal{H}_k = L^2(\mathbb{V}), \quad H_k = \left(\frac{\hbar}{\imath} \vec{\nabla} + k\right)^2 + V(.).$$

• The spectrum of H_k is *discrete*. Eigenvalues $E_n(k)$ are continuous (analytic) on \mathbb{B}

$$\sigma(H) = \bigcup_n B_n$$
, $B_n = \{E_n(k); k \in \mathbb{B}\}$

 B_n is called a **band**.

III.5)- Noncommutative Brillouin Zone

- Here \mathcal{L} is a uniformly discrete set with Hull Ω and \mathbb{R}^d -action τ . $(\Omega, \mathbb{R}^d, \tau)$ is a topological dynamical system with at least one dense orbit.
- The crossed product

$$\mathcal{A} = \mathcal{C}(\Omega) \rtimes_{\tau} \mathbb{R}^d$$

is (almost) the smallest C^* -algebra containing both the space of continuous functions on Ω and the action of \mathbb{R}^d submitted to the commutation rules (for $f \in \mathcal{C}(\Omega)$)

$$T(a)fT(a)^{-1} = f \circ \tau^{-a}, \qquad a \in \mathbb{R}^d$$

• For a crystal $\Omega = \mathbb{V}$, \mathbb{R}^d acts by quotient action

$$\mathcal{C}(\mathbb{V}) \rtimes_{\tau} \mathbb{R}^d \simeq \mathcal{C}(\mathbb{B}) \otimes \mathcal{K}$$
,

where \mathcal{K} is the algebra of compact operators.

• A is the Noncommutative version of the space of K-valued function over the Brillouin zone.

Construction of A:

Endow $\mathcal{A}_0 = \mathcal{C}_c(\Omega \times \mathbb{R}^d)$ with (here $A, B \in \mathcal{A}_0$):

1. Product

$$A \cdot B(\omega, x) = \int_{y \in \mathbb{R}^d} d^d y \, A(\omega, y) \, B(\tau^{-y}\omega, x - y)$$

2. Involution

$$A^*(\omega, x) = \overline{A(\tau^{-x}\omega, -x)}$$

3. A faithfull family of representations in $\mathcal{H} = L^2(\mathbb{R}^d)$

$$\pi_{\omega}(A) \, \psi(x) = \int_{\mathbb{R}^d} d^{\mathrm{d}}y \, A(\tau^{-x}\omega, y - x) \cdot \psi(y)$$

if $A \in \mathcal{A}_0, \psi \in \mathcal{H}$.

4. C^* -norm

$$||A|| = \sup_{\omega \in \Omega} ||\pi_{\omega}(A)||.$$

Definition 1 The C^* -algebra \mathcal{A} is the completion of \mathcal{A}_0 under this norm.

Calculus on A:

Integration: Let \mathbb{P} be an \mathbb{R}^d -invariant ergodic probability measure on Ω . Then set (for $A \in \mathcal{A}_0$):

$$\mathcal{T}_{\mathbb{P}}(A) = \int_{\Omega} d\mathbb{P} \ A(\omega, 0) = \overline{\langle 0 | \pi_{\omega}(A) 0 \rangle}^{dis.}$$

Then $\mathcal{T}_{\mathbb{P}}$ extends as a *positive trace* on \mathcal{A} .

Trace per unit volume:

thanks to Birkhoff's theorem:

$$\mathcal{T}_{\mathbb{P}}(A) = \lim_{\Lambda \uparrow \mathbb{R}^d} \frac{1}{|\Lambda|} \operatorname{Tr}(\pi_{\omega}(A) \upharpoonright_{\Lambda})$$
 a.e. ω

Differential calculus:

A commuting set of *-derivations is given by

$$\partial_i A(\omega, x) = i x_i \ A(\omega, x)$$

on \mathcal{A}_0 . Then $\pi_{\omega}(\partial_i A) = -i[X_i, \pi_{\omega}(A)]$ where $X = (X_1, \dots, X_d)$ is the *position operator*.

III.6)- Electronic Hamiltonian

ullet The Schrödinger Hamiltonian for an electron in ${\cal L}$ is typically

$$H_{\omega} = -\Delta + \sum_{y \in \mathcal{L}_{\omega}} v(X - y), \qquad \omega \in \Omega.$$

acting on $\mathcal{H} = L^2(\mathbb{R}^d)$. $v \in L^p(\mathbb{R}^d) \cap \mathcal{C}(\mathbb{R}^d)$ is the *atomic potential*.

Theorem 5 For any $z \in \mathbb{C} \setminus \mathbb{R}$ there is $R(z) \in \mathcal{A}$ such that

$$\pi_{\omega}(R(z)) = \frac{1}{z - H_{\omega}}$$

The algebraic spectrum of H is defined by

$$\Sigma = \bigcup_{\omega \in \Omega} \sigma(H_{\omega}) \Leftrightarrow \sigma(R(z)) = \frac{1}{z - \Sigma}$$

Density of States:

• The Density of States (DOS) is the positive measure $\mathcal{N}_{\mathbb{P}}$ on \mathbb{R} defined by

$$\int_{\mathbb{R}} \frac{d\mathcal{N}_{\mathbb{P}}(E)}{z - E} = \mathcal{T}_{\mathbb{P}}(R(z))$$

• Set $\mathcal{N}_{\mathbb{P}}(E) = \int_{-\infty}^{E} d\mathcal{N}_{\mathbb{P}}$. If E is a continuity point of $\mathcal{N}_{\mathbb{P}}$, Shubin's formula holds \mathbb{P} -almost all ω 's:

$$\mathcal{N}_{\mathbb{P}}(E) = \lim_{\Lambda \uparrow \mathbb{R}^d} \frac{1}{|\Lambda|} \# \{ \text{eigenvalues of } H_{\omega} \upharpoonright_{\Lambda} \leq E \}$$

• The *support* of $\mathcal{N}_{\mathbb{P}}$ is contained in Σ . If $\mathfrak{g} = (E_{-}, E_{+})$ is a spectral gap, let $P_{\mathfrak{g}}$ be the spectral projection of H on $(-\infty, E_{-}]$, so that

$$n_{\mathfrak{g}} = \mathcal{N}_{\mathbb{P}}(E_{-}+0) = \mathcal{N}_{\mathbb{P}}(E_{+}-0) = \mathcal{T}_{\mathbb{P}}(P_{\mathfrak{g}})$$

• Fact: $P_{\mathfrak{g}}$ is a projection belonging to \mathcal{A} !!

- An example of DOS -

III.7)- Tight Binding Representation

• Let Σ be the transversal of \mathcal{L} . Then

$$\Gamma = \{ \gamma = (\omega, a) \in \Sigma \times \mathbb{R}^d ; \tau^{-a}\omega \in \Sigma \}$$

is a locally compact groupoid:

- 1. range, source: $r(\omega, a) = \omega$, $s(\omega, a) = \tau^{-a}\omega$ $r, s : \Gamma \mapsto \Sigma$.
- 2. product: γ, γ') are *composable* if $s(\gamma) = r(\gamma')$. Then

$$(\omega, a) \circ (\tau^{-a}\omega, a') = (\omega, a + a')$$

3. Units: $e_{\omega} = (\omega, 0)$ are units

$$e_{\omega}(\omega, a) = (\omega, a), \quad (\tau^a \omega, a) e_{\omega} = (\tau^a \omega, a)$$

- 4. inverse: $(\omega, a)^{-1} = (\tau^{-a}\omega, -a)$.
- The fiber $\Gamma^{\omega} = \{ \gamma \in \Gamma ; r(\gamma) = \omega \}$ coincides with

$$\Gamma^{\omega} = \{\omega\} \times \mathcal{L}_{\omega}$$

- Transversal and Groupoid Arrows -

- The C^* -algebra $C^*(\Gamma)$ is built from $\mathcal{C}_c(\Gamma)$ in a similar way to \mathcal{A}_0 . Just replace the integral over a by the discrete sum.
- the representation π_{ω} acts on $\ell^2(\mathcal{L}_{\omega})$ through the same formula.
- The translation maps $\ell^2(\mathcal{L}_{\omega})$ onto $\ell^2(\mathcal{L}_{\tau^a\omega})$ unitarily
- The rules for calculus are similar: \mathbb{P} is replaced by the transversal measure \mathbb{P}_{tr} induced by \mathbb{P} on Σ .
- For periodic crystals, $C^*(\Gamma) \simeq \mathcal{C}(\mathbb{B})$

III.8)- Phonons

- 1. Phonons are *acoustic waves* produced by small displacements of atomic nuclei.
- 2. These waves are polarized with d-directions of polarization: d-1 are transverse one is longitudinal.
- 3. The nuclei motion is approximatively harmonic and quantized according to the *Bose-Einstein* statistics.
- 4. The charged nuclei interact with electrons, leading to an *electron-phonon interaction*.

The Harmonic Approximation:

1. If the nuclei motion is harmonic, the equations of motion are

$$M_{(\omega,\,x)}\,rac{d^{z}\,ec{u}_{(\omega,\,x)}}{dt^{z}}\,=\,\sum_{x
eq y\in\mathcal{L}_{\omega}}K_{\omega}(x,y)\,(ec{u}_{(\omega,\,y)}-ec{u}_{(\omega,\,x)})$$

where $M_{(\omega,x)}$ is the *mass* of the nucleus located at x, $\vec{u}_{(\omega,x)}$ is its *classical displacement* and $K_{\omega}(x,y)$ is the matrix of *spring constants*.

- 2. $K_{\omega}(x,y)$ decays fast in x-y, uniformly in ω ..
- 3. Covariance gives

$$M_{(\omega,x)} = m(\tau^{-x}\omega)$$
 $K_{\omega}(x,y) = k(\tau^{-x}\omega, y - x)$
thus $m \in \mathcal{C}(X) \subset C^*(\Gamma), k \in C^*(\Gamma) \otimes M_d(\mathbb{C}).$

4. Let $\hat{\Omega} \in C^*(\Gamma)$ be defined by (for $\vec{s}_x \in \mathbb{C}^d$).

$$\sum_{x,y} \frac{\vec{s}_x^*}{\sqrt{M_{\omega,x}}} \left(\hat{\Omega}_{\omega}^2 \right)_{x,y} \frac{\vec{s}_y}{\sqrt{M_{\omega,x}}} = \sum_{x \neq y} (\vec{s}_x - \vec{s}_y)^* K_{\omega}(x,y) (\vec{s}_x - \vec{s}_y)$$

Then $\hat{\Omega}^{\alpha}(\omega, x)_{\rho, \rho'} \geq 0$ if $\alpha < 2$.

5. The spectrum of $\hat{\Omega}$ gives the *phonon modes*. The *density of phonon modes* is defined like the DOS with $\hat{\Omega}$ replacing the Hamiltonian.