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2D-Crystal Electrons in Magnetic Field

• Perfect square lattice, nearest neighbor hoping terms, uniform
magnetic field B perpendicular to the plane of the lattice

• Translation operators U1,U2



2D-Crystal Electrons in Magnetic Field

• Commutation rules (Rotation Algebra)

U1 U2 = e2παU2 U1 α =
φ

φ0
φ = Ba2 φ0 =

e2

h

• Kinetic Energy (Hamiltonian)

H = t
(
U1 + U2 + U−1

1 + U−1
2

)
• Landau gauge ψ(m,n) = e2ıπmkϕ(n).

Hence Hψ = Eψ means

ϕ(n + 1) + ϕ(n − 1) + 2 cos 2π(nα − k)ϕ(n) =
E
t
ϕ(n)





2D-Crystal Electrons in Magnetic Field

For α = p/q, the following properties hold

• The spectrum has q nonoverlapping bands, touching only at
E = 0
(Bellissard-Simon ’82,..., Avila-Jitomirskaya ’09)

• The spectral gaps are bounded below by e−Cq for some C > 0
(Helffer-Sjöstrand ’86-89, Choi-Elliot-Yui. 90)



2D-Crystal Electrons in Magnetic Field
For α < Q,
• The The spectrum is a Cantor set

(Bellissard-Simon ’82,..., Avila-Jitomirskaya ’09)

• The spectrum has zero Lebesgue measure
(Avron-van Mouche-Simon, ’90, ..., Avila-Jitomirskaya ’09)

• The gap edges are Lipshitz continuous as long as they do not
close, otherwise they are Hölder with exponent 1/2
(Bellissard ’94, Avron-van Mouche-Simon, ’90, Haagerup et al.)

• The derivative of gap edges w.r.t. α is discontinuous at each
rational
(Wilkinson ’84, Rammal ’86, Bellissard-Rammal ’90)



Rotation Algebra

• The C∗-algebraAα generated by two unitaries U1,U2 such that
U1U2 = e2ıπαU2U1 is called the rotation algebra (Rieffel ’81)

• Aα has a trace defined by

T (Um
1 Un

2) = δm,0 δn,0

• Aα admits two ∗-derivations ∂1, ∂2 defined by (Connes ’82)

∂iU j = 2ıπ δi, jU j



Rotation Algebra

• Rieffel’s projection PR = − f (U2)U1 + g(U2) −U−1
1 f (U2)

T (PR) = α

1
2ıπ
T (PR

[
∂1PR, ∂2PR

]
) = 1

• If P ∈ Aα is a projection, then (Rieffel ’81, Pimsner-Voiculescu ’80, Connes ’82)

T (P) = nα − [nα] n = Ch(P) =
1

2ıπ
T (P

[
∂1P, ∂2P

]
) ∈ Z



Gap Labels

• If H = U1 + U−1
1 + U2 + U−1

2 , and if E belongs to a gap of the
spectrum of H, set

PE =
1

2ıπ

∮
γ

dz
zI −H

• Then PE ∈ Aα !! HenceT (PE) = nα−[nα] for some n ∈ Z !!



Gap Labels

• The spectral projection of the Harper model between any two
gaps can be labelled by an integer, using the previous results,
(Claro-Wannier ’78)

• This integer corresponds to the quantization of the Hall con-
ductivity in such systems (Thouless-Kohmoto-den Nijs-Nightingale ’82)

Each color corresponds to the integer
gap label, for the eigenprojection

between the l.h.s and the gap.
(Avron-Osadchy-Seiler ’03)



II - Almost Periodic Potentials
J. Moser, Comment. Math. Helv., 56, 198-224, (1981).

R. Johnson, J. Moser, Comm. Math. Phys., 84, 403-438, (1982)



Schrödinger’s Operator with Nowhere Dense Spectrum

• 1D-Schrödinger equation with a periodic potential

−
d2ϕ

dx2 + V(x)ϕ(x) = Eϕ(x) V(x + 1) = V(x) V smooth

• Bloch-Floquet: find solutions with ϕ(x + 1) = eıkϕ(x), giving

E = En(k) En(k + 2π) = En(k) n ∈N

Band spectrum with gaps at k = mπ m ∈ Z



Schrödinger’s Operator with Nowhere Dense Spectrum



Schrödinger’s Operator with Nowhere Dense Spectrum

• Add to V(x) a contribution V1(x/2) with V1(x + 1) = V1(x) and
‖V1‖∞ < ‖V‖∞.

• It leads to the opening of new gaps at k = mπ/2 instead

• The size of the new gaps can be controlled



Schrödinger’s Operator with Nowhere Dense Spectrum



Schrödinger’s Operator with Nowhere Dense Spectrum



Schrödinger’s Operator with Nowhere Dense Spectrum

• Add to V(x) a sequence V j(x/2 j) with V j(x + 1) = V j(x) and

∞∑
j=0

erj
‖V j‖∞ < ∞

for r > 0 large enough.

• It leads to the opening of an infinite number of very small gaps
at k = mπ/2 j. This leads to a Cantor spectrum



Rotation Number

• If ϕ(x) is a solution of the Schrödinger equation at energy E,
the rotation angle is defined by

eıθ(x) =
ϕ(x) + ıϕ′(x)
|ϕ(x) + ıϕ′(x)|

The rotation number ρ(E) is
defined by

ρ(E) = lim
L→∞

1
2πL

∫ +L

−L
dθ(x)



Rotation Number

Theorem (Johnson-Moser ’82)

If V is a quasiperiodic potential and E belongs to a spectral gap, then
ρ(E) belongs to the Z-module generated by the frequencies of V



III - The Hull of a Hamiltonian
J. Bellissard, Lecture Notes in Physics, 257, 99-156, (1986).

J. Bellissard, in From Number Theory to Physics, Springer, J.M. Luck, P. Moussa & M. Waldschmidt Eds., (1993).



Homogeneity

• Let H = −∆ + V, be a Schrödinger operator on Rd. Let U(a) be
the unitary operator on L2(Rd) representing the translation by
a ∈ Rd.

• H is called homogeneous if the family
Ω0(z) = {U(a) (H − zI)−1 U(a)−1 ; a ∈ Rd

} is strongly precompact
for at least one z ∈ C such that =m(z) , 0.

• Example: if V ∈ L∞
R

(Rd) then H is homogeneous

• The strong closure of Ω0(z) is denoted by Ω: it is a compact
metrizable set, independent of z modulo homeomorphisms
called the Hull of H.



Homogeneity

• The translation groupRd acts on Ω by homeomorphisms t and
(Ω,Rd) is a topological dynamical system.

• Let H be homogeneous. Then, each ω ∈ Ω defines a selfadjoint
operator Hω on L2(Rd) through taking the strong resolvent
limit. Then

– ω ∈ Ω→ (Hω − zI)−1 is strongly continuous (for z < R)

– U(a)HωU(a)−1 = Htaω (covariance)

• Hω = −∆ + Vω where, if V is continuous, Vω(x) = v(t−xω) with
v ∈ C(Ω).



C∗-algebra

The crossed product algebra A = C(Ω) o Rd is constructed as
follows. LetA0 = Cc(Ω ×Rd)
• Product: if A,B ∈ A0 then

AB(ω, x) =

∫
Rd

A(ω, y) B(t−yω, x − y) ddy

• Adjoint: if A ∈ A0 then

A∗(ω, x) = A(t−xω,−x)

• Left Regular Representation: if A ∈ A0 and if ψ ∈ L2(Rd)
then

πω(A)ψ(x) =

∫
Rd

A(t−xω, y − x) ψ(y) ddy



C∗-algebra

• C∗-norm: if A ∈ A0 then

‖A‖ = sup
ω∈Ω
‖πω(A)‖

• C∗-algebra: A = C(Ω) o Rd is the completion of A0 w.r.t.the
norm ‖ · ‖

• Theorem: (Bellissard ’86, using Woronowicz, Baaj, Doplicher et al, Georgescu ’02)

If H is homogeneous, it is affiliated toA:
namely, there is a ∗-homomorphism

f ∈ C0(R) 7→ f (H) ∈ A

such that πω( f (H)) = f (Hω) for all ω ∈ Ω.



Energy Spectrum

• A-spectrum: Sp
A

(H) is the complement of the domain of
holomorphy of RH(z) = (H − zI)−1

∈ A.

•Gaps: Since H is selfadjoint, Sp
A

(H) ⊂ R and is closed. A gap
is a connected component of its complement R \ Sp

A
(H)

• Proposition: (Bellissard ’86)

– Sp
A

(H) is the union over ω of Sp(Hω)
– If the orbit of ω ∈ Ω is dense then Sp

A
(H) = Sp(Hω)

– If there is a periodic orbit in Ω then Sp
A

(H) cannot be nowhere
dense



Calculus

• Trace: let P be an ergodic, Rd-invariant probability measure
on Ω. A trace onA is defined by

TP (A) =

∫
Ω

A(ω, 0) dP(ω) A ∈ A0

• Trace per Unit Volume: if Λ are cubes centered at the origin
and if χΛ is the characteristic function of Λ, then, Birkhoff’s
ergodic theorem leads to

TP (A) = lim
Λ↑Rd

1
|Λ|

Tr (πω(A)χΛ) P-almost all ω



Calculus

•Dual Action(Connes, Takai-Takesaki) ηk(A)(ω, x) = eık·x A(ω, x), with k ∈
Rd, defines a norm pointwise continuous d-parameter group of
∗-automorphisms.

•Differential Structure: The dual action is generated by the
following ∗-derivations

∂ jA(ω, x) = ıx j A(ω, x) x = (x1, · · · , xd) ∈ Rd

• Position Operators: let X = (X1, · · · ,Xd) be the operators on
L2(Rd) defined by X jψ(x) = x jψ(x). Then

πω
(
∂ jA

)
= ı

[
X j, πω(A)

]



The Integrated Density of States

• Integrated Density of States: The restriction Hω,Λ of Hω to a
bounded domain Λ is elliptic. Hence its spectrum is discrete.
The IDS is defined by

NP(E) = lim
Λ↑Rd

1
|Λ|

#
{
eigenvalue of Hω,Λ ≤ E

}
P-almost all ω

• Properties:

–NP is nondecreasing w.r.t. E
–NP(E) = 0 for E < inf SpH
–NP(E) ∼ Ed/2 as E→ +∞

–NP is constant on spectral gaps.



The Integrated Density of States

An example of IDS



The Integrated Density of States

IDS for a

Rudin-Shapiro potential

(Montalbana et al. ’07)



Gap Labels

• Shubin’s Formula: (Shubin ’76, Bellissard ’86)

NP(E) = TP (PE) PE = χ(−∞,E](H)

• Spectral Projections:

– If E ∈ Sp
A

(H) then PE is a projector in L∞(A,TP)
– If E is in a gap, then PE ∈ A !
– PE does not change as E moves in the same gap

• If E is in a gap TP(PE) depends only upon the equivalent class
of PE in K0(A)



Gap Labels

• TP induces a group homomorphism T∗ : K0(A) → R. Since
K0(A) is countable its image, the group of gap labels, is a count-
able subgroup of R.

•Gap Labeling Theorem:

– the values of the IDS on gaps belongs to the image of K0(A) under
the trace

– if g0 < g1 are two gaps the difference NP(g1) − NP(g0) is also a
gap labels.

– If H = H(s) depends continuously (norm resolvent) on a parameter
s then the gap label of a gap does not change as long as the gap does
not close



Gap Labels

• Sum Rule: let H = H(s) depends continuously (norm resol-
vent) on a parameter s ∈ [0, 1]

m0 + m1 = n0 + n1



IV - Computing the Gap Labels

J. Bellissard, in From Number Theory to Physics, Springer, J.M. Luck, P. Moussa & M. Waldschmidt Eds., (1993).



Quasiperiodic Potentials

• For n > d integers, let κ be an n × d matrix of rank d with real
coefficients.
κ is irrational whenever Im(κ) ∩Zn = {0}.

• For V ∈ C(Tn) let V(x) = V(−κx) for x ∈ Rd.
Then V is quasiperiodic. Conversely every quasiperiodic func-
tion on Rd can be written in this way.

• Theorem: (Johnson-Moser ’82, Bellissard ’93 using Connes Index Theorem for foliations)

– If H = −∆ + V then Ω = Tn

– Rd-action: t−aω = ω − κ a is uniquely ergodic
– Then Vω(x) = V(ω − κx) if ω ∈ Tn

– The group of gap labels is theZ-module spanned by det(β)’s where
β runs through the set of submatrices of maximal rank of κ



Quasiperiodic Potentials
In 1D, more can be said
• Let ψ(ω, x) be the unique solution of the Schrödinger equation

−ψ” + Vωψ = Eψ lim
x→+∞

ψ(x) = 0 ψ(0) = 1

• It defines a curve in the complex plane through

Φ(ω, x) = ψ(ω, x) +
ı
√

E

dψ(ω, x)
dx

, 0

• The covariance property shows that

F(ω, x) = Φ(ω, x)−1 dΦ(ω, x)
dx

⇒ F(ω, x) = F(ω − κx, 0)



Quasiperiodic Potentials

• Sturm-Liouville: The number of eigenvalues smaller than or equal
to E of the restriction to [−L,L] of Hω is given by

1
2ıπ

∫ +L

−L
Φ(ω, x)−1 dΦ(ω, x)

dx
dx (rotation number)

•Hence, using the covariance and Birkhoff’s ergodic theorem, the
IDS becomes

T (PE) = N(E) =
1

2ıπ

∫
Tn

Φ(ω, 0)−1 dΦ(ω, 0)
dx

dω

• Comments: (i) this gives a proof of the Johnson-Moser result,
(ii) it is a special case of the Connes index formula for foliations.



Atomic Potentials with Finite Local Complexity

• Let L ⊂ Rd be uniformly discrete:

inf{|x − y| ; x , y , x, y ∈ L} > 0

• V is an atomic potential on L if

V(x) =
∑
y∈L

v(x − y) v ∈ L1(Rd) ∩ C0(Rd)

• A patch is a finite subset of L, modulo translations. L has finite
local complexity if, for any R > 0 the set of patches of diameter
R > 0 is finite.



Atomic Potentials with Finite Local Complexity

• Theorem: Let V be an atomic potential with finite local complexity
and let H = −∆ + V

– The Hull of H is a compact space, foliated by the action ofRd, with
a completely discontinuous transversal (Kellendonk ’97)

– The set of gap labels is the Z-module generated by the occurrence
probabilities of patches w.r.t. the probability P on the Hull
(Bellissard ’92, Kaminker-Putnam ’01, Bellissard-Benedetti-Gambaudo ’01-’06, Oyono-Oyono & Benameur ’01-’07)

• Examples:

– If d = 1 and L is the Fibonacci chain, the set of gap labels is
Z + σZwhere σ = (

√
5 − 1)/2

– Same results if L is the Penrose lattice or an icosahedral qua-
sicrystal in 3D.



It is time for coffee !


