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Warning
This lecture gives a heuristic discussion of problems posed by

the linear response theory in view of a more rigorous study.

It does not intend to give mathematically rigorous results.
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I - Linear Response Theory:

Heuristic Background
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Linear Response
Experiments show that if a force ~F is imposed to a
system, its response is a current ~j vanishing as the
force vanishes. Thus for ~F small

~j = L · ~F + O( ~F 2) ,

Here L is a matrix of transport cœfficients.

Examples:

1. Fourier’s law: a temperature gradient produces a
heat current ~jheat = −λ~∇T .

2. Ohm’s law: a potential gradient (electric field) pro-

duces an electric current ~jel = −σ~∇V .

3. Fick’s law: a density gradient produce a flow of
matter ~jmatter = −κ~∇ρ.

-What is the domain of validity ?
-What happens for quantum systems ?
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A No-Go Theorem: Bloch’s oscillations
If H = H∗, the one-electron Hamiltonian, is bounded
and if ~R = (R1, · · · , Rd) is the position operator (self-
adjoint, commuting coordinates), the current is

~J = const.
ı

~
[H, ~R] ,

Adding a force ~F at time t = 0 leads to a new evolution
with Hamiltonian HF = H − ~F · ~R. The 0-frequency
component of the current is

~j = lim
t→∞

∫ t

0

ds

t
eısHF/~ ~J e−ısHF/~ ,

Simple algebra shows that (since ‖H‖ < ∞)

~F ·~j = const. lim
t→∞

H(t) − H

t
= 0 ,

WHY ?
This is called Bloch’s Oscillations
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Dissipation
Dissipation is the loss of information experienced by
the system observed as the time goes on

Second Principle of Thermodynamics

Clausius-Boltzman entropy

The sources of dissipation can take various aspects

1. External noise random in time

2. Exchange with a thermal bath
(reservoir with infinite energy)

3. Collisions/interactions with other particles

4. Loss of energy at infinity (infinite volumes)

5. Chaotic motion: sensitivity to initial conditions
Kolmogorov-Sinai entropy

6. Quantum measurement (wave function collapse)

7. Quantum Chaos: the Hamiltonian behaves like a
random matrix. Voiculescu entropy .
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Length, Time & Energy Scales

1. Length scales:

• Scattering length: range of interactions between
colliding particles.

• Mean free path: minimum distance between col-
lisions

• Mesoscopic scale: minimum size for the system
to reach a local thermodynamical equilibrium.

• Sample size

2. Times scales:

• Scattering time

• Collision time: time between two consecutive
collisions

• Relaxation time: time for a mesoscopic size to
relax to equilibrium

• Mesurement time

• Other times: Heisenbeg times ~/∆E , · · ·

3. Energy scales
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Exchanges of Limits

1. Infinite volume limit & low dissipation limit:

• Usually

mean free path � sample size

(i) infinite volume limit (ii) low dissipation limit.

• In nanoscopic systems linear response may fail !
The resistivity of a molecule is meaningless !

2. Zero external force limit & large time measure-
ment limit:

• in solids
~

eV
≈ 10−12 − 10−15 s. � measurement time

(i) infinite measurement time limit
(ii) low external field.

• In pico-femtosecond laser experiments, failures
of linear response theory are observed.



Irvine 29 May 2003 9

II - Transport Cœfficients
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Local Equilibrium Approximation

• Length Scales:

` � δL � L

` is a typical microscopic length scale
L the typical macroscopic length scale.
Then δL is called mesoscopic.

• Time Scales:

τrel � δt � t

τrel is a typical microscopic time scale
t the typical macroscopic time scale.
Then δt is called mesoscopic.

• The system is partitionned into mesoscopic cells
the time is partitionned into mesoscopic intervals.

• Mesoscopic cells are completely open systems
After a time O(δt) they return to equilibrium.
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• Let H be the Hamiltonian of the part of the subsys-
tem contained in the mesoscopic cell located at ~x at
time t.

• Let X̂1 = H, X̂2 · · · , X̂K be a complete family of
first integral, namely observables commuting with
the Hamiltonian.

• Let Q(~x, t) be the set of indices labeling a common
eigenbasis of the X̂α’s: it is the set of microstates
of the system contained in the mesoscopic cell.

• If P(~x,t)(q) denotes the Gibbs probability of the mi-

crostate q ∈ Q(~x, t), its Boltzman entropy is given
by

S(P) = −kB

∑

q∈Q(~x,t)

P(~x,t)(q) ln P(~x,t)(q)

• The maximum entropy principle gives Lagrange
multipliers T (~x, t), F2(~x, t), · · · , FK(~x, t) called
conjugate variables. (In the following F1 = 1)
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• The Gibbs state for the mesoscopic cell centered at
~x ∈ R

d at time t is:

P(~x,t)(q) =
1

Z(~x, t)
e
−

∑K
α=1 Fα(~x,t) X̂α(q)

kBT (~x,t)

• The average values of the first integrals are

δXα(~x, t) =
∑

q∈Q(~x,t)

P(~x,t)(q) X̂α(q) .

• The volume of the cell δV (~x, t) = δV is mesoscopic
and chosen constant in space and time.

• Then δXα(~x, t) = O(δV ) and the local density of
Xα is

ρα(~x, t) =
δXα(~x, t)

δV
.

• Under an infinitesimal change of equilibrium the en-
tropy changes as TdS =

∑

α FαdδXα
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Fluxes & Currents

∆ 1 ∆ 0

X
(1)

α

(0)

αX

Σ

n n(0) (1)

• Transfer of Xα from cell ∆(1) to cell ∆(0) across area
δΣ during time δt gives a variation in time

δXα(~x, t) = −~jα(~x, t) · ~n(1)δΣδt .

where ~n(1) is the normal to area oriented from ∆(1)

to ∆(0).

•~jα(~x, t) is the local current associated with Xα.
It is mesoscopic rather than microscopic.
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• Since Xα is conserved under evolution the balance
leads to the continuity equation

∂ρα

∂t
(~x, t) + ~∇ ·~jα(~x, t) = 0 .

• The entropy density is s = δS
δV

The entropy variation is then given by

∂s

∂t
=

K
∑

α=1

Fα

T

∂ρα

∂t
.

• The current entropy is define through

~js(~x, t) =

K
∑

α=1

Fα

T
~jα(~x, t) .

• The entropy production rate is then

ds

dt
=

∂s

∂t
+ ~∇ ·~js =

K
∑

α=1

~∇

(

Fα

T

)

~jα(~x, t) .

and is positive thanks to the 2nd Principle.
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Linear Response

• A variation of the Fα/T ’s produces currents.
In the local equilibrium approximation

~jα =

K
∑

β=1

Lα,β
~∇

(

Fβ

T

)

+ O

{

∣

∣

∣

∣

~∇

(

Fβ

T

)∣

∣

∣

∣

2
}

– The Lα,β’s are d × d matrices called
Onsager cœfficients.

– The gradient of Fα/T is an affinity.
It plays a role similar to forces.

• By 2nd Principle, the positivity of entropy produc-
tion rate implies

L = ((Lα,β))Kα,β=1 ⇒ L + L
t ≥ 0

• Reciprocity Relations: if, under time reversal

symmetry, Xα
TR
→ εαXα then

Lβ,α(parameters) = εα εβ Lt
α,β(TR-parameters) .
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Dissipative & Nondissipative Response

• Dissipation = Loss of Information
Dissipation contributes to entropy production.
Hence

L
(diss) =

1

2

(

L + L
t
)

• The nondissipative part

L
(nondis) =

1

2

(

L − L
t
)

contains quantities exhibiting quantization
at very low temperature !

– The Hall conductivity is nondissipative. It is
quantized a T = 0.

– Quantization of currents in superconductors.

• Warning: In mesoscopic systems, the quantiza-
tion of conductance, thermal conductance, mechan-
ical response, is due to the lack of dissipation.
The system is too small for the local equilibrium
approximation to hold.
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III - Kubo’s Formula
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Mesoscopic Quantum Evolution

• Observable algebra A = AS ⊗AE

(S = system, E = environment).

• Quantum evolution ηt ∈ Aut(A),
t ∈ R 7→ ηt(B) ∈ A continuous ∀B ∈ A.

• Initial state ρ ⊗ ρE

• System evolution

ρ(Φt(A)) = ρt(A) = ρ ⊗ ρE (ηt(A ⊗ 1))

Φt : AS 7→ AS is completely positive,
Φt(1) = 1 and t 7→ Φt(A) ∈ AS is continuous.

• Markov approximation: for δt mesoscopic

Φt+δt ≈ Φt ◦ Φδt ≈ Φδt ◦ Φt

Then
δΦt

δt
= L ◦ Φt = Φt ◦ L

L is the Linbladian.

• Dual evolution Φ
†
t(ρ) = ρ ◦ Φt giving rise to L

†.
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Theorem 1 (Linblad ’76) If AS = B(H) and if
Φt is pointwise norm continuous, there is a bounded
selfadjoint operator H on H and a countable family
of operators Li such that

L(A) = ı[H,A] +
∑

i

(

L
†
iALi −

1

2
{L

†
iLi, A}

)

The first term of L is the coherent part and corre-
sponds to a usual Hamiltonian evolution.
The second one, denoted by D(A) is the dissipative
part and produces damping.

• Stationary states correspond to solutions of
L
†ρ = 0.

• Equilibrium states are stationary states with max-
imum entropy.
They are equivalent to KMS states with respect to
the thermal dynamics which is generated by

Hth = H +

K
∑

α=2

FαX̂α
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Derivation of Greene-Kubo Formulæ

• In many cases there is a position operator acting on
the Hilbert space of states and given by a commuting
family ~R = (R1, · · · , Rd) of selfadjoint operators.
They describe the position of particles in the system
S.

• ~R generates a d-parameter group of automorphisms
~k ∈ R

d 7→ eı~k·~RAe−ı~k·~R of the C∗-algebra AS.
Thus ~∇ = ı[~R, · ] defines a ∗-derivation of AS.

• The mesoscopic velocity of the particles is given by

~V = L(~R) = ~∇H + D(~R)

The first part corresponds to the coherent velocity
the other to the dissipative one.

• The current associated with X̂α is given by

~Jα =
1

2
{~V , X̂α} = ~J

(coh)
α + ~J

(diss)
α
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• At time t = 0, S is at equilibrium

⇒ ρS = ρeq. L
†ρeq. = 0

• At t > 0, forces are switched on

E = (~E1, · · · , ~EK) with ~Eα = ~∇(Fα/T )

so that

LE = L +
∑

α,j

E
j
αL

j
α + O(E2)

• Hence the current becomes

J
E ,i

α = J i
α +

∑

α′,j

E
j
α′{L

j
α′(R

i), X̂α} + O(E2)

• Then, if the forces are constant in time

~jα = lim
t↑∞

∫ t

0

ds

t
ρeq.

(

esLE ~J E
α

)

= lim
ε↓0

∫ ∞

0
εdt e−tερeq.

(

etLE ~J E
α

)

= lim
ε↓0

ρeq.

(

ε

ε − LE

~J E
α

)

• Since L
†ρeq. = 0, ρeq.

(

ε
ε−L

~Jα

)

= 0
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• Thus

~jα = lim
ε↓0

ρeq.

(

ε

ε − LE

~J E
α −

ε

ε − L

~Jα

)

= lim
ε↓0

ρeq.

(

ε

ε − L

∑

α′

~Eα′ · ~Lα′
1

ε − LE

~Jα

)

+ lim
ε↓0

ρeq.

(

ε

ε − L

∑

α′

E j
α′ · {L

j
α′(~R), X̂α}

)

+ O(E2)

• Since ρeq. ◦ L = 0 this gives

ji
α = −

∑

α′,j

E j
α′ ρeq.

(

L
j
α′

1

L
J i

α

)

+ρeq.

(

{Lj
α′(R

i), X̂α}
)

+ O(E2)

• Hence the Onsager cœfficients are

Li,j
α,α′ = −ρeq.

(

L
j
α′

1

L
J i

α + {Lj
α′(R

i), X̂α}

)
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Validity of Greene-Kubo Formulæ

The previous derivation is formal. Various conditions
must be assumed.

• The explicit expressions for L and the ~Lα′’s are
model dependent.

• It is necessary to prove that LE(~R) ∈ AS.

• The inverse of L is not a priori well defined.

However, the dissipative part D is usually responsible
for the existence of the inverse. This is because

Spec(ı[H, ·]) ⊂ ıR

while D gives a non zero real part to eigenvalues.
In the Relaxation Time Approximation,

D(A) = A/τ ⇒ Spec

(

ı[H, ·] +
1

τ

)

⊂ ıR +
1

τ

where τ is the relaxation time.
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IV - Relaxation Time Approximation
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Conclusion

1. Linear response theory requires taking dissipation
into account. Various limits take care of time or
length scales.
These limits usually do not commute !

2. Dissipation is described through the local equilib-
rium approximation (LEA), leading to entropy cre-
ation by constant return to local equilibrium.

3. Thanks to the LEA, the currents becomes smooth
functions of the affinities leading to the transport
or Onsager cœfficients.

4. A quantum treatment of transport cœfficients must
be provided for electrons in a solid.
The Master equation describes the dynamics within
the LEA.

5. The Master Equation leads to the Greene-Kubo for-
mula for Onsager cœfficients.


