BLOCH ELECTRONS
 in a

Jean BELLISSARD ${ }^{12}$

Georgia Institute of Technology

Institut Fourier Grenoble, May 302006
At the occasion of Yves Colin de Verdière 60th birthday

Collaborations:

D. TESTARD ${ }^{\dagger}$ (CPT, Marseille)
A. $\mathrm{FORMOSO}^{\dagger}$ (CPT, Marseille)
R. LIMA (CPT, Marseille)
B. IOCHUM (CPT, Marseille)
R. RAMMAL ${ }^{\dagger}$ (CRTBT, Grenoble)
A. BARELLI (Adm. Del. CNRS, Toulouse)
R. FLECKINGER (IRSAMC, Toulouse)
H. SCHULZ-BALDES (U. Erlangen, Germany)

[^0]$$
60 \text { Years Ago ! }
$$

Yves Colin Altherr's Geburtsvisitenkarte zurück
Am 29.11.2005 um 08.27 Uhr ist Yves Colin Altherr geboren! Gewicht: 2760 g , Grösse: 44 cm Erstes Foto von Yves Colin

Today !

1976 : The Hofstadter Spectrum !

Content

1. History
2. Low Magnetic Fields
3. Magnetic Oscillations
4. Algebraic Approach
5. Application to Graphene
6. Coherent Transport
7. Computing the Exponents.

History

1. Early Times: Experiments
(a) Superconductivity (Kamerlingh-Onnes 1911)
(b) Magnetic Oscillation:

Shubnikov-De Haas (1930)
De Haas-Van Alphen (1930)
2. Early Times: Theory
(a) Bloch theory (1928)
(b) Landau (1930), diamagnetism of metals
(c) Peierls (1933), effective band Hamiltonians
3. Semiclassical Approach 50-65:
(a) Onsager (1952) and magnetic oscillations
(b) The Lifshits-Kosevich formula (1954)
(c) Harper 1955
(d) The Russian School, Landau, Zeldovitch, Azbell, (58-65)
(e) Magnetic breakdown (Pippard 1964)
4. Hofstadter's Spectrum 1976:
(a) Theoretical calculations (1960-65) ;
(b) Hofstadter Ph.D. Thesis: numerical calculation of Harper's model
(c) Wannier-Claro (1978-80)
5. Rigorous Results 1980-1990:
(a) Gap labeling Theorem (1981)
(b) Metal-Insulator transition (1979-95)
(c) Semiclassical Analysis (Helffer-Sjöstrand, J. B.-Rammal)
(d) Transport
6. Modern Experiments 1980-1990:
(a) Sharvin \& Sharvin
(b) The Quantum Hall Effect
(c) Grenoble's experiments
7. Today: the amazing graphene

Low Magnetic Fields

- Free Hamiltonian
$H=P^{2} / 2 m_{*}$ $P=\left(P_{1}, P_{2}, P_{3}\right)=$ momentum. $m_{*}=$ mass
- With B a magnetic field $\quad P \rightarrow P-q A$ $q=$ charge of carriers, $A=$ vector potential

$$
\begin{gathered}
\partial_{1} A_{2}-\partial_{2} A_{1}=B \\
\partial_{2} A_{3}-\partial_{3} A_{2}=\partial_{3} A_{1}-\partial_{1} A_{3}=0
\end{gathered}
$$

- Quasi-momentum

$$
K=(P-q A) / \hbar
$$

$$
\left[K_{1}, K_{2}\right]=-\imath \frac{q B}{\hbar}, \quad\left[K_{3}, K_{1}\right]=0=\left[K_{3}, K_{2}\right]
$$

- $q B / \hbar$ is an effective Planck constant. Then

$$
H=\frac{\hbar^{2}}{2 m_{*}}\left(K_{1}^{2}+K_{2}^{2}+K_{3}^{2}\right)=H_{B}+\frac{\hbar^{2}}{2 m_{*}} K_{3}^{2}
$$

H_{B} is the Landau Hamiltonian.

- Energy spectrum of H_{B} : eigenvalues

$$
E_{n}=\hbar \omega_{c}\left(n+\frac{1}{2}\right) \quad n \in \mathbb{N} \quad \omega_{c}=\frac{q B}{m_{*}}
$$

with multiplicity $q B / \hbar$ per unit area.

The motion is bidimensional.

With a periodic potential V (Bloch electrons)

$$
H=H_{B}+\hbar^{2} K_{3}^{2} / 2 m_{*}+V
$$

At $B=0$ band spectrum: $E_{j}(k)\left(k \in \mathbb{T}^{3}=\right.$ quasi-momentum $)$
Fourier: $E_{j}(k)=\sum_{m \in \mathbb{Z}^{3}} E_{j, m} e^{\imath k \cdot m}$
Peierls ('33): substitute K to $k \Rightarrow$
Effective band Hamiltonian

$$
H_{\text {Peierls }}=\sum_{m \in \mathbb{Z}^{3}} E_{j, m} e^{\imath K \cdot m}
$$

This is the lowest order term of a semiclassical expansion for H near the energies of the band E_{j}.
(J.B., Helffer-Sjöstrand, 1980's)

Magnetic Oscillations

Equations of motion

$$
\frac{d K}{d t}=\frac{\imath}{\hbar}\left[H_{\text {Peierls } s}, K\right] \Rightarrow \frac{d K_{3}}{d t}=0
$$

In the Peierls approximation this gives

$$
\frac{d k_{1}}{d t}=-\frac{q B}{\hbar^{2}} \frac{\partial E_{j}}{\partial k_{2}} \quad \frac{d k_{2}}{d t}=\frac{q B}{\hbar^{2}} \frac{\partial E_{j}}{\partial k_{1}}
$$

Thus $E(k)$ is conserved, the motion is perpendicular to the B-axis. In solids only the electrons with energy
$E_{F}+O\left(k_{B} T\right) \quad\left(E_{F}=\right.$ Fermi energy, $T=$ Temperature $)$ participate to the current. Thus motion is confined on the Fermi surface $E_{j}(k)=E_{F}$.

Bohr-Sommerfeld quantization formula selects the quantized orbits (ν is the Maslov index)

$$
\oint_{\text {orb }} k_{1} d k_{2}=-2 \pi \frac{q B}{\hbar}(n+\nu), \quad n \in \mathbb{Z}
$$

- The quantization conditions select cylinders.
- As $B \uparrow$ the radius of these cylinders \uparrow until one of them, with index n, gets out of the Fermi surface.
- Then its area equals the maximum $A_{\max }$ of a section of the Fermi surface perpendicular to B.
- As B continues to increase the cylinder with index $n-1$ dominates leading to oscillation in the free energy with period

$$
\Delta\left(\frac{1}{B}\right)=\frac{2 \pi q}{h A_{\max }}
$$

Resistance oscillations (Shubnikov-de Haas)

Inset: Fourier analysis of signal as a function of $1 / B$

Algebraic Approach

The Peierls operators $e^{\imath K_{1}}=U_{1}$ and $e^{\imath K_{2}}=U_{2}$ are called magnetic translations and satisfy

$$
U_{1} U_{2}=e^{2 \imath \pi \alpha} U_{2} U_{1}, \quad \alpha=\frac{\phi}{\phi_{0}}=\frac{B a^{2}}{h / e}
$$

The simplest band model is the Harper Hamiltonian

$$
H_{H}=U_{1}+U_{1}^{-1}+U_{2}+U_{2}^{-1}
$$

$$
\mathrm{a}=\text { lattice spacing }
$$

$$
\phi=\text { flux through unit cell }
$$

For $\alpha=p / q \in \mathbb{Q}$ a faithful representation of U_{1}, U_{2} is given by

$$
\begin{gathered}
U_{i}=e^{\imath k_{i}} u_{i}, \quad u_{1} u_{2}=e^{2 \imath \pi p / q_{u}} u_{1}, \quad u_{i}^{q}=\mathbf{1} \\
u_{1}=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
1 & 0 & 0 & \cdots & 0
\end{array}\right] \\
u_{2}=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & e^{2 \imath \pi p / q} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0 \\
1 & 0 & 0 & \cdots & e^{2 \imath \pi(p-1) p / q}
\end{array}\right]
\end{gathered}
$$

Then any Peierls Hamiltonian becomes a function $k \in \mathbb{T}^{2} \mapsto H(k) \in M_{q \times q}(\mathbb{C})$, easy to diagonalize on a computer.

Harper $H=U_{1}+U_{1}^{-1}+U_{2}+U_{2}^{-1}$

Triangle $H=U_{1}+U_{1}^{-1}+U_{2}+U_{2}^{-1}+U_{3}+U_{3}^{-1}$ with $U_{1} U_{2} U_{3}=\imath$

Honeycomb $H=\left[\begin{array}{cc}0 & U_{1}+U_{2}+U_{3} \\ U_{1}^{-1}+U_{2}^{-1}+U_{3}^{-1} & 0\end{array}\right]$ with $U_{1} U_{2} U_{3}=1$

Square lattice with 2 nd n.n. $H=U_{1}+U_{2}+\frac{1}{2}\left(U_{1}^{2}+U_{2}^{2}\right)+h . c$.

Theorem 1 Let $H=H^{*}$ be a polynomial in U_{1}, U_{2} then
(i) The gap boundaries are Lipschitz continuous functions of the flux where gaps do not close. (Bellissard '94)
(ii) At gap closure, if not Lipshitz, the gap edges are Hölder continuous of exponent at most $1 / 2$. (Haagerup-Rørdam '95)
(iii) The right and left derivatives of a gap edge are explicitly computable at each rational flux and are unequal.
(Bellissard-Rammal '90)
(iv) Near each gap edge and near flux $\alpha=p / q \in \mathbb{Q}$, the energy spectrum admits an asymptotic expansion of the form (Landau sublevels)
(Bellissard-Rammal '90)
$E_{n}=e_{0}+e_{a}\left(\alpha-\frac{p}{q}\right)+e_{b}\left|\alpha-\frac{p}{q}\right|\left(n+\frac{1}{2}\right)+O\left(\left(\alpha-\frac{p}{q}\right)^{2}\right)$
where e_{a}, e_{b} are explicitely computable in terms of H.
(v) Near a closing gap with Hölder exponent $1 / 2$ at rational flux $\alpha=p / q$ the energy spectrum admits an asymptotic expansion of the form (DiracLandau sublevels)
(Bellissard-Rammal '90)

$$
E_{ \pm n}=e_{0} \pm e_{ \pm}\left|\alpha-\frac{p}{q}\right|^{1 / 2}|n|^{1 / 2}+O\left(\left|\alpha-\frac{p}{q}\right|^{3 / 2}\right)
$$

Discontinuity of the gap edge derivatives near $\alpha=1 / 3$ in Harper's model

Landau sublevels for Harper's model near $\alpha=0$

- Lines: semiclassical formula. Dots: exact numerical diagonalization-

Dirac-Landau sublevels for Harper's model near $\alpha=1 / 2$

- Lines: semiclassical formula. Dots: exact numerical diagonalization -

Application to Graphene

C. Berger et al., Electronic Confinement and Coherence in Patterned Epitaxial Graphene, Science, 312 (26 May 2006), 1191-1196.

Carbon monolayers in hexagonal lattice phase grown on surface of a substrate, mostly $S i C$ semiconductor, are called graphene.

Electrons in graphene behave like relativistic massless fermions of spin 1/2 (Majorana fermions), with velocity $v \approx 10^{6} \mathrm{~m} / \mathrm{s}$.

Electrons experience a very low level of dissipation. The coherent length is $1.1 \mu \mathrm{~m}$ at $4 K$ and more than 100 nm at room temperature! In particular in a small ribbon the interference effects dominate the conductivity.

Thanks to such a low dissipation, experiments show a lot of details when put in a uniform in magnetic field, including fractal behavior reminiscent to Hofstadter's spectrum.

Fig. 1. Production and charateriation of EG. (4) LEED pattern (71 ev) of thret monobyers of EG on 4H-5c 60001 (C-terminated bee) The outermost hexagon ispots aligned on the vertical is graphene 1×1 diffration Bright batold spot alligned on the horizontal are 5ic 1 $\times 1$. The smatlest heagon is the reuth of a $\sqrt{3} 2 \sqrt{3}$ reconstruction of the interfaclal liever, as are the spots lying just inside the graphene pattem. Graphene thickness is detemined via Auger spectroxcopy lattenustion of 51 peaks). (B) AFM limage of graphived $4 \mathrm{H}-5 \mathrm{C}$. showing extended terraces. STM studies indicate that the graphite is continuous over the steps (2) (C) STM imige of one monolowe of EG on Sictoo01). Turneling condifiom thip bis -0.8 V , curedt 100 pil proferentivily image structure berejeth the graphene
 lyer, Two intertace corrugytions are appuent with pritods $6>6$ (18-nm tiangular superlattiot) and $\sqrt{3} \times \sqrt{3}$ (wnaller spots with 0.54 -am spangl relative to the $5 C$ surface unit cell (D) 5 TM inage of interdace reconstruction beneath one monolyer of graphene on Siccoood) obtained after lithograply. Gerneral featuret are as sen in (O, (E) SEM of patemed EG. Dark regions are the EG (still coated with electron-beam resid), (F) EFM of another patemed EG shmple, showing a toritontal ribbon bright contrast with tupeded whage contacts left and right which is flanked by diagonsily orfented side gaten above and below the rhbon, Contrast is oftained through electoostatic forces betwen the probe and the graphene structure to which potentists are applied, thus allowing functionting devices to be measured.

$$
\text { Science, } 312 \text { (26 May 2006), 1191-1196 }
$$

Fig. 2. Magnetotransport of a lithographically patterned graphene Hall bar (SEM micrograph, lower inset) measured at temperatures $T=4,6,9,15,35$, and 58 K , and magnetic fields $-9 \mathrm{~T} \leq B \leq$ 9 T. (A) Components of the resistivity tensor ρ are shown (inset; $\rho_{x x}=R_{x x} W^{*} / L, \rho_{x y}=R_{x y}$). ρ^{*} is derived from $\rho:\left(\rho^{*}\right)^{-1}=\rho^{-1}-\left(\rho^{0}\right)^{-1}$, where $\rho_{x x}^{0}=1125$ ohms and $\rho_{x y}^{0}=0$. Hence, the slight slope in $\rho_{x x}$ appears to be caused by a conducting layer ρ° on top of the graphene layer. The graphene mobility is $\mu^{*}=2.7 \mathrm{~m}^{2} N \cdot \mathrm{~s}$. (B) $\Delta R_{x x}$ obtained from the measured $\mathrm{R}_{x x}$ by subtracting a smooth background. Peak positions are indicated (peak 11 is missing). The peak character changes near $B=$ 4.5 T. The peak amplitudes are essentially constant below 2 Tand increase above 2 T . Inset: Detail of the oscillations near $B=1 \mathrm{~T}$. The amplitude of the universal conductance fluctuations (noise-like structures) increases with decreasing temperature.

$$
\text { Science, } 312 \text { (26 May 2006), 1191-1196 }
$$

Coherent Transport

Coherent transport is the one described by the Hamiltonian dynamics without dissipative term. Dissipation occurs only at positive temperature and blurs the effect of coherent transport. Coherence can be recovered from the low temperature behavior of quantities like the conductivity.

Example: rectangular symmetry Hamiltonian

$$
H=t_{x}\left(U_{1}+U_{1}^{-1}\right)+t_{y}\left(U_{2}+U_{2}^{-1}\right) \quad t_{x}<t_{y}
$$

The conductivity at zero magnetic field $(\alpha=0)$ is anisotropic so that $\sigma_{x x} / \sigma_{y y} \simeq\left(t_{x} / t y\right)^{2}$. With magnetic field however at finite temperature and low dissipation (through a relaxation time τ)
(Barelli, Bellissard, Claro '99)

$$
\frac{\sigma_{x x}}{\sigma_{y y}} \upharpoonright_{\mathrm{B}} \simeq C\left(\frac{\hbar}{\tau}\right)^{2} \frac{\sigma_{x x}}{\sigma_{y y}} \upharpoonright_{0} \quad \downarrow 0 \quad \text { as } T \downarrow 0
$$

At zero temperature the transport is defined through fractal exponents.

If \mathcal{T} denotes the trace per unit volume defined by

$$
\mathcal{T}\left(U_{1}^{m_{1}} U_{2}^{m_{2}}\right)=\delta_{m_{1}, 0} \delta_{m_{2}, 0}
$$

then the density of state for the Hamiltonian H is defined by

$$
\int_{\mathbb{R}} \mathcal{N}(d E) f(E)=\mathcal{T}(f(H))
$$

The spectral exponents are defined by

$$
\int_{E_{\epsilon}}^{E+\epsilon} \mathcal{N}(d E) \stackrel{\epsilon \downarrow 0}{\sim} \epsilon^{\delta(E)}
$$

or by

$$
\int_{\mathbb{R}} \mathcal{N}(d E)\left(\int_{E_{\epsilon}}^{E+\epsilon} \mathcal{N}\left(d E^{\prime}\right)\right)^{q-1} \stackrel{\epsilon \downarrow 0}{\sim} \epsilon^{(q-1) D_{\mathcal{N}}(q)}
$$

Let now $\partial_{x}, \partial_{y}$ be the derivations defined by

$$
\partial_{i} U_{J}=\imath \delta_{i j} U_{j} \quad i, j \in\{1,2\}=\{x, y\}
$$

Then the diffusion exponents in direction $i=x, y$ are defined by

$$
\int_{-T}^{T} \frac{d t}{T} \mathcal{T}\left(\left|e^{-\imath t H} \partial_{i} e^{+\imath t H}\right|^{q}\right) \stackrel{T \uparrow 0}{\sim} T^{q \beta_{i}(q)}
$$

Then the following result holds (Bellissard, Guarneri, Schulz-Baldes '02)

Theorem 2 Let $H=H^{*}$ be a polynomial in U_{1}, U_{2}. If the flux α is a Roth number ${ }^{\dagger}$, then

$$
\beta_{i}(q) \geq D_{\mathcal{N}}(1-q) \quad \forall 0<q<1
$$

${ }^{\dagger}$ namely for all $\eta>0 \exists c>0$ s.t. $|\alpha-m / n| \geq c / n^{2+\eta}$ for all $m / n \in \mathbb{Q}$

Computing the Exponents

How to compute the exponents ?
The spectral exponents are given by the long time behavior of

$$
\mathcal{T}\left(A e^{\imath t H}\right) \stackrel{t \uparrow \infty}{\sim} \frac{1}{t^{1+\delta(E)}}
$$

whenever A is localized near the energy E of H.
Malgrange (${ }{ }^{\prime} 4$) : For H a polynomial in real variables, using the Gauss-Manin connection

$$
\int_{\mathbb{R}^{n}} d^{n} x \chi(x) e^{\imath t H(x)} \stackrel{t \uparrow \infty}{\sim} \sum_{\eta ; j \leq n} c_{\eta, j} \frac{1}{t^{1+\eta}} \ln ^{j} t
$$

with χ localized near a critical point of H.
The η 's are computed through the eigenvalues of a monodromy matrix for the Gauss-Manin connection: $\eta \in \mathbb{Q}$

Using the language of Noncommutative Geometry, it seems that there is an analog of the Gauss-Manin connection for Hamiltonians representing Bloch electrons in a magnetic field.

In particular there should be a long time asymptotic expansion $\mathcal{T}\left(A e^{\imath t H}\right)$ where the exponents η are likely to belong to the set of Gap Labels.

CAN ONE DEVELOP SUCH A THEORY ?

[^0]: ${ }^{1}$ Georgia Institute of Technology, School of Mathematics, Atlanta GA 30332-0160
 ${ }^{2} \mathrm{e}$-mail: jeanbel@math.gatech.edu

