# GAPLABELING THEORENS 

Jean BELLISSARD

Georgialnstiturte
Tech

Georgia Institute of Technology, Atlanta
School of Mathematics \& School of Physics
e-mail: jeanbel@math.gatech.edu

## Main References

J. Bellissard, Schrödinger's operators with an almost periodic potential : an overview, Lecture Notes in Phys., 153, Springer, (1982).
J. Bellissard, K-Theory of C*-algebras in Solid State Physics, Lecture Notes in Physics, 257, (1986), 99-156.
J. Bellissard, Gap Labeling Theorems for Schrödinger's Operators, pp.538-630, in From Number Theory to Physics, Springer, J.M. Luck, P. Moussa \& M. Waldschmidt Eds., (1993).
J. Kaminker, I. Putnam, A proof of the gap labeling conjecture, Michigan Math. J., 51, (2003), 537-546.
J. Bellissard, R. Benedetti, J.-M. Gambaudo, Commun. Math. Phys., 261, (2006), 1-41.
M.-T. Benameur, H. Oyono-Oyono, Index theory for quasi-crystals. I. Computation of the gap-label group, J. Funct. Anal., 252, (2007), 137Đ170.

## Content

1. Harper's Model
2. Almost Periodic Potentials
3. The Hull of a Hamiltonian
4. Computing Gap Labels

## I - Harper's Model

P. G. Harper, Proc. Phys. Soc. A, 68, 874-878, (1955)
D. R. Hofstadter, Phys. Rev. B, 14, 2239-2249, (1976)

## 2D-Crystal Electrons in Magnetic Field

- Perfect square lattice, nearest neighbor hoping terms, uniform magnetic field B perpendicular to the plane of the lattice
- Translation operators $U_{1}, U_{2}$

$\mathrm{a}=$ lattice spacing
$\phi=$ flux through unit cell


## 2D-Crystal Electrons in Magnetic Field

- Commutation rules (Rotation Algebra)

$$
U_{1} U_{2}=e^{2 \pi \alpha} U_{2} U_{1} \quad \alpha=\frac{\phi}{\phi_{0}} \quad \phi=B a^{2} \quad \phi_{0}=\frac{e^{2}}{h}
$$

- Kinetic Energy (Hamiltonian)

$$
H=t\left(U_{1}+U_{2}+U_{1}^{-1}+U_{2}^{-1}\right)
$$

- Landau gauge $\psi(m, n)=e^{2 \imath \pi m k} \varphi(n)$.

Hence $H \psi=E \psi$ means

$$
\varphi(n+1)+\varphi(n-1)+2 \cos 2 \pi(n \alpha-k) \varphi(n)=\frac{E}{t} \varphi(n)
$$



## 2D-Crystal Electrons in Magnetic Field

For $\alpha=p / q$, the following properties hold

- The spectrum has $q$ nonoverlapping bands, touching only at $E=0$
(Bellissard-Simon '82,..., Avila-Jitomirskaya '09)
- The spectral gaps are bounded below by $e^{-C q}$ for some $C>0$
(Helffer-Sjöstrand '86-89, Choi-Elliot-Yui. 90)


## 2D-Crystal Electrons in Magnetic Field

For $\alpha \notin \mathbb{Q}$,

- The The spectrum is a Cantor set
(Bellissard-Simon '82,..., Avila-Jitomirskaya '09)
- The spectrum has zero Lebesgue measure
(Avron-van Mouche-Simon, '90, ..., Avila-Jitomirskaya '09)
- The gap edges are Lipshitz continuous as long as they do not close, otherwise they are Hölder with exponent 1/2
(Bellissard '94, Avron-van Mouche-Simon, '90, Haagerup et al.)
- The derivative of gap edges w.r.t. $\alpha$ is discontinuous at each rational


## Rotation Algebra

- The $C^{*}$-algebra $\mathcal{A}_{\alpha}$ generated by two unitaries $U_{1}, U_{2}$ such that $U_{1} U_{2}=e^{2 l \pi \alpha} U_{2} U_{1}$ is called the rotation algebra
- $\mathcal{A}_{\alpha}$ has a trace defined by

$$
\mathcal{T}\left(U_{1}^{m} U_{2}^{n}\right)=\delta_{m, 0} \delta_{n, 0}
$$

- $\mathcal{A}_{\alpha}$ admits two *-derivations $\partial_{1}, \partial_{2}$ defined by

$$
\partial_{i} U_{j}=2 \imath \pi \delta_{i, j} U_{j}
$$

## Rotation Algebra

- Rieffel's projection $P_{\mathrm{R}}=-f\left(U_{2}\right) U_{1}+g\left(U_{2}\right)-U_{1}^{-1} f\left(U_{2}\right)$


$$
\begin{gathered}
\mathcal{T}\left(P_{\mathrm{R}}\right)=\alpha \\
\frac{1}{2 \imath \pi} \mathcal{T}\left(P_{\mathrm{R}}\left[\partial_{1} P_{\mathrm{R}}, \partial_{2} P_{\mathrm{R}}\right]\right)=1
\end{gathered}
$$

- If $P \in \mathcal{A}_{\alpha}$ is a projection, then

$$
\mathcal{T}(P)=n \alpha-[n \alpha] \quad n=\operatorname{Ch}(P)=\frac{1}{2 \imath \pi} \mathcal{T}\left(P\left[\partial_{1} P, \partial_{2} P\right]\right) \in \mathbb{Z}
$$

## Gap Labels

- If $H=U_{1}+U_{1}^{-1}+U_{2}+U_{2}^{-1}$, and if $E$ belongs to a gap of the spectrum of $H$, set


$$
P_{E}=\frac{1}{2 \imath \pi} \oint_{\gamma} \frac{d z}{z I-H}
$$

- Then $P_{E} \in \mathcal{A}_{\alpha}$ !!

Hence $\mathcal{T}\left(P_{E}\right)=n \alpha-[n \alpha]$ for some $n \in \mathbb{Z}!!$

## Gap Labels

- The spectral projection of the Harper model between any two gaps can be labelled by an integer, using the previous results, (Claro-Wannier '78)
- This integer corresponds to the quantization of the Hall conductivity in such systems
(Thouless-Kohmoto-den Nijs-Nightingale '82)


Each color corresponds to the integer gap label, for the eigenprojection between the 1.h.s and the gap.

## II - Almost Periodic Potentials

J. Moser, Comment. Math. Helv., 56, 198-224, (1981).
R. Johnson, J. Moser, Comm. Math. Phys., 84, 403-438, (1982)

## Schrodinger's Operator with Nowhere Dense Spectrum

- $1 D$-Schrödinger equation with a periodic potential

$$
-\frac{d^{2} \varphi}{d x^{2}}+V(x) \varphi(x)=E \varphi(x) \quad V(x+1)=V(x) \quad V \text { smooth }
$$

- Bloch-Floquet: find solutions with $\varphi(x+1)=e^{\imath k} \varphi(x)$, giving

$$
E=E_{n}(k) \quad E_{n}(k+2 \pi)=E_{n}(k) \quad n \in \mathbb{N}
$$

Band spectrum with gaps at $k=m \pi m \in \mathbb{Z}$

## Schrodingger's Operator with Nowhere Dense Spectrum



## Schrodingger's Operator with Nowhere Dense Spectrum

- Add to $V(x)$ a contribution $V_{1}(x / 2)$ with $V_{1}(x+1)=V_{1}(x)$ and $\left\|V_{1}\right\|_{\infty}<\|V\|_{\infty}$.
- It leads to the opening of new gaps at $k=m \pi / 2$ instead
- The size of the new gaps can be controlled


## Schrodinger's Operator with Nowhere Dense Spectrum



## Schrodinger's Operator with Nowhere Dense Specturum



## Schrodingger's Operator with Nowhere Dense Spectrum

- Add to $V(x)$ a sequence $V_{j}\left(x / 2^{j}\right)$ with $V_{j}(x+1)=V_{j}(x)$ and

$$
\sum_{j=0}^{\infty} e^{r j}\left\|V_{j}\right\|_{\infty}<\infty
$$

for $r>0$ large enough.

- It leads to the opening of an infinite number of very small gaps at $k=m \pi / 2^{j}$. This leads to a Cantor spectrum


## Rotation Number

- If $\varphi(x)$ is a solution of the Schrödinger equation at energy $E$, the rotation angle is defined by

$$
e^{\imath \theta(x)}=\frac{\varphi(x)+\imath \varphi^{\prime}(x)}{\left|\varphi(x)+\imath \varphi^{\prime}(x)\right|}
$$



The rotation number $\rho(E)$ is defined by

$$
\rho(E)=\lim _{L \rightarrow \infty} \frac{1}{2 \pi L} \int_{-L}^{+L} d \theta(x)
$$

## Rotation Number

## Theorem (Johnson-Moser'82)

If $V$ is a quasiperiodic potential and $E$ belongs to a spectral gap, then $\rho(E)$ belongs to the $\mathbb{Z}$-module generated by the frequencies of $V$

## III - The Hull of a Hamiltonian

J. Bellissard, Lecture Notes in Physics, 257, 99-156, (1986).
J. Bellissard, in From Number Theory to Physics, Springer, J.M. Luck, P. Moussa \& M. Waldschmidt Eds., (1993).

## Homogeneity

- Let $H=-\Delta+V$, be a Schrödinger operator on $\mathbb{R}^{d}$. Let $U(a)$ be the unitary operator on $L^{2}\left(\mathbb{R}^{d}\right)$ representing the translation by $a \in \mathbb{R}^{d}$.
- $H$ is called homogeneous if the family $\Omega_{0}(z)=\left\{U(a)(H-z I)^{-1} U(a)^{-1} ; a \in \mathbb{R}^{d}\right\}$ is strongly precompact for at least one $z \in \mathbb{C}$ such that $\mathfrak{J} m(z) \neq 0$.
- Example: if $V \in L_{\mathbb{R}}^{\infty}\left(\mathbb{R}^{d}\right)$ then $H$ is homogeneous
- The strong closure of $\Omega_{0}(z)$ is denoted by $\Omega$ : it is a compact metrizable set, independent of $z$ modulo homeomorphisms called the Hull of $H$.


## Homogeneity

- The translation group $\mathbb{R}^{d}$ acts on $\Omega$ by homeomorphisms т and $\left(\Omega, \mathbb{R}^{d}\right)$ is a topological dynamical system.
- Let $H$ be homogeneous. Then, each $\omega \in \Omega$ defines a selfadjoint operator $H_{\omega}$ on $L^{2}\left(\mathbb{R}^{d}\right)$ through taking the strong resolvent limit. Then
$-\omega \in \Omega \rightarrow\left(H_{\omega}-z I\right)^{-1}$ is strongly continuous (for $z \notin \mathbb{R}$ )
- $U(a) H_{\omega} U(a)^{-1}=H_{\mathrm{T}^{a} \omega}$ (covariance)
- $H_{\omega}=-\Delta+V_{\omega}$ where, if $V$ is continuous, $V_{\omega}(x)=v\left(\mathrm{~T}^{-x} \omega\right)$ with $v \in C(\Omega)$.


## C"-algebra

The crossed product algebra $\mathcal{A}=C(\Omega) \rtimes \mathbb{R}^{d}$ is constructed as follows. Let $\mathcal{A}_{0}=\mathcal{C}_{c}\left(\Omega \times \mathbb{R}^{d}\right)$

- Product: if $A, B \in \mathcal{A}_{0}$ then

$$
A B(\omega, x)=\int_{\mathbb{R}^{d}} A(\omega, y) B\left(\mathrm{~T}^{-y} \omega, x-y\right) d^{d} y
$$

- Adjoint: if $A \in \mathcal{A}_{0}$ then

$$
A^{*}(\omega, x)=\overline{A\left(\mathrm{~T}^{-x} \omega,-x\right)}
$$

- Left Regular Representation: if $A \in \mathcal{A}_{0}$ and if $\psi \in L^{2}\left(\mathbb{R}^{d}\right)$ then

$$
\pi_{\omega}(A) \psi(x)=\int_{\mathbb{R}^{d}} A\left(\mathrm{~T}^{-x} \omega, y-x\right) \psi(y) d^{d} y
$$

## C*-algebra

- $C^{*}$-norm: if $A \in \mathcal{A}_{0}$ then

$$
\|A\|=\sup _{\omega \in \Omega}\left\|\pi_{\omega}(A)\right\|
$$

- $C^{*}$-algebra: $\mathcal{A}=C(\Omega) \rtimes \mathbb{R}^{d}$ is the completion of $\mathcal{A}_{0}$ w.r.t.the norm || • ||
- Theorem: (Bellisarar' '86, using Woroonowicz, Baaj, Doplicher e tal, Georgescu '02) If $H$ is homogeneous, it is affiliated to $\mathcal{A}$ : namely, there is a *-homomorphism

$$
f \in C_{0}(\mathbb{R}) \mapsto f(H) \in \mathcal{A}
$$

such that $\pi_{\omega}(f(H))=f\left(H_{\omega}\right)$ for all $\omega \in \Omega$.

## Energy Spectrum

- $\mathcal{A}$-spectrum: $\quad \mathrm{Sp}_{\mathcal{A}}(H)$ is the complement of the domain of holomorphy of $R_{H}(z)=(H-z I)^{-1} \in \mathcal{A}$.
- Gaps: Since $H$ is selfadjoint, $\mathrm{Sp}_{\mathcal{A}}(H) \subset \mathbb{R}$ and is closed. A gap is a connected component of its complement $\mathbb{R} \backslash \mathrm{Sp}_{\mathcal{A}}(H)$
- Proposition: (Bellissard'86)
- $\operatorname{Sp}_{\mathcal{A}}(H)$ is the union over $\omega$ of $\operatorname{Sp}\left(H_{\omega}\right)$
- If the orbit of $\omega \in \Omega$ is dense then $\operatorname{Sp}_{\mathcal{A}}(H)=\operatorname{Sp}\left(H_{\omega}\right)$
- If there is a periodic orbit in $\Omega$ then $\operatorname{Sp}_{\mathcal{A}}(H)$ cannot be nowhere dense


## Calculus

- Trace: let $\mathbb{P}$ be an ergodic, $\mathbb{R}^{d}$-invariant probability measure on $\Omega$. A trace on $\mathcal{A}$ is defined by

$$
\mathcal{T}_{\mathbb{P}}(A)=\int_{\Omega} A(\omega, 0) d \mathbb{P}(\omega) \quad A \in \mathcal{A}_{0}
$$

- Trace per Unit Volume: if $\Lambda$ are cubes centered at the origin and if $\chi_{\Lambda}$ is the characteristic function of $\Lambda$, then, Birkhoff's ergodic theorem leads to

$$
\mathcal{T}_{\mathbb{P}}(A)=\lim _{\Lambda \uparrow \mathbb{R}^{d}} \frac{1}{|\Lambda|} \operatorname{Tr}\left(\pi_{\omega}(A) \chi_{\Lambda}\right) \quad \mathbb{P} \text {-almost all } \omega
$$

## Calculus

- Dual Action(Connes, TakaiTTakesaki) $\eta_{k}(A)(\omega, x)=e^{\imath k \cdot x} A(\omega, x)$, with $k \in$ $\mathbb{R}^{d}$, defines a norm pointwise continuous $d$-parameter group of *-automorphisms.
- Differential Structure: The dual action is generated by the following *-derivations

$$
\partial_{j} A(\omega, x)=x_{j} A(\omega, x) \quad x=\left(x_{1}, \cdots, x_{d}\right) \in \mathbb{R}^{d}
$$

- Position Operators: let $X=\left(X_{1}, \cdots, X_{d}\right)$ be the operators on $L^{2}\left(\mathbb{R}^{d}\right)$ defined by $X_{j} \psi(x)=x_{j} \psi(x)$. Then

$$
\pi_{\omega}\left(\partial_{j} A\right)=\imath\left[X_{j}, \pi_{\omega}(A)\right]
$$

## The Integrated Density of States

- Integrated Density of States: The restriction $H_{\omega, \Lambda}$ of $H_{\omega}$ to a bounded domain $\Lambda$ is elliptic. Hence its spectrum is discrete. The IDS is defined by

$$
\mathcal{N}_{\mathbb{P}}(E)=\lim _{\Lambda \uparrow \mathbb{R}^{d} \mid} \frac{1}{|\Lambda|} \#\left\{\text { eigenvalue of } H_{\omega, \Lambda} \leq E\right\} \quad \mathbb{P} \text {-almost all } \omega
$$

- Properties:
- $\boldsymbol{N}_{\mathbb{P}}$ is nondecreasing w.r.t. $E$
$-\mathcal{N}_{\mathbb{P}}(E)=0$ for $E<\inf \operatorname{SpH}$
$-\mathcal{N}_{\mathbb{P}}(E) \sim E^{d / 2}$ as $E \rightarrow+\infty$
- $\mathcal{N}_{\mathbb{P}}$ is constant on spectral gaps.


## The Integrated Density of States



An example of IDS

## The Integrated Density of States






IDS for a
Rudin-Shapiro potential
(Montalbana et al. '07)

## Gap Labels

- Shubin's Formula: (Shubin'76, Bellissard'86)

$$
\mathcal{N}_{\mathbb{P}}(E)=\mathcal{T}_{\mathbb{P}}\left(P_{E}\right) \quad P_{E}=\chi_{(-\infty, E]}(H)
$$

- Spectral Projections:
- If $E \in \operatorname{Sp}_{\mathcal{A}}(H)$ then $P_{E}$ is a projector in $L^{\infty}\left(\mathcal{A}, \mathcal{T}_{\mathbb{P}}\right)$
- If $E$ is in a gap, then $P_{E} \in \mathcal{A}$ !
- $P_{E}$ does not change as $E$ moves in the same gap
- If $E$ is in a gap $\mathcal{T}_{\mathbb{P}}\left(P_{E}\right)$ depends only upon the equivalent class of $P_{E}$ in $K_{0}(\mathcal{A})$


## Gap Labels

- $\mathcal{T}_{\mathbb{P}}$ induces a group homomorphism $\mathcal{T}_{*}: K_{0}(\mathcal{F}) \rightarrow \mathbb{R}$. Since $K_{0}(\mathcal{A})$ is countable its image, the group of gap labels, is a countable subgroup of $\mathbb{R}$.
- Gap Labeling Theorem:
- the values of the IDS on gaps belongs to the image of $K_{0}(\mathcal{A})$ under the trace
- if $\mathfrak{g}_{0}<\mathfrak{g}_{1}$ are two gaps the difference $\mathcal{N}_{\mathbb{P}}\left(\mathfrak{g}_{1}\right)-\mathcal{N}_{\mathbb{P}}\left(\mathfrak{g}_{0}\right)$ is also a gap labels.
- If H $=H(s)$ depends continuously (norm resolvent) on a parameter s then the gap label of a gap does not change as long as the gap does not close


## Gap Labels

- Sum Rule: let $H=H(s)$ depends continuously (norm resolvent) on a parameter $s \in[0,1]$


$$
m_{0}+m_{1}=n_{0}+n_{1}
$$

## IV - Computing the Gap Labels

J. Bellissard, in From Number Theory to Physics, Springer, J.M. Luck, P. Moussa \& M. Waldschmidt Eds., (1993).

## Quasiperiodic Potentials

- For $n>d$ integers, let $\kappa$ be an $n \times d$ matrix of rank $d$ with real coefficients.
$\kappa$ is irrational whenever $\operatorname{Im}(\kappa) \cap \mathbb{Z}^{n}=\{0\}$.
- For $\mathcal{V} \in \mathcal{C}\left(\mathbb{T}^{n}\right)$ let $V(x)=\mathcal{V}(-\kappa x)$ for $x \in \mathbb{R}^{d}$. Then $V$ is quasiperiodic. Conversely every quasiperiodic function on $\mathbb{R}^{d}$ can be written in this way.
- Theorem: (Johnson-Moser' 82 , Bellissard' 93 using Connes Index Theorem for foliations)
- If $H=-\Delta+V$ then $\Omega=\mathbb{T}^{n}$
$-\mathbb{R}^{d}$-action: $\mathrm{T}^{-a} \omega=\omega-\kappa a$ is uniquely ergodic
- Then $V_{\omega}(x)=\mathcal{V}(\omega-\kappa x)$ if $\omega \in \mathbb{T}^{n}$
- The group of gap labels is the $\mathbb{Z}$-module spanned by $\operatorname{det}(\beta)$ 's where $\beta$ runs through the set of submatrices of maximal rank of $\kappa$


## Quasiperiodic Potentials

In $1 D$, more can be said

- Let $\psi(\omega, x)$ be the unique solution of the Schrödinger equation

$$
-\psi^{\prime \prime}+V_{\omega} \psi=E \psi \quad \lim _{x \rightarrow+\infty} \psi(x)=0 \quad \psi(0)=1
$$

- It defines a curve in the complex plane through

$$
\Phi(\omega, x)=\psi(\omega, x)+\frac{\imath}{\sqrt{E}} \frac{d \psi(\omega, x)}{d x} \neq 0
$$

- The covariance property shows that

$$
F(\omega, x)=\Phi(\omega, x)^{-1} \frac{d \Phi(\omega, x)}{d x} \Rightarrow F(\omega, x)=F(\omega-\kappa x, 0)
$$

## Quasiperiodic Potentials

- Sturm-Liouville: The number of eigenvalues smaller than or equal to $E$ of the restriction to $[-L, L]$ of $H_{\omega}$ is given by

$$
\frac{1}{2 \imath \pi} \int_{-L}^{+L} \Phi(\omega, x)^{-1} \frac{d \Phi(\omega, x)}{d x} d x \quad \text { (rotation number) }
$$

- Hence, using the covariance and Birkhoff's ergodic theorem, the IDS becomes

$$
\mathcal{T}\left(P_{E}\right)=\mathcal{N}(E)=\frac{1}{2 \imath \pi} \int_{\mathbb{T}^{n}} \Phi(\omega, 0)^{-1} \frac{d \Phi(\omega, 0)}{d x} d \omega
$$

- Comments: (i) this gives a proof of the Johnson-Moser result, (ii) it is a special case of the Connes index formula for foliations.


## Atomic Potentials with Finite Local Complexity

- Let $\mathcal{L} \subset \mathbb{R}^{d}$ be uniformly discrete:

$$
\inf \{|x-y| ; x \neq y, x, y \in \mathcal{L}\}>0
$$

- $V$ is an atomic potential on $\mathcal{L}$ if

$$
V(x)=\sum_{y \in \mathcal{L}} v(x-y) \quad v \in L^{1}\left(\mathbb{R}^{d}\right) \cap C_{0}\left(\mathbb{R}^{d}\right)
$$

- A patch is a finite subset of $\mathcal{L}$, modulo translations. $\mathcal{L}$ has finite local complexity if, for any $R>0$ the set of patches of diameter $R>0$ is finite.


## Atomic Potentials with Finite Local Complexity

- Theorem: Let $V$ be an atomic potential with finite local complexity and let $H=-\Delta+V$
- The Hull of H is a compact space, foliated by the action of $\mathbb{R}^{d}$, with a completely discontinuous transversal (Kellendonk'97)
- The set of gap labels is the $\mathbb{Z}$-module generated by the occurrence probabilities of patches w.r.t. the probability $\mathbb{P}$ on the Hull
(Bellissard '92, Kaminker-Putnam '01, Bellissard-Benedetti-Gambaudo '01-'06, Oyono-Oyono \& Benameur '01-'07)
- Examples:
- If $d=1$ and $\mathcal{L}$ is the Fibonacci chain, the set of gap labels is $\mathbb{Z}+\sigma \mathbb{Z}$ where $\sigma=(\sqrt{5}-1) / 2$
- Same results if $\mathcal{L}$ is the Penrose lattice or an icosahedral quasicrystal in 3D.


It is time for coffee!


