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I - Metal Liquids and Glasses
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Bulk Metallic Glasses

1. Examples (Ma, Stoica, Wang, Nat. Mat. ’08)

• ZrxCu1−x ZrxFe1−x ZrxNi1−x
• Cu46Zr47−xAl7Yx Mg60Cu30Y10

2. Properties (Hufnagel web page, John Hopkins)

•High Glass Forming Ability (GFA)
•High Strength, comparable or larger than steel
• Superior Elastic limit
•High Wear and Corrosion resistance
• Brittleness and Fatigue failure
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Bulk Metallic Glasses
Applications (Liquidemetal Technology www.liquidmetal.com)

• Orthopedic implants and medical Instruments

•Material for military components

• Sport items, golf clubs, tennis rackets, ski, snowboard, ...

Pieces of Titanium-Based Structural
Metallic-Glass Composites

(Johnson’s group, Caltech, 2008)
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Bulk Metallic Glasses
• iPhone 6 logo
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Bulk Metallic Glasses

Smoothed values of specific
heats of Au.77Ge.136Si.094
signaling a glass-liquid

transition

“A” designates the amorphous state
“m” designates the mixture

“l” designates the liquid

taken from
H. S. Chen and D. Turnbull, J. Chem. Phys.,

48, 2560-2571, (1968)
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Bulk Metallic Glasses

Viscosity vs temperature for
tri-anaphthylbenzene, with fits

coming from the free volume
theory

Solid curve fit from [1] below
Dashed curve: fit from [1] with a simplified

theory
Circles: data from [2] below

taken from
[1] Morrel H. Cohen & G. S. Grest, Phys.

Rev. B, 20, 1077-1098, (1979)
[2] D. J. Plazek and J. H. Magill, J. Chem.

Phys., 45, 3757, (1967); J. H. Magill, ibid. 47,
2802, (1967)
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Bulk Metallic Glasses
Theoretical curves of tensile
stress versus strain for the

bulk metallic glass using the
STZ theory

Zr41.2Ti13.8Cu12.5Ni10Be22.5

at several different strain
rates as shown. The

temperature is T=643 K.

For clarity, all but the first of these
curves have been displaced by the same

amount along the strain axis.

taken from
[1] M. L. Falk, J. S. Langer &
L. Pechenik, Phys. Rev. E, 70,

011507, (2004)
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Bulk Metallic Glasses

1. No structural difference between liquid and glass. No sharp
discontinuity of equilibrium variables

2. The time scales change sharply from liquid to glass. The glass
transition temperature is defined by a conventional time scale
beyond which the dynamics is hard to observe.
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II - Elasticity and Plasticity
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Strain
• A solid is treated as a continuum. Under any type of force

an atom of the solid is moved from its location x ∈ Rd to
x′ = x + u(x). u is called the deformation vector.

• This move is interpreted as a deformation of the local metric,
namely dx′ = (1 + Du)dx implying

d`2 = 〈dx|(1 + ε̂(x)) dx〉

where ε̂ is the strain tensor

ε̂i j =
∂ui
∂x j

+
∂u j

∂xi
+

d∑
k=1

∂uk
∂xi

∂uk
∂x j
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Stress

• The force F applied to a region V ⊂ Rd is expressed as

F =

∫
∂V
σ̂(s) n̂(s) ds

where n̂(s) is the outside unit normal to V at the point s ∈ ∂V and
σ̂(x) is the stress tensor at x.

•Hooke’s Law: the stress is a linear function of the strain

σ̂ = C ε̂
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Stress

• If the material is homogeneous and isotropic, Hooke’s law be-
comes

σ̂(x) = λtr
(̂
ε(x)

)
+ 2µ ε̂(x) (λ, µ are the Lamé coefficients)

• The local pressure p and the von Mises local shear stress τ are
defined by

p =
1
3

∑
α
σαα τ =

√∑
α<β

|σαβ|2
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Elasticity Equations
• Applying Newton’s Law on an infinitesimal volume of the ma-

terial with density ρ gives

ρ
∂2u
∂t2 = div

(
σ̂
)

+ Fe

where Fe is the external force per unit volume.

• In the limit of small deformation, for homogeneous and isotropic
materials obeying Hooke’s Law

ρ
∂2u
∂t2 = µ∆u + (λ + µ)∇div(u) + Fe



Institut Mittag-Leffler June 2, 2015 18

Mechanical Energy
• The mechanical energy stored in a region V can be computed to

be

EV =

∫
V

tr
(
ε̂(x) σ̂(x)

)
dx

• In the limit of small deformation, for homogeneous and isotropic
materials obeying Hooke’s Law this gives

EV =

∫
V

p2

2B
+
τ2

2G

 dx

where B is the bulk moduus and G is the shear modulus, express-
ible in terms of Lamé’s coefficients.
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Eshelby Effective Medium Theory
• If a small spherical cavity is carved inside the solid and if one

tries to insert a deformed sphere (ellipsoid) in the cavity, the
stress applied to the insertion from the outside can be computed
as an effective force applied to the insertion.

• It leads to a modification of the mechanical energy in the form
of

B→
B

Kα
B→

G
Kγ

Kα =
3(1 − ν)

2(1 − 2ν)
Kγ =

15(1 − ν)
7 − 5ν

where ν is called Poisson ratio which expresses the ratio between
the longitudinal and the transverse deformation when pulling or
pushing on a sample.
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Plasticity and STZ Theory
• Plasticity is what happens when the Hooke’s Law is invalid:

the stress-strain relationship becomes nonlinear.

• A group led by James S. Langler since 1998 proposed a theory
based on the concept of shear transformation zone or STZ, which
will be microscopically associated with the anankeons.

• The STZ theory reproduces the strain-stress experimental curves
and describes quantitatively the creation of cracks in a material
when one pulls on it.

• The STZ theory requires more phenomenological parameters than
elasticity theory, addressing the question of an atomic scale
theory.
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III - Delone Graphs
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Delone Sets
• The set V of atomic positions is uniformly discrete if there is

b > 0 such that in any ball of radius b there is at most one atomic
nucleus.
(Then minimum distance between atoms is ≥ 2b)

• The set V is relatively dense if there is h > 0 such that in any ball
of radius h there is at least one atomic nucleus.
(Then maximal vacancy diameter is ≤ 2h)

• If V is both uniformly discrete and relatively dense, it is called
a Delone set.

• Delb,h denotes the set of Delone sets with parameters b, h.



Institut Mittag-Leffler June 2, 2015 23

Topology

• Let U ⊂ Rd be open and bounded.

• If ε > 0 and if V ∈ Delb,h let U(U, ε,V) to be the set of Delone
sets W such that the Hausdorff distance satisfies

dH(V ∩U,W ∩U) < ε .

• The family U(U, ε,V) is a basis of open sets for the topology on
Delb,h

• Theorem: The space Delb,h is compact
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Delone Neighborhoods
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Delone Neighborhoods
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Delone Neighborhoods
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Delone Neighborhoods
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Delone Neighborhoods
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Delone Neighborhoods
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Delone Neighborhoods
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Locally a.c. Measures

• Let U ⊂ Rd be open and bounded.

• A Delone set V can be described locally in Rd through a finite
family of points inside U

• The set of all Delone sets with |V∩U| = n is a Borel set homeo-
morphic to a Borel set in Rdn

• Through this homeomorphism, the concept of zero Lebesgue
measure set can be transported on to Delb,h.

• A probability measure on Delb,h is locally absolutely continuous
whenever any subset of zero Lebesgue measure has zero prob-
ability.
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Voronoi Cells
• Let V ∈ Delb,h. If x ∈ V its Voronoi cell is defined by

V(x) = {y ∈ Rd ; |y − x| < |y − x′| ∀x′ ∈ V , x′ , x}

V(x) is open. Its closure T(x) = V(x) is called the Voronoi tile of
x

Proposition: If V ∈ Delr0,r1 the Voronoi
tile of any x ∈ V is a convex polytope
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Voronoi Cells
• Let V ∈ Delb,h. If x ∈ V its Voronoi cell is defined by

V(x) = {y ∈ Rd ; |y − x| < |y − x′| ∀x′ ∈ V , x′ , x}

V(x) is open. Its closure T(x) = V(x) is called the Voronoi tile of
x

Proposition: If V ∈ Delr0,r1 the Voronoi
tile of any x ∈ V is a convex polytope
containing the ball B(x; r0) and contained
in the ball B(x; r1)
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The Delone Graph
Proposition: the Voronoi tiles
of a Delone set touch face-to-face
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The Delone Graph
Proposition: the Voronoi tiles
of a Delone set touch face-to-face

Two atoms are nearest neighbors
if their Voronoi tiles touch
along a face of maximal
dimension.
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The Delone Graph
Proposition: the Voronoi tiles
of a Delone set touch face-to-face

Two atoms are nearest neighbors
if their Voronoi tiles touch
along a face of maximal
dimension.

An edge is a pair of nearest
neighbors. E denotes the set of
edges.
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The Delone Graph
Proposition: the Voronoi tiles
of a Delone set touch face-to-face

Two atoms are nearest neighbors
if their Voronoi tiles touch
along a face of maximal
dimension.

An edge is a pair of nearest
neighbors. E denotes the set of
edges.

The family G = (V,E) is the
Delone graph.
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The Delone Graph

taken from J. D. Bernal, Nature, 183, 141-147, (1959)
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Properties of the D-graph

•Graphs: a simple non-oriented graph G = (V,E) is a pair of sets
with a one-to-one map ∂ : E → P2(V), called boundary map,
(P2(V) = set of part of V with 2 points or less).

•Graph maps: f : G = (V,E) → G′ = (V′,E′) is a pair of maps
fv : V→ V′ , fe : E→ E′ such that

∂ fe(e) = fv(∂e)

• Composition: f ◦ g = ( fv ◦ gv, fe ◦ ge, ).

• Isomorphism: f : G = (V,E)→ G′ = (V′,E′) is an isomorphism
if ∃ g : G′ = (V′,E′)→ G = (V,E) with f ◦ g = 1G′ , g ◦ f = 1G.
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Properties of the D-graph

Remark: Given an integer N, the number of simple graphs modulo
isomorphism with less than N vertices is finite

Consequence: There are only finitely many D-Graphs represent-
ing a configuration of the glass in a ball of finite radius. D-graphs
discretize the information.
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Properties of the D-graph

• The incidence number nx of a vertex x ∈ V is bounded by

d + 1 ≤ nx ≤

√
π Γ{(d − 1)/2}

Γ(d/2)
∫ θm
0 sind−1(θ) dθ

, sinθm = b/2h .

• A local patch of radius n ∈N is an isomorphism class of subgraphs
(x,Vx,Ex) of the Delone graph, such that x ∈ V, Vx is the set of
vertices at graph-distance at most n from x.

• If Pn denote the set of local patches of radius n then there is
C = C(b, h) > 0 such that

#Pn ≤ eC(2n+1)d
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Likelyhood: Genericity

Genericity is a topological concept.

• In a topological space X, a subset A ⊂ X is dense if any nonempty
open set intersects A.

• A Gδ-set is the intersection of a countable family of open sets.

• Baire Category Theorem: if X is homeomorphic to a complete metric
space, then a countable intersection of dense open sets is dense.

• A property is called generic when it holds in a dense Gδ.
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Likelyhood: Almost Surely

Almost Surely is a measure theoretic or probability concept con-
cept.

• A probability space is a triple (X,Σ,P), where X is a set, Σ a family
of subsets of X containing X, that is closed under complemen-
tation and countable intersection (called the σ-algebra of mea-
surable sets) and P is a probability measure, namely P : Σ→ [0, 1]
satisfying standard assumptions.

• In a probability space (X,Σ,P), a property is almost sure when-
ever it occurs in a measurable subset A ∈ Σ having probability
P(A) = 1.
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Likelyhood

• There are examples of generic subsets of [0, 1] with zero probabil-
ity (w.r.t the Lebesgue measure), the complement of which is
almost sure without being generic.

• If X ⊂ Rn is closed and if P = F(x)dnx is “absolutely continuous”,
then a property valid of a dense open set U ⊂ X, with piecewise
smooth boundary, is both generic and almost sure.

•Definition: A property will be called almost sure in the space
Delb,h whenever it occurs on the complement of a set of locally
Lebesgue measure zero.
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Voronoi Points

The vertices of the Voronoi cells are called Voronoi Points.
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Voronoi Points
Let V be a Delone set and let y be one of its Voronoi points.

• Any point in the Delone set having a tiles touching y will be
called an atomic neighbor.

• A Voronoi point admits at least d + 1 atomic neighbors.

• A Voronoi point will be called simple whenever it has exactly
d + 1 atomic neighbors.

• Theorem: The atomic neighbors of a Voronoi point y belong to a
common sphere centered at y and y is interior to the convex hull of
its atomic neighbors.

• Theorem: Generically and (locally Lebesgue) almost surely a Voronoi
point is simple.
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Generic Local Patches

Shear modifies local patches. The middle one is unstable.
The transition from left to right requires transiting through a

saddle point of the potential energy.

The Voronoi cell boundaries are shown in blue.

At the bifurcation a Voronoi vertex touches one more Voronoi cell than in the generic case
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Generic Local Patches
An example of a generic 3D

bifurcation.
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Generic Local Patches
An example of a generic 3D

bifurcation.
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Generic Local Patches
An example of a generic 3D

bifurcation.
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Generic Local Patches
An example of a generic 3D

bifurcation.

Graph changes

• The graph edges are indicated in black.

• The grey dotted edges have disappeared
during the bifurcation.

• The colored plates are the boundaries of the
Voronoi cells.
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Generic Local Patches
An example of a generic 3D

bifurcation.

Graph changes

• The graph edges are indicated in black.

• The grey dotted edges have disappeared
during the bifurcation.

• The colored plates are the boundaries of the
Voronoi cells.
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Generic Local Patches

• A bifurcation involves 5 atoms in dimension 3.

Statistics of the number of atoms involved in a bifurcation
(Y. Fan, T. Iwashita, T. Egami, ‘14).



Institut Mittag-Leffler June 2, 2015 54

Acceptance Domains

• Given a local patch G ∈ Pn its acceptance domain ΣG is the set
of all atomic configurations V ∈ Delb,h having G as their local
patch around the origin.

• A local patch is generic whenever a small local deformation of
the atomic configuration does not change the corresponding
graph. LetVn ⊂ Pn be the set of generic local patches of radius n.

• A representative of a local patch G ∈ Pn is a graph ball of radius n
contained in the Delone graph.
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Acceptance Domains

• Theorem: G ∈ Vn if and only if ΣG is open and its boundary is
piecewise smooth.

• Theorem: G ∈ Vn if and only if it admits a representative in the
Voronoi tiling having only simple Voronoi points

• Theorem: The union of acceptance domains of the generic patches
of size n is dense.

• Theorem: In particular (locally Lebesgue) almost surely and gener-
ically an atomic configuration admits a generic local patch.



Institut Mittag-Leffler June 2, 2015 56

Acceptance Domains

• Empty Sphere Property: The atomic neighbors of a Voronoi
point y are lying on a sphere centered at y inside which there is
no other atoms. In addition y is interior to the convex hull of its
atomic neighbors.

• Theorem: A LOCAL PATCH IS GENERIC IF AND ONLY
IF ITS ATOMS ARE THE VERTEX OF A TRIANGULATION,
EACH ELEMENTARY SIMPLEX OF WHICH HAVE
THE EMPTY SPHERE PROPERTY.
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Acceptance Domains

List of graph balls of size 1 (local cluster) in 2D
for h/b <

√
2.
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Contiguousness

• The boundary of the acceptance domain of a generic graph con-
tains a relatively open dense subset of codimension 1.

•Definition: two generic graphs G,G′ ∈ Qn are contiguous whenever
their boundary share a piece of codimension one.

• The setVn itself can then be seen as the set of vertices of a graph

Gn = (Vn,En)

called the graph of contiguousness where an edge E ∈ En is a pair
of contiguous generic local patches.
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Contiguousness

Theorem two contiguous generic graphs differ only by one edge
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IV - The Anankeon Theory
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Fundamental Laws
1. The Coulomb forces between atomic cores and valence electrons

create chemical bonding and cohesion in solids

2. Electrons are fermions: they resist compression. For free Fermi
gas (`e−e = average e − e distance, P=pressure)

P ∼ `5
e−e

3. In metals, valence electrons are delocalized, approximately free.
Atomic cores localize themselves to minimize the Fermi sea
energy (jellium).

4. A good description of the effective atom-atom interactions is
provided by pair potential with strong repulsion at short dis-
tances, Friedel’s oscillations at medium range and exponen-
tially decaying tail.
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Pair Potentials

An example of atom-atom pair
potential in the metallic glass

Ca70Mg30

Top: the pair creation function
Bottom: the graph of the pair potential

taken from
J. Hafner, Phys. Rev. B, 27, 678-695 (1983)



Institut Mittag-Leffler June 2, 2015 63

Dense Packing and the Ergodic Paradox
1. The shape of the pair potential suggests that there is a minimal

distance between two atoms.

2. Liquid and solids are densely packed. This suggests that there is
a maximal size for vacancies.

3. However, the principle of Statistical Mechanics and the ergodic
theory implies that, given an ε > 0, with probability one

• there are pairs of atoms with distance less than ε
• there are vacancies with radius larger than 1/ε

4. But these rare events are not seen in practice because their
lifetime is negligibly small (Bennett et al. ‘79).
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Persistence
• Persistence theory gives an idea about why large vacancies have

a short lifetime. On discrete subset V ⊂ Rd, let, (nx)x∈V, be
a family of i.i.d random variables with nx ∈ {0, 1} and Prob{nx =
0} = p > 0 , Prob{nx = 1} = 1 − p > 0.

• Then, if Λ ⊂ V is a finite set, let PΛ(t) be the probability that
nx = 0 for x ∈ Λ and times between 0 and t, given that nx = 0
at t = 0 for x ∈ Λ. By independence

PΛ(t) =
∏
x∈Λ

P{x}(t)

• Usually P{x}(t) ' e−t/τ. Hence the life time of Λ as a vacancy is
τ/N if Λ has N atoms.
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Bonds and Phonons
T. Egami, Atomic Level Stress, Prog. Mat. Sci., 56, (2011), 637-653.

1. Atoms can be related by edges using Voronoi cells construction.
Long edges are loose. Short edges are bonds.

2. If r is the vector linking two atoms of a bond, there is a local 6D
stress tensor defined by

σαβ = V′(|r|)
rα rβ

|r|

3. Liquid Phase: Bonds constitute the dominant degrees of free-
dom ! Phonons are damped.

4. Glass Phase: Phonons are the dominant degrees of freedom.
Bonds are blocked.
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Local Stress Distribution
1. In the liquid state atoms do not find a position minimizing the

potential energy, due to geometrical frustration. Thermal agita-
tion result in atomic bond exchanges, to help atoms minimize
their potential energy.

2. The stress tensors associated with bonds behave like indepen-
dent random Gaussian variables !

3. Thanks to isotropy, this can be seen on the local pressure p and
the von Mises local shear stress τ

p =
1
3

∑
α
σαα τ =

√∑
α<β

|σαβ|2
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Local Stress Distribution

Pressure distribution in
amorphous and liquid metals

taken from
T. Egami & D. Srolovitz, J. Phys. F, 12,

2141-2163 (1982)
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Local Stress Distribution

Shear stress distribution in
amorphous and liquid

metals

Dotted curve: 2D-Gaussian
Broken curve: 5D-Gaussian

taken from
T. Egami & D. Srolovitz, J. Phys. F, 12,

2141-2163 (1982)
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The Anankeon Theory
The bond degrees of freedom are the response of atoms to the stressful situation in which they are trying

to find a better comfortable position, in vain.
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The Anankeon Theory
The bond degrees of freedom are the response of atoms to the stressful situation in which they are trying

to find a better comfortable position, in vain.

Behind the previous concept of bond degrees of freedom, there is the notion of stress, constraint, necessity,

unrest and even torture.
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The Anankeon Theory
The bond degrees of freedom are the response of atoms to the stressful situation in which they are trying

to find a better comfortable position, in vain.

Behind the previous concept of bond degrees of freedom, there is the notion of stress, constraint, necessity,

unrest and even torture.

There is a a character of the Greek mythology that could fit with this concept:

the goddess Ananke

whose name comes from the greek word anagkeia meaning the stress of circumstances.
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The Anankeon Theory
The bond degrees of freedom are the response of atoms to the stressful situation in which they are trying

to find a better comfortable position, in vain.

Behind the previous concept of bond degrees of freedom, there is the notion of stress, constraint, necessity,

unrest and even torture.

There is a a character of the Greek mythology that could fit with this concept:

the goddess Ananke

whose name comes from the greek word anagkeia meaning the stress of circumstances. Ananke was

representing a power above all including the Gods of the Olympe "even gods don’t fight against Ananke"

claims a scholar. This character presided to the creation of the world, in various versions of the Greek

mythology. It expresses the concepts of "force, constraint, necessity" and from there it also means

"fate, destiny" to lead to the concepts of compulsion, torture.(from Wikipedia)
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The Anankeon Theory

For this reason the configurational degrees of freedom associated
with the stress tensor on each bond will be called

ANANKEONS
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The Anankeon Theory
• Edge partition function

Z(e) = (1 − π)
∫
R6

e−(p2/2B+τ2/2G)/kBTdp d5τ + π

– π is the probability for an edge to be loose
(V0 is the pair-potential maximal depth)

π ∼ e−V0/kBT

– B is the bulk modulus
– G is the shear modulus

• Edge free energy F(e) = −kBT ln Z(e)
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The Anankeon Theory
As a consequence of the anankeon theory, at high temperature, the
total potential energy per edge, 3/2 kBT, is equally distributed over
the six elastic self-energy of the stress components (equipartition)

〈p2
〉

2B
=
〈τ2
〉

2G
=

kBT
4

In particular, the specific heat follows a law of Dulong-Petit

Cp
T↑∞
∼

3kB

2

The corresponding degrees of freedom are the 6 components of
the stress tensor on each bond.
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The Anankeon Theory

Elastic self-energy of
atomic level stresses

tested for various pair
potentials

LJ: Lennard-Jones potential
mJ: Johnson potential including

Friedel’s oscillations.

taken from
S.-P. Chen, T. Egami & V. Vitek,

Phys. Rev. B, 37, 2440-2449, (1988)
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The Anankeon Theory
As the temperature decreases, the local edges feel a long-range
stress field around them. This field can be described through a
mean field theory using continuum elasticity (Eshleby ’57). The stress
field is renormalized as

Kα
〈p2
〉

2B
= Kγ

〈τ2
〉

2G
=

kBT
4

Kα =
3(1 − ν)
2(1 − 2ν)

Kγ =
15(1 − ν)

7 − 5ν

with ν = Poisson ratio. This leads to a prediction of the glass transi-
tion temperature where εT,crit

v ' 0.095 is the critical strain computed
from percolation theory(Egami T, Poon SJ, Zhang Z, Keppens V., ’07)

Tg =
2BV
kBKα

(εT,crit
v )2
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V - Towards a Dissipative Dynamics

(Work in Progress)
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Elasticity and Plasticity at Atomic Scale
• Given a fixed D-patches (local topology, finite volume), the domain

of validity of elasticity is provided by the acceptance domains,
namely the small atomic movements which are not changing the
local topology.

•Microscopically, elastic waves correspond to phonons (Einstein 1907).

• Inelasticity occurs when the local topology changes, namely
when there is a jump in the graph of contiguity. Such jumps
are unpredictable in practice. They correspond to the anankeon
degrees of freedom
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Configuration Space
• Given G ∈ Vn, each edge e of G is either loose or a bond. This can

be represented by a random variable Ne ∈ {0, 1}where

– Ne = 0 if e is loose
– Ne = 1 if e is a bond
– Prob{N = 0} = π, Prob{N = 1} = 1 − π
– if e , e′, then Ne,Ne′ are independent.

• Each edge e ∈ G with Ne = 1 supports the six components of a
local stress tensor σe which is distributed according to Maxwell-
Boltzmann

Prob
{
σe ∈ ∆ ⊂ R6

|Ne = 1
}

=

∫
∆

exp

−
 p2

e
2BkBT

+
τ2

e
2GkBT


 d6σe
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Interactions
• gα,β(r, ~u) denotes the 2-points correlation function between sites

with local shear stress with sign α = ± and β = ± respectively
and located at distance r > 0 in the direction ~u = ~r/|~r|.

• For d = 2 the isotropic and quadrupolar parts are defined by

g0 =
1
4
(
g+,+ + g+,− + g−,+ + g−,−

)
G =

1
4
(
g+,+ − g+,− − g−,+ + g−,−

)
•Numerical simulation (molecular dynamics) performed in the

liquid phase (Egami’s group 2015) have shown that gα,β(r, ~u) exhibits
oscillations and exponential decay in r and a 4-fold symmetry in
~u.

• A similar results occurs for the stress-stress correlation function
and also in dimension d = 3.
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Interactions
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Interactions

• A comparison with the Eshelby theory suggests that the cavity
method should apply at the atomic scale as well explaining the
numerical results.

• This suggests an Ising type model for the interaction between
local stress since only the sign of the shear stress seems to matter.

• The frustration created by the quadrupole and isotropic inter-
action should lead to a spin-glass like transition at lower temper-
ature.
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Markov Dynamics
• The contiguousness graph Gn should leads to a Markov process

represented by the rate probability of transitionPn
G→G′

between
two generic contiguous local patches

Pn
G→G′

= Γ(G→ G′) exp
{
−

(
FG′(σ

′) − FG(σ)
)
/kBT

}
where FG(σ) represents the configuration dependent free en-
ergy associated with the local patch G ∈ Vn.

•Here Γ(G → G′) ∼ e−W/kBT is proportional to the inverse of the
typical transition time. This time is controlled by the height W
of the potential energy barrier between the two configurations,
following an Arrhenius law.
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Markov Dynamics
• Once the model established the infinite volume limit, corre-

sponding to the limit n → ∞ must be considered. Standard
theorems exist in the literature on Dirichlet forms about the ex-
istence and the uniqueness of such limiting processes.

• Then it will be necessary to prove that, within this model,
the main properties discovered by theoreticians are actually a
consequence of the model.

• One critical data will be to look at the time scale involved in
the liquid and the glassy state.



Institut Mittag-Leffler June 2, 2015 86

Thanks for Listening !


