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I - Experimental Aspects
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Few Mechanisms

1. For metals, σ(T) increases as temperature decreases
�

σ(T)
T↓0
∼ T−2, (Fermi liquid theory).

2. For a thermally activated process
�

σ(T)
T↓0
∼ e−∆/T (If a gap holds at Fermi level).

3. For weakly disordered systems
�

σ(T)
T↓0
→ σ(0) > 0 (residual conductivity).

4. For strongly disordered systems in 3D (Quantum
Hall Effect)
�

σ(T)
T↓0
∼ e−(T0/T)1/4

(variable range hopping).
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Mott’s variable range hopping
N. F. Mott, J. Non-Crystal. Solids 1, 1 (1968).
& Metal-Insulator Transitions (Taylor and Francis, London, 1974).

B. Shklovskii, A. L. Effros, Electronic Properties of Doped Semiconductors,
Springer-Verlag, Berlin, (1984).
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• Strongly localized regime, dimension d

• Low electronic DOS, Low temperature
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• Absorption-emission of a phonon of energy ε

Prob ∝ e−ε/kBT

• Tunnelling probability at distance r

Prob ∝ e−r/ξ

• Density of state at Fermi level nF,

ε nF rd ≈ 1

• Optimizing, the conductivity satisfies

σ ∝ e−(T0/T )1/d+1
Mott’s law

• Optimal energy εopt ∼ T d/(d+1) � T

• Optimal distance ropt ∼ 1/T 1/(d+1) � ξ
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Transport in Quasicrystals
Lectures on Quasicrystals,
F. Hippert & D. Gratias Eds., Editions de Physique, Les Ulis, (1994),

S. Roche, D. Mayou and G. Trambly de Laissardière,
Electronic transport properties of quasicrystals, J. Math. Phys., 38, 1794-1822 (1997).

Quasicrystalline alloys

Metastable QC’s: AlMn
(Shechtman D., Blech I., Gratias D. & Cahn J., PRL 53, 1951 (1984))

AlMnSi
AlMgT (T = Ag,Cu, Zn)

Defective stable QC’s: AlLiCu (Sainfort-Dubost, (1986))

GaMgZn (Holzen et al., (1989))

High quality QC’s: AlCuT (T = Fe,Ru,Os)
(Hiraga, Zhang, Hirakoyashi, Inoue, (1988); Gurnan et al., Inoue et al., (1989);

Y. Calvayrac et al., (1990))

“Perfect” QC’s: AlPdMn

AlPdRe
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(Taken from C. Berger in ref. Lectures on Quasicrystals)
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For Quasicrystals

1. Al, Fe, Cu, Pd are very good metals : why is the
conductivity of quasicrystalline alloys so low ?
Why is it decreasing ?

2. At high enough temperature

σ ∝ T γ 1 < γ < 1.5

There is a new mechanism here!

3. At low temperature for Al70.5Pd22Mn7.5,

σ ≈ σ(0) > 0

4. At low temperature for Al70.5Pd21Re8.5,

σ ∝ e−(T0/T )1/4
C. Berger et al. (1998)

Disorder can be eliminated: recent samples impurity
concentration lower than 10−6.
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II - Master Equation
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Thermodynamics

1. The system is divided into cells of mesoscopic size
in which a local equilibrium is established after a
mesoscopic time δt � measurement time.
(Local Equilibrium Approximation)

2. On microscopic scale, a mesoscopic cell is an infi-
nite volume totally open thermodynamical quan-
tum system at equilibrium during a period of time
δt with a time and cell dependent inverse tempera-
ture β. The Gibbs state is defined through

Ĥth = Ĥ − µN̂ − PV̂ + · · · = Ĥ +

K
∑

α=2

FαX̂α

Ĥ = cell Hamiltonian, X̂α = other conserved
quantities, Fα = conjugate variables.
(N̂ is the particle number in the cell, V̂ is the cell volume, etc. )

3. β, F2, · · · , FK are macroscopically space and time
dependent.
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Mesoscopic Quantum Evolution

• Observable algebra A = AS ⊗AE

(S = system, E = environment).

• Quantum evolution ηt ∈ Aut(A),
t ∈ R 7→ ηt(B) ∈ A continuous ∀B ∈ A.

• Initial state ρ ⊗ ρE

• System evolution

ρ(Φt(A)) = ρt(A) = ρ ⊗ ρE (ηt(A ⊗ 1))

Φt : AS 7→ AS is completely positive,
Φt(1) = 1 and t 7→ Φt(A) ∈ AS is continuous.

• Markov approximation: for δt mesoscopic

Φt+δt ≈ Φt ◦ Φδt ≈ Φδt ◦ Φt

Then
δΦt

δt
= L ◦ Φt = Φt ◦ L

L is the Lindbladian.

• Dual evolution Φ
†
t(ρ) = ρ ◦ Φt giving rise to L

†.
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Theorem 1 (Lindblad ’76) If AS = B(H) and if
Φt is pointwise norm continuous, there is a bounded
selfadjoint operator H on H and a countable family
of operators Li such that

L(A) = ı[H,A] +
∑

i

(

L
†
iALi −

1

2
{L

†
iLi, A}

)

The first term of L is the coherent part and corre-
sponds to a usual Hamiltonian evolution.
The second one, denoted by D(A) is the dissipative
part and produces damping.

• Stationary states correspond to solutions of
L
†ρ = 0.

• Equilibrium states are stationary states with max-
imum entropy: the KMS states with respect to the
thermal dynamics generated by

Ĥth = Ĥ +

K
∑

α=2

FαX̂α
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Derivation of Green-Kubo Formulæ

• In many cases there is a position operator acting on
the Hilbert space of states and given by a commuting
family ~R = (R1, · · · , Rd) of selfadjoint operators.
They describe the position of particles in the system
S.

• ~R generates a d-parameter group of automorphisms
~k ∈ R

d 7→ eı~k·~RAe−ı~k·~R of the C∗-algebra AS.
Thus ~∇ = ı[~R, · ] defines a ∗-derivation of AS.

• The mesoscopic velocity of the particles is given by

~V =
d~R

dt
= L(~R) = ~∇H + D(~R)

The first part corresponds to the coherent velocity
the other to the dissipative one.

• The current associated with X̂α is given by

~Jα =
1

2
{~V , X̂α} = ~J

(coh)
α + ~J

(diss)
α
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• At time t = 0, S is at equilibrium

⇒ ρin = ρeq. L
†ρeq. = 0

• At t > 0, forces are switched on

E = (~E1, · · · , ~EK) with ~Eα = ~∇(Fα/T )

so that

LE = L +
∑

α

~Eα~Lα + O(E2)

• Hence the current becomes

~J E
α = ~Jα +

∑

α

~Eα~Lα(~R) + O(E2)

• Then, if the forces are constant in time

~jα = lim
t↑∞

∫ t

0

ds

t
ρeq.

(

esLE ~J E
α

)

= lim
ε↓0

∫ ∞

0
εdt e−tερeq.

(

etLE ~J E
α

)

= lim
ε↓0

ρeq.

(

ε

ε − LE

~J E
α

)

• Since L
†ρeq. = 0, ρeq.

(

ε
ε−L

~Jα

)

= 0
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• Thus

~jα = lim
ε↓0

ρeq.

(

ε

ε − LE

~J E
α −

ε

ε − L

~Jα

)

= lim
ε↓0

ρeq.





ε

ε − L

∑

α′

~Eα′ · ~Lα′
1

ε − LE

~Jα





+ lim
ε↓0

ρeq.





ε

ε − L

∑

α′

~Eα′ · ~Lα′(~R)





+ O(E2)

• Since ρeq. ◦ L = 0 this gives

~jα = −
∑

α′

~Eα′ ρeq.

(

~Lα′
1

L

~Jα + ~Lα′(~R)

)

+ O(E2)

• Hence the Onsager cœfficients are

Lα,α′ = −ρeq.

(

~Lα′
1

L

~Jα + ~Lα′(~R)

)
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Validity of Green-Kubo Formulæ

The previous derivation is formal. Various conditions
must be assumed.

• The explicit expressions for L and the ~Lα′’s are
model dependent.

• It is necessary to prove that LE(~R) ∈ AS.

• The inverse of L is not a priori well defined.

However, the dissipative part D is usually responsible
for the existence of the inverse. This is because

Spec(ı[H, ·]) ⊂ ıR

while D gives a non zero real part to eigenvalues.
In the Relaxation Time Approximation,

D(A) = A/τ ⇒ Spec

(

ı[H, ·] +
1

τ

)

⊂ ıR +
1

τ

where τ is the relaxation time.



Lille, June 23-25 2003 19

III - Kinetic Models
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The Drude Model
P. Drude, Zur Elektronentheorie I, Ann. Phys., 1, 566-613, (1900).

Zur Elektronentheorie II, Ann. Phys., 3, 369-402, (1900).

random scatterers

p p
p

p

1 2
3

4

test particle

• Electrons in a metal are free classical particles of
mass m∗ and charge −e.

• Electron density is n.
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1. Between two collisions, the electron motion is gov-
erned by Newton’s law with external forces (e.g.
electric field).

2. Collisions occur at random Poissonian times
· · · < t−1 < t0 < · · · < tn+1 < · · · with

< tn+1 − tn >= τrel

.

3. Right after each collision, the momentum pn is up-
dated randomly according to the Maxwell-Boltzman
distribution at the temperature of the metal.

As a consequence

σ =
e2n

m∗
τrel Drude formula
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A Quantum Drude Model
J. Bellissard, H. Schulz-Baldes, J. Stat. Phys., 91, 991-1026, (1998).

1. Replace the classical motion by the quantum motion
under investigation with Hamiltonian H .

2. Replace collisions by quantum jumps indexed by r
at random Poissonian times

· · · < t
(r)
−1 < t

(r)
0 < · · · < t

(r)
n+1 < · · ·

〈t
(r)
n+1 − t

(r)
n 〉 = Γ−1

r

3. At collisions of type r the state ρ changes to K
†
r(ρ).

K
†
r must be a completely positive affine continu-

ous map from the state space into itself.

4. The dissipation operator is

D
†(ρ) =

∑

r

Γr (ρ −K
†
r(ρ))

Γr and K
†
r may depend on external forces.
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Dissipative Evolution

The Liouville operator associated with A = A∗ is

LA =
ı

~
[A, ·]

The evolution of the state is given by

ρ(t) = η
†
t−tn

◦ K
†
rn ◦ η

†
tn−tn−1

◦ · · · ◦ K
†
r1 ◦ η

†
t1

(ρ)

if

1. t0 ≤ 0 < t1 < · · · < tn ≤ t < tn+1 are the col-
lision times and r1, · · · , rn the corresponding quan-
tum jumps.

2. η
†
t is the action on states of the quantum evolution

associated with H~E
= H − q~E · ~R.

Theorem 2 The time average evolution is given by
the Lindbladian

L
† = −LH +

q

~

~E · ~∇− D
†
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The Relaxation Time Approximation

The RTA corresponds to a unique type of quantum
jumps with Γ = 1/τrel and K†(ρ) = ρeq.. Then

dρ

dt
=

ı

~
[H, ρ] −

ρ − ρeq.

τrel

The solution of this equation exists and converges ex-
ponentially fast to equilibrium.

Variable Range Hopping

1. The electrons are independent fermions and mov-
ing on a random sublattice Lω of Z

d.

2. Z
d acts on the compact space Ω indexing L so that

Lω + a = Ltaω for a ∈ Z
d and P is an ergodic

invariant probability on Ω.

3. Given ω ∈ Ω a quantum jump occurs between any
pair r = (x → y) ∈ L×2

ω . Then

K
†
x→y(ρ) = (1 + Kx→y)ρ(1 + K∗

x→y)
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Kx→y = |y〉〈x| − |x〉〈x|

4. The one-electron Hamiltonian is

H~E ,ω
=

∑

x∈Lω

(

Vω(x) − q~E · ~x
)

|x〉〈x|

(strong localization limit).

5. The potential Vω(x) is created by the charges of
ionic impurities and depends upon the occupation
number nx by electrons (nx = 1) or holes (nx = 0)
at each sites of Lω. At equilibrium, V and n are
determined uniquely.

6. The Mott argument suggests

Γx→y(ω) = Γ0 e−(Vω(y)−Vω(x)+q~E·(x−y))/kBT

· · · e−|x−y|/ξ (1 − ny)nx

7. The Algebra AS is generated by covariant operators
with matrix elements

〈x|Aω|y〉 = A(t−xω, y − x)
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with (ω, x) ∈ Ω × Z
d 7→ A(ω, x) ∈ C continuous

with compact support contained in the subset with
x ∈ Lω.

Theorem 3 The previous model defined unambigu-
ously a Lindbladian acting on AS.

J. Bellissard, Lecture Notes in Physics, 597, 413-486, (2003).

Theorem 4 The instantaneous Hamiltonian dyna-
mics with external noise at infinite volume is well
defined, almost surely non unitary. It becomes uni-
tary if the noise is included in the Hilbert space of
states. The corresponding averaged evolution is de-
scribed by the previous Lindbladian.

D. Spehner, J. Bellissard, J. Stat. Phys., 104, 525-572, (2001).

This model gives an equivalent version of the Miller & Abrahams ran-

dom resistor network approach to this problem. See:

D. Spehner, Ph.D. Thesis, Toulouse, 13 March 2000.
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Quantum Noise Models

J. Bellissard, R. Rebolledo, D. Spehner, W. von Waldenfels,
mp.arc 02-212, (2002).

1. Electrons are treated in second quantization, and
in a finite volume.

2. The time dependent noise is produced by bosons
(quantum Poissonian noise) mimicking the effect of
phonons (environment).
They produce random electron jumps.

3. The quantum evolution is unitary if the environ-
ment is included.

4. The average over the environment gives a Lindbla-
dian LQ.

5. If a detailed balance condition is imposed to the
jump probabilities, LQ admits a unique equilibrium
state that is the usual Gibbs state.

6. The previous analysis leading to Kubo’s formula ap-
plies.
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Conclusion

1. Various mechanisms of conductivity observed in a-
periodic solids (semiconductors or quasicrystals at
low temperature) leads to consider again transport
theory for such systems.

2. Linear response theory requires a coarse-graining
of the microscopic theory to define the current that
is measured macroscopically. This leads to the local
equilibrium approximation (LEA), to entropy cre-
ation by constant return to local equilibrium and to
the validity of linear response.

3. The Master equation describes the dynamics within
the LEA, provided the Markov approximation is
valid on time scales of the order of the relaxation
time to local equilibrium.

4. The Master Equation leads to the Green-Kubo for-
mula for Onsager (transport) cœfficients.

5. Kinetic models are usually proposed to mimick the
effect of the environment (Phonons, etc.)


