Periodic Approximants to Aperiodic Hamiltonians

Jean BELLISSARD

Westfälische Wilhelms-Universität, Münster Department of Mathematics

Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics e-mail: jeanbel@math.gatech.edu

CRC 701, Bielefeld, Germany



SFB 878, Münster, Germany

Contributors

G. DE NITTIS, Department Mathematik, Friedrich-Alexander Universität, Erlangen-Nürnberg, Germany

S. BECKUS, Mathematisches Institut, Friedrich-Schiller-Universität Jena, Germany

V. MILANI, Dep. of Mathematics, Shahid Beheshti University Tehran, Iran

Main References

J. E. ANDERSON, I. PUTNAM, *Topological invariants for substitution tilings and their associated C*-algebras,* Ergodic Theory Dynam. Systems, **18**, (1998), 509-537.

F. GÄHLER, Talk given at *Aperiodic Order*, *Dynamical Systems*, *Operator Algebra and Topology* Victoria, BC, August 4-8, 2002, *unpublished*.

J. BELLISSARD, R. BENEDETTI, J. M. GAMBAUDO, Spaces of Tilings, Finite Telescopic Approximations, Comm. Math. Phys., **261**, (2006), 1-41.

S. BECKUS, J. BELLISSARD, Continuity of the spectrum of a field of self-adjoint operators, arXiv:1507.04641, July 2015, April 2016.

J. BELLISSARD, *Wannier Transform for Aperiodic Solids*, Talks given at EPFL, Lausanne, June 3rd, 2010 KIAS, Seoul, Korea September 27, 2010 Georgia Tech, March 16th, 2011 Cergy-Pontoise September 5-6, 2011 U.C. Irvine, May 15-19, 2013 WCOAS, UC Davis, October 26, 2013 online at http://people.math.gatech.edu/~jeanbel/talksjbE.html

Content

Warning *This talk is reporting on a work under writing.*

- 1. Motivation
- 2. Continuous Fields
- 3. Tautogical Groupoid
- 4. Periodic Approximations for Subshifts

I - Motivations

II - Continuous Fields

 $A = (A_t)_{t \in T}$ is a field of self-adjoint operators whenever

- 1. *T* is a topological space,
- 2. for each $t \in T$, \mathcal{H}_t is a Hilbert space,
- 3. for each $t \in T$, A_t is a self-adjoint operator acting on \mathcal{H}_t .

The field $A = (A_t)_{t \in T}$ is called *p2-continuous* whenever, for every polynomial $p \in \mathbb{R}(X)$ with degree at most 2, the following norm map is *continuous*

 $\Phi_p: t \in T \mapsto \|p(A_t)\| \in [0, +\infty)$

Theorem: (S. Beckus, J. Bellissard '16)

- 1. A field $A = (A_t)_{t \in T}$ of self-adjoint bounded operators is p2-continuous if and only if the spectrum of A_t , seen as a compact subset of \mathbb{R} , is a continuous function of t with respect to the Hausdorff metric.
- 2. Equivalently $A = (A_t)_{t \in T}$ is p2-continuous if and only if the spectral gap edges of A_t are continuous functions of t.

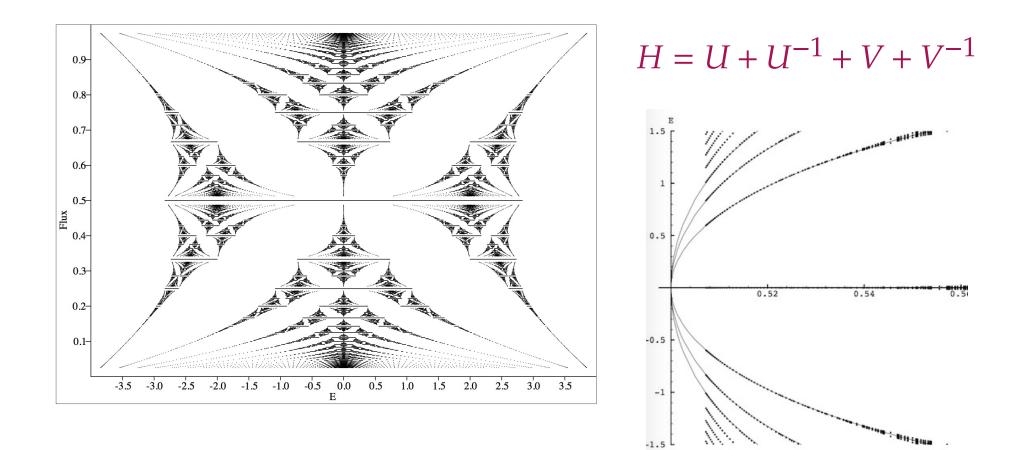
The field $A = (A_t)_{t \in T}$ is called $p2-\alpha$ -*Hölder continuous* whenever, for every polynomial $p \in \mathbb{R}(X)$ with degree at most 2, the following norm map is α -*Hölder continuous*

 $\Phi_p: t \in T \mapsto \|p(A_t)\| \in [0, +\infty)$

uniformly w.r.t. $p(X) = p_0 + p_1 X + p_2 X^2 \in \mathbb{R}(X)$ such that $|p_0| + |p_1| + |p_2| \le M$, for some M > 0.

Theorem: (S. Beckus, J. Bellissard '16)

- 1. A field $A = (A_t)_{t \in T}$ of self-adjoint bounded operators is $p2-\alpha$ -Hölder continuous then the spectrum of A_t , seen as a compact subset of \mathbb{R} , is an $\alpha/2$ -Hölder continuous function of t with respect to the Hausdorff metric.
- 2. In such a case, the edges of a spectral gap of A_t are α -Hölder continuous functions of t at each point t where the gap is open.
- 3. At any point t_0 for which a spectral gap of A_t is closing, if the tip of the gap is isolated from other gaps, then its edges are $\alpha/2$ -Hölder continuous functions of t at t_0 .
- 4. Conversely if the gap edges are α -Hölder continuous, then the field A is $p2-\alpha$ -Hölder continuous.



The spectrum of the Harper model the Hamiltonina is p2-Lipshitz continuous (JB, '94)

A gap closing (enlargement)

Continuous Fields on C*-algebras

(Kaplansky 1951, Tomyama 1958, Dixmier-Douady 1962)

Given a topological space *T*, let $\mathcal{A} = (\mathcal{A}_t)_{t \in T}$ be a family of *C**-*algebras*. A *vector field* is a family $a = (a_t)_{t \in T}$ with $a_t \in \mathcal{A}_t$ for all $t \in T$. \mathcal{A} is called *continuous* whenever there is a family Υ of vector fields such that,

- for all $t \in T$, the set Υ_t of elements a_t with $a \in \Upsilon$ is a *dense* **subalgebra* of \mathcal{A}_t
- for all $a \in \Upsilon$ the map $t \in T \mapsto ||a_t|| \in [0, +\infty)$ is *continuous*
- a vector field $b = (b_t)_{t \in T}$ belongs to Υ if and only if, for any $t_0 \in T$ and any $\epsilon > 0$, there is U an open neighborhood of t_0 and $a \in \Upsilon$, with $||a_t b_t|| < \epsilon$ whenever $t \in U$.

Continuous Fields on C*-algebras

Theorem If \mathcal{A} is a continuous field of C^* -algebras and if $a \in \Upsilon$ is a continuous self-adjoint vector field, then, for any continuous function $f \in C_0(\mathbb{R})$, the maps $t \in T \mapsto ||f(a_t)|| \in [0, +\infty)$ are continuous

In particular, such a vector field is p2-continuous

Groupoids

(Ramsay '76, Connes, 79, Renault '80)

A *groupoid* G is a category the object of which G_0 and the morphism of which G make up two sets. More precisely

- there are two maps $r, s : G \rightarrow G_0$ (*range* and *source*)
- $(\gamma, \gamma') \in G_2$ are *compatible* whenever $s(\gamma) = r(\gamma')$
- there is an associative *composition law* $(\gamma, \gamma') \in G_2 \mapsto \gamma \circ \gamma' \in G$, such that $r(\gamma \circ \gamma') = r(\gamma)$ and $s(\gamma \circ \gamma') = s(\gamma')$
- a *unit e* is an element of *G* such that $e \circ \gamma = \gamma$ and $\gamma' \circ e = \gamma'$ whenever compatibility holds; then r(e) = s(e) and the map $e \rightarrow x = r(e) = s(e) \in G_0$ is a *bijection* between units and objects;

• each $\gamma \in G$ admits an *inverse* such that $\gamma \circ \gamma^{-1} = r(\gamma) = s(\gamma^{-1})$ and $\gamma^{-1} \circ \gamma = s(\gamma) = r(\gamma^{-1})$

Locally Compact Groupoids

- A groupoid *G* is *locally compact* whenever
 - G is endowed with a locally compact Hausdorff 2nd countable topology,
 - the maps *r*, *s*, the *composition* and the *inverse* are *continuous* functions.

Then the set of units is a closed subset of G.

• A *Haar system* is a family $\lambda = (\lambda^x)_{x \in G_0}$ of positive Borel measures on the fibers $G^x = r^{-1}(x)$, such that

- if $\gamma : x \to y$, then $\gamma^* \lambda^x = \lambda^y$

- if $f \in C_c(G)$ is continuous with compact support, then the map $x \in G_0 \mapsto \lambda^x(f)$ is *continuous*.

Locally Compact Groupoids

Example:

Let Ω be a *compact Hausdorff* space, let G be a *locally compact group* acting on Ω by homeomorphisms. Then $\Gamma = \Omega \times G$ becomes a locally compact groupoid as follows

- $\Gamma_0 = \Omega$, is the set of *units*,
- $r(\omega, g) = \omega$ and $s(\omega, g) = g^{-1}\omega$
- $\bullet \ (\omega,g) \circ (g^{-1}\omega,h) = (\omega,gh)$
- Each fiber $\Gamma^{\omega} \simeq G$, so that if μ is the *Haar measure* on *G*, it gives a Haar system λ with $\lambda^{\omega} = \mu$ for all $\omega \in \Omega$.

This groupoid is called the *crossed-product* and is denoted $\Omega \rtimes G$

Groupoid C*-algebra

Let G be a locally compact groupoid with a Haar system λ . Then the complex vector space space $C_c(G)$ of complex valued continuous functions with compact support on G becomes a *-algebra as follows

• Product (convolution):

$$ab(\gamma) = \int_{G^x} a(\gamma') \ b(\gamma'^{-1} \circ \gamma) \ d\lambda^x(\gamma') \qquad \qquad x = r(\gamma)$$

• Adjoint:

$$a^*(\gamma) = \overline{a(\gamma^{-1})}$$

Groupoid C*-algebra

The following construction gives a *C**-*norm*

- for each $x \in G_0$, let $\mathcal{H}_x = L^2(G^x, \lambda^x)$
- for $a \in C_c(G)$, let $\pi_{\chi}(a)$ be the operator on \mathcal{H}_{χ} defined by

$$\pi_x(a)\psi(\gamma) = \int_{G^x} a(\gamma^{-1} \circ \gamma') \ \psi(\gamma') d\lambda^x(\gamma')$$

- $(\pi_x)_{x \in G_0}$ gives a faithful covariant family of *-*representations* of $C_c(G)$, namely if $\gamma : x \to y$ then $\pi_x \sim \pi_y$.
- then $||a|| = \sup_{x \in G_0} ||\pi_x(a)||$ is a C*-norm; the completion of $C_c(G)$ with respect to this norm is called the *reduced* C*-*algebra* of G and is denoted by $C^*_{red}(G)$.

Continuous Fields of Groupoids

(N. P. Landsman, B. Ramazan, 2001)

- A *field of groupoid* is a triple (G, T, p), where G is a groupoid, T a set and $p : G \to T$ a map, such that, if $p_0 = p \upharpoonright_{G_0}$, then $p = p_0 \circ r = p_0 \circ s$
- Then the subset $G_t = p^{-1}{t}$ is a groupoid depending on t.
- If *G* is *locally compact*, *T* a *Hausdorff* topological space and *p continuous* and *open*, then $(G, T, P) = (G_t)_{t \in T}$ is called a *continuous field of groupoids*.

Continuous Fields of Groupoids

Theorem: (N. P. Landsman, B. Ramazan, 2001)

Let (G, T, p) be a continuous field of locally compact groupoids with Haar systems. If G_t is amenable for all $t \in T$, then the field $\mathcal{A} = (\mathcal{A}_t)_{t \in T}$ of C^* -algebras defined by $\mathcal{A}_t = C^*(G_t)$ is continuous.

III - Tautological Groupoid

Approximating an aperiodic system by a periodic one makes sense within the following framework

- Ω is a *compact* Hausdorff metrizable space,
- a locally compact *group* G acts on Ω by homeomorphisms,
- $\mathfrak{I}(\Omega)$ is the set of *closed G-invariant* subsets of Ω :
 - a subset $M \in \mathcal{J}(\Omega)$ is *minimal* if all its *G*-orbits are dense.
 - a point $\omega \in \Omega$ is called *periodic* if there is a *uniform lattice* $\Lambda \subset G$ such that $g\omega = \omega$ for $g \in \Lambda$. In such a case $Orb(\omega)$ is a quotient of G/Λ , and is thus is compact.
 - if **G** is *discrete*, any periodic orbit is a *finite set*.

Example 1)- Subshifts

Let \mathcal{A} be a finite set (alphabet). Let $\Omega = \mathcal{A}^{\mathbb{Z}}$: it is compact for the product topology. The shift operator S defines a \mathbb{Z} -action.

- 1. A sequence $\xi = (x_n)_{n \in \mathbb{Z}}$ is *periodic* if and only if ξ can be written as an infinite repetition of a finite word. The *S*-orbit of ξ is then *finite*.
- 2. The set of periodic points of Ω is *dense*.
- 3. A *subshift* is provided by a closed *S*-invariant subset, namely a point in $\mathcal{J}(\Omega)$.

Example 2)- Delone Sets A *Delone* set $\mathcal{L} \subset \mathbb{R}^d$ is

- a discrete closed subset,
- there is 0 < r such that each ball of radius r intersects *L* at one point *at most*,
- here is 0 < R such that each ball of radius R intersects \mathcal{L} at one point *at least*.

Then

- 1. the set $\Omega = \text{Del}_{r,R}$ of such Delone sets in \mathbb{R}^d can be endowed with a topology that makes it *compact*,
- 2. the group \mathbb{R}^d *acts* on Ω by homeomorphisms,
- 3. the periodic Delone sets make up a *dense subset* in Ω .

Question: *in which sense can one approximate a minimal infinite Ginvariant subset by a sequence of periodic orbits ?*

The Fell and Vietoris Topologies

(Vietoris 1922, Fell 1962)

Given a *topological space* X, let $\mathcal{C}(X)$ be the set of *closed subsets* of X.

Let $F \subset X$ be closed and let \mathcal{F} be a finite family of open sets. Then

 $\mathcal{U}(F,\mathcal{F}) = \{ G \in \mathcal{C}(X) \, ; \, G \cap F = \emptyset \, , \, G \cap O \neq \emptyset \, , \, \forall O \in \mathcal{F} \}$

Then the family of $\mathcal{U}(F,\mathcal{F})$'s is a basis for a topology called the *Vietoris topology*.

Replacing *F* by a compact set *K*, the same definition leads to the *Fell topology*.

The Fell and Vietoris Topologies

- $\mathcal{C}(X)$ is Fell-compact,
- if X is locally compact and Hausdorff, C(X) is *Hausdorff* for both Fell and Vietoris,
- if (*X*, *d*) is a *complete metric* space, the Vietoris topology coincides with the topology defined by the *Hausdorff metric*.
- If X is *compact* both topologies *coincide*.

Theorem If (Ω, G) is a topological dynamical system, the set $\mathcal{J}(\Omega)$ is compact for both the Fell and the Vietoris topologies.

The Fell and Vietoris Topologies

Example:

If $(\Omega = \mathcal{A}^{\mathbb{Z}}, S)$, periodic orbits *ARE NOT* Vietoris-dense in $\mathcal{J}(\Omega)$ For instance, if $\mathcal{A} = \{0, 1\}$ let $\xi_0 \in \Omega$ be the sequence defined by

$$\xi_0 = (x_n)_{n \in \mathbb{Z}}$$
 $x_n = \begin{cases} 0 & \text{if } n < 0 \\ 1 & \text{if } n \ge 0 \end{cases}$

Then $Orb(\xi)$ is *isolated* in $\mathcal{I}(\Omega)$ for the Vietoris topology.

The Tautological Groupoid

- Let $\mathcal{T}(\Omega) \subset \mathcal{J}(\Omega) \times \Omega$ be the set of pairs (M, ω) such that $\omega \in M$. Endowed with the product topology it is *compact Hausdorff*.
- *G acts* on it by homeomorphisms through $g(M, \omega) = (M, g\omega)$.
- Let $\Gamma = \mathcal{T}(\Omega) \rtimes G$, let $T = \mathcal{I}(\Omega)$ and let $p : \Gamma \to T$ defined by

 $p(M,\omega,g)=M$

Then (*G*, *T*, *p*) is a *continuous field* of locally compact groupoids.

• If *G* is *amenable*, then the family $\mathcal{A} = (\mathcal{A}_M)_{M \in \mathcal{I}(\Omega)}$ where $\mathcal{A}_M = C^*(\Gamma_M)$ gives a continuous field of C*-algebras.

The Tautological Groupoid

Hence

If M is a closed invariant subset of Ω that is a Vietoris-limit point of the set of periodic orbit, then any continuous field of Hamiltonian in \mathcal{A} has a spectrum that can be approximated by the spectrum of a suitable sequence of periodic approximations.

Question: Which invariant subsets of Ω are Vietoris limit points of periodic orbits ?

IV - Periodic Approximations for Subshifts

Subshifts

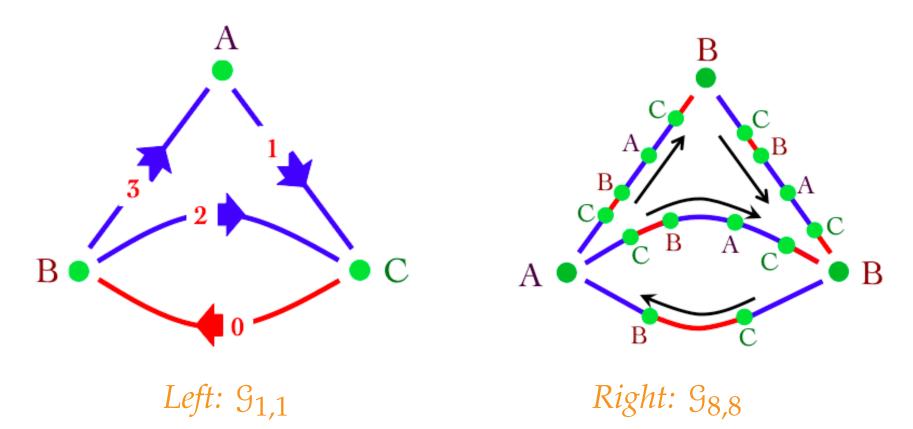
Let \mathcal{A} be a finite *alphabet*, let $\Omega = \mathcal{A}^{\mathbb{Z}}$ be equipped with the shift S. Let $\Sigma \in \mathfrak{I}(\Omega)$ be a subshift. Then

- given $l, r \in \mathbb{N}$ an (l, r)-collared dot is a dotted word of the form $u \cdot v$ with u, v being words of length |u| = l, |v| = r such that uv is a *sub-word* of at least one element of Σ
- an (l, r)-collared letter is a dotted word of the form $u \cdot a \cdot v$ with $a \in A$, u, v being words of length |u| = l, |v| = r such that uav is a sub-word of at least one element of Σ : a collared letter links two collared dots
- let $\mathcal{V}_{l,r}$ be the set of (l,r)-collared dots, let $\mathcal{E}_{l,r}$ be the set of (l,r)collared letters: then the pair $\mathcal{G}_{l,r} = (\mathcal{V}_{l,r}, \mathcal{E}_{l,r})$ gives a finite *directed graph*

(de Bruijn, '46, Anderson-Putnam '98, Gähler, '01)

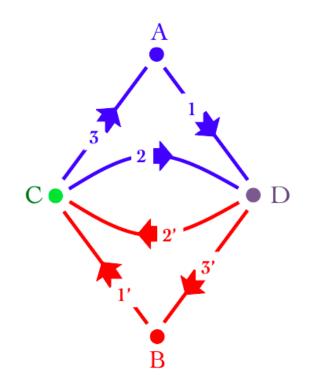
The Fibonacci Tiling

- Alphabet: $\mathcal{A} = \{a, b\}$
- **Fibonacci sequence:** generated by the *substitution* $a \rightarrow ab$, $b \rightarrow a$ starting from either $a \cdot a$ or $b \cdot a$



The Thue-Morse Tiling

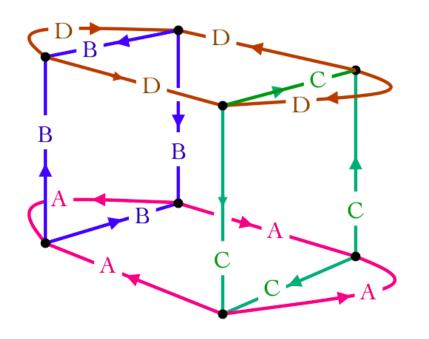
- Alphabet: $\mathcal{A} = \{a, b\}$
- **Thue-Morse sequences:** generated by the *substitution* $a \rightarrow ab$, $b \rightarrow ba$ starting from either $a \cdot a$ or $b \cdot a$



Thue-Morse $\mathcal{G}_{1,1}$

The Rudin-Shapiro Tiling

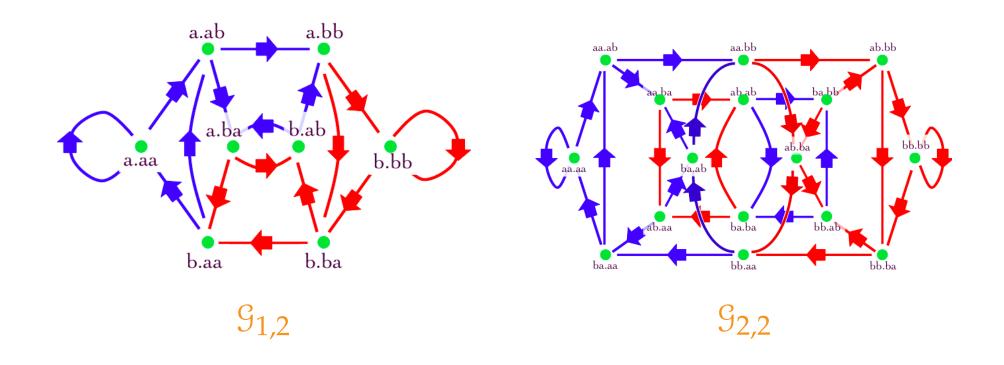
- Alphabet: $\mathcal{A} = \{a, b, c, d\}$
- **Rudin-Shapiro sequences:** generated by the *substitution* $a \rightarrow ab, b \rightarrow ac, c \rightarrow db, d \rightarrow dc$ starting from either $b \cdot a, c \cdot a$ or $b \cdot d, c \cdot d$



Rudin-Shapiro 9_{1,1}

The Full Shift on Two Letters

• **Alphabet:** $\mathcal{A} = \{a, b\}$ all possible word allowed.



Strongly Connected Graphs

The de Bruijn graphs are

- *simple:* between two vertices there is at most one edge,
- *connected:* if the sub-shift is *topologically transitive*, (*i.e.* one orbit is dense), then between any two vertices, there is at least one path connected them,
- has *no dandling vertex*: each vertex admits at least one ingoing and one outgoing vertex,
- if n = l + r = l' + r' then the graphs $\mathcal{G}_{l,r}$ and $\mathcal{G}_{l',r'}$ are *isomorphic* and denoted by \mathcal{G}_n .

(S. Beckus, PhD Thesis, 2016)

A directed graph is called *strongly connected* if any pair *x*, *y* of vertices there is an *oriented path* from *x* to *y* and another one from *y* to *x*.

Proposition: *If the sub-shift* Σ *is minimal* (i.e. *every orbit is dense*), *then each of the de Bruijn graph is stongly connected.*

Main result:

Theorem: A subshift $\Sigma \subset A^{\mathbb{Z}}$ can be Vietoris approximated by a sequence of periodic orbits if and only if it admits is a sequence of strongly connected de Bruijn graphs.

Question:

Is there a similar criterion for the space of Delone sets in \mathbb{R}^d *or for some remarkable subclasses of it ?*

Some *sufficient conditions* have been found for $\Omega = A^G$, where *G* is a discrete, countable and *amenable group*, in particular when $G = \mathbb{Z}^d$. (*S. Beckus, PhD Thesis, 2016*) Thanks for Listening!!