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[ - Physics: background

B. Suxrovsk, A. Erros, Electronic properties of doped semiconductors, Springer, Berlin, 1984.
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Semi-conductors

e Semi-conductors like Si, Ga As, have a diamond crystal struc-
ture: atoms are located on a perfectly periodic lattice £ endowed

with a Z%-action

xelL—>x+ae L, ae7%.

e Electron-electron interaction on site induces a large gap at the
Fermi level: without impurities, perfect insulators.

e Light dopping: impurities are randomly distributed, with a
concentration of O(1072).

e At room temperature, impurity electrons jump in the conduc-
tion band leading to "large” conductivity.

e At very low temperature, electrons are confined on the impu-
rity sites: electrons see only a random sub-lattice L, C L.
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[mpurities

e An isolated impurity can be a donor (one electron in excess) or
an acceptor (one missing electron). Acceptors attracts electrons
in excess to create a negative ion, whereas donors gives their
excess electron, leading to a positive ion.

e The semi-conductor is compensate if there are impurities of both
types. In this talk donors will be the majority (n-type), so that some
of donor electrons stay in the donor level, filling the donor band
partially.

e Hach isolated donor site, behaves like a hydrogen atom, with
Bohr radius ag ~ 100 A. The ground state and the first excited
state of this atom are —Ey ~ —10meV and —Ey/4 below the
conduction band.
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e At temperature low enough (T < 10 K), all donor electrons are
confined in the ground state.

e If two impurities come close, they behave like a molecule Hj,
and the groundstate splits into a pair of levels with energies way
away from the main impurity band (level repulsion).

e The positions of the impurity sites are random, the positions of impu-
rities occupied by a donor electron are random, the Coulomb potential
produced by various ions is also random.
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Mott's variable range hopping
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e Strongly localized regime, dimension d

e Low electronic DOS, Low temperature

11
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e Absorption-emission of a phonon of energy ¢

Prob o ¢~ ¢/kBT

e Tunnelling probability at distance r

Prob o« e~/

e Density of state at Fermi level ny, (level splitting in impurity clusters)

enFrd > 1

12
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e Optimizing, the conductivity satisfies

1/d+1
o oc e~ To/T)

e Optimal energy ¢opt ~ T/(@+) > T

e Optimal distance 7oy ~ 1/ TY@+1) 5 &

Mott’s law

13
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I - Electronic States & Observables
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Electronic states

o Lets = (sx)yes, sx €10, 1} be a family of random variables such
that sy = 1 if and only if an electronic state is available at x.

e If the level repulsion is ignored, s coincides with the distri-
bution of impurities, namely the sy are i.i.d.’s, with common
distribution

Prob{sy =1} =c¢ Prob{sy =0} =1-c¢

e At each site the electron energy is a random variable €, uni-
formly distributed in the impurity band

W W
A:[EO_?/EO_F?]



Santiago November 23-28, 2009 17

e The set () of families (s, €) with s = (sx)cy and € = (GX)xEL,sx:L
1S compact.

e Due to level repulsion electronic states sy = s, = 1 are cut-off if
lex — €yllx — yl is too small.

Theorem 1 There is an R%-invariant ergodic probability distribution P
on Q) such that the condition sy = sy = 1 implies

l€x — €yl = Clx — y| e~ ul/e
P-almost surely and the density of states is almost constant on A,

(A result by Dobrushin and Lanford is used here)
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Fermion Algebra

Electrons are described by fermion creation-annihilation operators
Ay, aI located ontheset L, ={x e L; s, =1, € A}

axay + ayay = 0, (ay)" = a;, axa; + a;ax = Oxy -

For A C L a finite subset, let A (w) be the C*-algebra generated
by {ax,a;t; xe AN L,} and

U () = | ] Up(w), Ww) = A (w).

Each (w) is Zy-graded with
o € Aut(W(w)), olay) = —ay, Vxe L,.
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Covariance

The set T, = Q = Z% is a locally compact groupoid

1. Range and Source maps:
r:(w,a)el,— weQ, s:(w,a)ely > 17%0 € Q)

2. Product: (w,a) o (t™%w, b) = (w,a + b)
3. Inverse: (w,a)"! = (7%, —a).

4. Product topology.

Thereis aI'y-action on the field U = (A(w)),,c0 by *-isomorphisms,

MNw,a) - Ar™"w) - Ww), Nw,a)(dx) = Ax+a, xelLy—a.
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Theorem 2 U is endowed with a structure of continuous I',-covariant
field of C™-algebras with reference continuous sections given by polyno-
mials in the creation-annihilation operators with coefficients in C(CJ).

A field 0 = (0y)eq of *-homorphisms from U into itself is

e Continuous: if it transforms continuous sections into continu-
ous sections

e Covariant: if

Nw,a) © Or-ay = Ow © Nw,a)
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Gibbs Dynamics

The electron number operator and the Hamiltonian are

Np(w) = Z a;ax, H(w) = Z exaiax.

xELwﬂA XELa)ﬂA
For A € A(w) the Gibbs dynamics is defined by

a(w) (A) = lim A (@)=UNp (@) g o=t HA(w)=uNA(@))
t AL

where u is the chemical potential.

The field oy = @) of =-automorphism, is continuous and
. ‘o " o .
covariant. The map t — ay is norm pointwise continuous.



Equilibrium

The Gibbs construction for thermal equilibrium leads to a unique
field of B-KMS states (pw), ey Where B = 1/kT is the inverse
temperature. It is given P-almost surely by

1
1 + ePlex—1)

Pw(ax) = Pw(agt) =0, Pw(ajﬂx) =

pw(AB) = po(A)py(B), if A€Wy, BeAy and ANA =0

Then p satisfies the KMS-condition

Pu(AB) = po o }(B)A)
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GNS-representation

Using the GNS-construction, leads to

e A continuous field of graded Hilbert spaces H = (Hy),ecq,
together with a unitary representation of I',

e A continuous field of unit vectors & = ({w)eO

e A (strongly) continuous covariant field of representations =
(Ttw) weq of Win H, for which ¢ is cyclic

e A (strong-resolvent) continuous covariant field of selfadjoint op-
erators F = (Fy),cq implementing the dynamics a and defin-
ing the Tomita-Takesaki modular operators

e A continuous covariant field of positive Araki-Connes cones Hy =
(Hw,+), e Which are self-dual, homogeneous and oriented,

with & € 7'{4-
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[II - Dissipative Dynamucs

24



Dissipative Dynamics

A dissipative dynamics is described by a continuous covariant field
of Markov semi-groups on . Its generator will be given through
a continuous covariant family of (infinite dimensional, unbounded)
Lindblad operators.

The first dynamics is the one that describes the return to equilib-
rium, and should satisty the detailed balance condition.

The other ones describes the electron dynamics when submitted
to an external electric field putting the system slightly out of equi-
librium in order to justify the linear response theory and to give a
rigorous proof of the Green-Kubo's formulae.
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The generator will always have the form

Yo(A) = /I\iTHL”[HA(w)’A] + Dw(A),

with

2ud) = ¥ (@) Ly @), A} - ()L @) ALy )

y€d

e here A € U, (w) and d 4 denotes the Zy-degree of A

e the set J is countable and y € J is called a jump
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The Kinetic Part

Mott’s argument can be modeled with

e Jumps are between two impurity sites x — y on Ly,.

e then

Lx_)y(a)) = erﬁy(a)) El; Ax

e The jump rate is given by

e~ lx=yl/ 1
Z 1 -+ eﬁ(ey_GX)

rx_)y(a)) — FO Sx Sy

e The contribution of these jumps to the sum defining D is
denoted by D%

27
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Facts:

e The field of Lindblad operator defined by ®,, is well defined
on U, generates a continuous covariant field of Markov semi-
groups

o [t models correctly the main argument of Mott concerning the
jump rates of electrons between impurities

o D" conserves the electrons number, so that it admits several in-
equivalent invariant states obtained by changing the chemical
potential

e In particular it not sufficient to describe the return to equilib-
rium.
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The Thermal Bath

To force the return to equilibrium, coupling the system to a ther-
mal bath is required to break the conservation of electron number

e Due to electron-phonon collisions on site, electrons thermalizes
with the crystal (the electron energy is not conserved)

e During the collision process, electrons can come in-or-out the
energy band A

e Electron can be expelled from or added to the region in which the
system is described
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e New jumps are added of the form x — x4 or x4 — x, with

x € Ly Xx € L

The sites xx represent the position where the electron-phonon
interaction takes place. It can be anywhere in the crystal, even
out of impurity sites.

e then

Ly, (@) = ATy, (@) ax Ly, —x(@) = \Tx,—x(w) al

e The jump rates are given by

e —xxl/& 1 r (@) =T e —xxl/& 1
Z* 1 4 e,B([J—Gx) 7 Xk —X ) = * Sx Z* 1 + eﬁ(ex—‘u)

1_‘x—>x,.((a)) =TIk sx
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The final model is described by

Qu(A) = jl\iTniz[HA(a)),A] + DA+ DE(A), AU (w)

with D* denoting the contribution of the thermal bath

Theorem 3 (i)- The field of Lindblad operators L, defines a continuous
covariant field of Markov semi-groups on .

(i1)- This field admits p = (pw)eq S a unique invariant state and the
return to equilibrium occurs exponentially fast in time.

(111)- It implements a completely positive semi-group of contraction in
the GNS representation with a generator having a spectral gap bounded
form below by I'x, uniformly in w € Q.
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[V - Conductivity

32
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Curtents

Formally, the current is defined as the product of the charge ot
the charge carriers by the time derivative of the position operator R,
namely

] = —e ¥4(R)

Because of the infinite volume limit, such a definition leads to
some delicate problems. However the result of this analysis is
the following: there is a current-density operator defined by (for
electrons)

Je(@) == Y, =) {Txoy(@) nx (1= 1) = Tysa(@) (1 = )y
yeLo

t t

where 1y = a,ay, (1 —ny) =axa,
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Remark: The contribution of the thermal bath to the current van-
ishes in the infinite volume limit. Only the kinetic part of the
dissipation participates to the current. This is because the cur-
rent is produced by the electron-phonon interaction, pushing the
electron out of impurity sites.

Theorem 4 (i)- The current-density defines a covariant continuous field
of operators.

(i1)- At equilibrium the thermal average of the current vanishes

Consequently to produce a nontrivial macroscopic current, the system
must be put out of equilibrium.
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Non Equilibrium Dissipative Dynamics

Only the effect of a uniform static electric field will be investigated
here, namely Vu = —e&. On a mesoscopic length scale the chemical
potential should be replaced by

p— p—es- (x = xp)

where xg will be chosen in each term as a natural origin. Such a
change affects

1. The coherent dynamics, namely the Hamiltonian

2. The kinetic part of the dissipation namely
€Ex—€y — €x—€y+eS-(x—y)

3. The thermal part of the dissipation also
Ex— U — €x—Uu+eS-(x—xx)
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Let &% denotes the corresponding Linblad generator

Theorem 5 (1)- £¢ is well defined on U, (w) and generates a continuous
covariant field of Markov semi-groups on .

(i1)- This semigroup admits a continuous covariant field of stationary
state p°®.

(iii)- the averaged current density defines a function j¢, € R? such that
0, (Jx(@)) = J.

(iv)- The disorder average of this local current defines the experimental
current-density j.,,(&) which is smooth w.r.t. & near & = 0.

_xa)'

In other words, the linear response theory is valid within this model !
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The Kubo Formula

As a result

j(E) = 08 + O(E?)

where o is the conductivity tensor which is given by

o=p [ aP@ Y (@i o) Kubol
xel

e The inner product is defined by the GNS representation of the
equilibrium state

e The formula restricts to the sub-Hilbert space K, contained in
{£w}T and spanned by the {1y, - - -1y, & ; Xj € Lo}

e D, is the positive operator induced on K, by .
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Estimates

e The operator D, satisties

e 0 more complicated upper bound is available

e Various positivity properties implies

o< Ifi* fQ AP(w) ZL Je(@)lJo(@))

e The r.h.s. can be computed explicitly in terms of the transition
rates 'y, and lead to expressions similar to the ones obtained
in the Mott argument.
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e A lower bound is in principle possible.

e Consequence: there are constant C > 0, T > 0 such that

T 1/d+1
o < Cexp {(?O) } [Mott’s law]

It is expected that there are constant C— > 0, T{ > 0, @ < 1 such

that )
T a/d+1
o> C_exp {(Tl) }
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V - To conclude
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A long arduous way

e Describing electrons in a semi-conductor at very low temper-
ature requires to use a random environment provided by the
sub-lattice of impurities.

e [In Mott’s argument, level repulsion for impurities too close
from each other is an essential ingredient and lead to the defi-
nition of a probability measure for the electronic states. An old
argument by Dobrushin is used here.

e A formalism of second quantization is required to take into
account statistical correlations. It leads to a covariant field of
C*-algebras. Asaconsequence the mathematics becomes heavy
and painful.



Santiago November 23-28, 2009 42

e However, using the full strength of Tomita-Takesaki theory,
the use of the Araki-Connes positive cones, gives the right
mathematical framework through which the Mott model can

be described.

e The Mott model is given in terms of a Lindblad operator gen-
erating a Markov semi-group.

e Then the formalism behind the Non-equilibrium Statistical Me-
chanics, leads (i) to distinguish various time scales, length
scales, energy scales (ii) to define the notion of local equilibrium
(ii1) to a logical way to detine mesoscopic currents.

e [t becomes possible to prove rigorously the validity of the linear
response theory and the Kubo formula.

e Thanks to the positivity properties emphasized by the formal-
ism, it is possible to estimate rigorously the conductivity in
terms of the temperature leading to Mott’s law.



Thanks for your patience




