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I - Physics: background

B. S, A. E, Electronic properties of doped semiconductors, Springer, Berlin, 1984.
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Semi-conductors
• Semi-conductors like Si,Ga As, have a diamond crystal struc-

ture: atoms are located on a perfectly periodic lattice L endowed
with a Zd-action

x ∈ L 7→ x + a ∈ L , a ∈ Zd .

• Electron-electron interaction on site induces a large gap at the
Fermi level: without impurities, perfect insulators.

• Light dopping: impurities are randomly distributed, with a
concentration of O(10−9).

• At room temperature, impurity electrons jump in the conduc-
tion band leading to "large" conductivity.

• At very low temperature, electrons are confined on the impu-
rity sites: electrons see only a random sub-lattice Lω ⊂ L.
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- Bands and gaps in semi-conductors -
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Impurities

• An isolated impurity can be a donor (one electron in excess) or
an acceptor (one missing electron). Acceptors attracts electrons
in excess to create a negative ion, whereas donors gives their
excess electron, leading to a positive ion.

• The semi-conductor is compensate if there are impurities of both
types. In this talk donors will be the majority (n-type), so that some
of donor electrons stay in the donor level, filling the donor band
partially.

• Each isolated donor site, behaves like a hydrogen atom, with
Bohr radius aB ' 100 Å. The ground state and the first excited
state of this atom are −E0 ' −10meV and −E0/4 below the
conduction band.
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- Impurity levels -
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• At temperature low enough (T ≤ 10 K), all donor electrons are
confined in the ground state.

• If two impurities come close, they behave like a molecule H2,
and the groundstate splits into a pair of levels with energies way
away from the main impurity band (level repulsion).

• The positions of the impurity sites are random, the positions of impu-
rities occupied by a donor electron are random, the Coulomb potential
produced by various ions is also random.
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- Two-impurity levels -
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Mott’s variable range hopping

• Strongly localized regime, dimension d

• Low electronic DOS, Low temperature



Santiago November 23-28, 2009 12

• Absorption-emission of a phonon of energy ε

Prob ∝ e−ε/kBT

• Tunnelling probability at distance r

Prob ∝ e−r/ξ

• Density of state at Fermi level nF, (level splitting in impurity clusters)

εnF rd
≥ 1
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• Optimizing, the conductivity satisfies

σ ∝ e−(T0/T)1/d+1
Mott’s law

• Optimal energy εopt ∼ Td/(d+1)
� T

• Optimal distance ropt ∼ 1/T1/(d+1)
� ξ
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- Typical length scales for electron hopping -
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II - Electronic States & Observables
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Electronic states

• Let s = (sx)x∈L , sx ∈ {0, 1} be a family of random variables such
that sx = 1 if and only if an electronic state is available at x.

• If the level repulsion is ignored, s coincides with the distri-
bution of impurities, namely the sx are i.i.d.’s, with common
distribution

Prob{sx = 1} = c Prob{sx = 0} = 1 − c

• At each site the electron energy is a random variable εx uni-
formly distributed in the impurity band

∆ = [E0 −
W
2
,E0 +

W
2

]
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• The setΩ of families (s, ε) with s = (sx)x∈L and ε = (εx)x∈L,sx=1,
is compact.

• Due to level repulsion electronic states sx = sy = 1 are cut-off if
|εx − εy||x − y| is too small.

Theorem 1 There is anRd-invariant ergodic probability distributionP
on Ω such that the condition sx = sy = 1 implies

|εx − εy| ≥ C|x − y|−de−|x−y|/ξ

P-almost surely and the density of states is almost constant on ∆,

(A result by Dobrushin and Lanford is used here)
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Fermion Algebra
Electrons are described by fermion creation-annihilation operators
ax, a†x located on the set Lω = {x ∈ L ; sx = 1, εx ∈ ∆}

axay + ayax = 0 , (ax)∗ = a†x , axa†y + a†yax = δxy .

For Λ ⊂ L a finite subset, let AΛ(ω) be the C∗-algebra generated
by {ax, a†x ; x ∈ Λ ∩ Lω} and

Aloc(ω) =
⋃
Λ finite

AΛ(ω) , A(ω) = Aloc(ω) .

Each A(ω) is Z2-graded with

σ ∈ Aut(A(ω)) , σ(ax) = −ax , ∀x ∈ Lω .
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Covariance
The set ΓΩ = Ω o Zd is a locally compact groupoid

1. Range and Source maps:
r : (ω, a) ∈ ΓΩ 7→ ω ∈ Ω , s : (ω, a) ∈ ΓΩ 7→ −aω ∈ Ω

2. Product: (ω, a) ◦ (−aω, b) = (ω, a + b)

3. Inverse: (ω, a)−1 = (−aω,−a).

4. Product topology.

There is a ΓΩ-action on the fieldA = (A(ω))ω∈Ω by ∗-isomorphisms,

η(ω,a) : A(−aω) 7→ A(ω) , η(ω,a)(ax) = ax+a , x ∈ Lω − a .
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Theorem 2 A is endowed with a structure of continuous ΓΩ-covariant
field of C∗-algebras with reference continuous sections given by polyno-
mials in the creation-annihilation operators with coefficients in C(Ω).

A field θ = (θω)ω∈Ω of ∗-homorphisms from A into itself is

• Continuous: if it transforms continuous sections into continu-
ous sections

• Covariant: if

η(ω,a) ◦ θ−aω = θω ◦ η(ω,a)
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Gibbs Dynamics
The electron number operator and the Hamiltonian are

NΛ(ω) =
∑

x∈Lω∩Λ

a†x ax , HΛ(ω) =
∑

x∈Lω∩Λ

εx a†x ax .

For A ∈ A(ω) the Gibbs dynamics is defined by

α(ω)
t (A) = lim

Λ↑L
eıt(HΛ(ω)−µNΛ(ω)) A e−ıt(HΛ(ω)−µNΛ(ω)) .

where µ is the chemical potential.

The field αt =
(
α(ω)

t

)
ω∈Ω

of ∗-automorphism, is continuous and
covariant. The map t 7→ αt is norm pointwise continuous.
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Equilibrium
The Gibbs construction for thermal equilibrium leads to a unique
field of β-KMS states

(
ρω

)
ω∈Ω, where β = 1/kBT is the inverse

temperature. It is given P-almost surely by

ρω(ax) = ρω(a†x) = 0 , ρω(a†xax) =
1

1 + eβ(εx−µ)

ρω(AB) = ρω(A)ρω(B) , if A ∈ AΛ , B ∈ AΛ′ and Λ ∩Λ′ = ∅

Then ρ satisfies the KMS-condition

ρω(AB) = ρω
(
α(ω)
−ıβ

(B)A
)
.
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GNS-representation
Using the GNS-construction, leads to

• A continuous field of graded Hilbert spaces H = (Hω)ω∈Ω,
together with a unitary representation of ΓΩ
• A continuous field of unit vectors ξ = (ξω)ω∈Ω
• A (strongly) continuous covariant field of representations π =

(πω)ω∈Ω of A inH , for which ξ is cyclic

• A (strong-resolvent) continuous covariant field of selfadjoint op-
erators F = (Fω)ω∈Ω implementing the dynamics α and defin-
ing the Tomita-Takesaki modular operators

• A continuous covariant field of positive Araki-Connes conesH+ =(
Hω,+

)
ω∈Ω, which are self-dual, homogeneous and oriented,

with ξ ∈ H+
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III - Dissipative Dynamics
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Dissipative Dynamics
A dissipative dynamics is described by a continuous covariant field
of Markov semi-groups on A. Its generator will be given through
a continuous covariant family of (infinite dimensional, unbounded)
Lindblad operators.

The first dynamics is the one that describes the return to equilib-
rium, and should satisfy the detailed balance condition.

The other ones describes the electron dynamics when submitted
to an external electric field putting the system slightly out of equi-
librium in order to justify the linear response theory and to give a
rigorous proof of the Green-Kubo’s formulae.
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The generator will always have the form

Lω(A) = lim
Λ↑L
ı[HΛ(ω),A] +Dω(A) ,

with

Dω(A) =
∑
γ∈J

(1
2

{
Lγ(ω)∗Lγ(ω),A

}
− (−1)dLγdALγ(ω)∗ALγ(ω)

)

• here A ∈ Aloc(ω) and dA denotes the Z2-degree of A

• the set J is countable and γ ∈ J is called a jump
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The Kinetic Part
Mott’s argument can be modeled with

• Jumps are between two impurity sites x→ y on Lω.

• then

Lx→y(ω) =
√
Γx→y(ω) a†y ax

• The jump rate is given by

Γx→y(ω) = Γ0 sx sy
e−|x−y|/ξ

Z
1

1 + eβ(εy−εx)

• The contribution of these jumps to the sum defining D is
denoted by Dkin

ω
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Facts:

• The field of Lindblad operator defined by Dkin is well defined
on A, generates a continuous covariant field of Markov semi-
groups

• It models correctly the main argument of Mott concerning the
jump rates of electrons between impurities

•Dkin conserves the electrons number, so that it admits several in-
equivalent invariant states obtained by changing the chemical
potential

• In particular it not sufficient to describe the return to equilib-
rium.
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The Thermal Bath
To force the return to equilibrium, coupling the system to a ther-
mal bath is required to break the conservation of electron number

• Due to electron-phonon collisions on site, electrons thermalizes
with the crystal (the electron energy is not conserved)

• During the collision process, electrons can come in-or-out the
energy band ∆

• Electron can be expelled from or added to the region in which the
system is described
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•New jumps are added of the form x→ x? or x?→ x, with

x ∈ Lω x? ∈ L

The sites x? represent the position where the electron-phonon
interaction takes place. It can be anywhere in the crystal, even
out of impurity sites.

• then

Lx→x?(ω) =
√
Γx→x?(ω) ax Lx?→x(ω) =

√
Γx?→x(ω) a†x

• The jump rates are given by

Γx→x?(ω) = Γ? sx
e−|x−x?|/ξ

Z?
1

1 + eβ(µ−εx)
, Γx?→x(ω) = Γ? sx

e−|x−x?|/ξ

Z?
1

1 + eβ(εx−µ)
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The final model is described by

Lω(A) = lim
Λ↑L
ı[HΛ(ω),A] +Dkin

ω(A) +D?ω(A) , A ∈ Aloc(ω)

with D? denoting the contribution of the thermal bath

Theorem 3 (i)- The field of Lindblad operators Lω defines a continuous
covariant field of Markov semi-groups on A.

(ii)- This field admits ρ = (ρω)ω∈Ω as a unique invariant state and the
return to equilibrium occurs exponentially fast in time.

(iii)- It implements a completely positive semi-group of contraction in
the GNS representation with a generator having a spectral gap bounded
form below by Γ?, uniformly in ω ∈ Ω.
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IV - Conductivity
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Currents
Formally, the current is defined as the product of the charge of
the charge carriers by the time derivative of the position operator R,
namely

J = −e Lω(R)

Because of the infinite volume limit, such a definition leads to
some delicate problems. However the result of this analysis is
the following: there is a current-density operator defined by (for
electrons)

Jx(ω) =
−e
2

∑
y∈Lω

(y−x)
{
Γx→y(ω) nx (1 − ny) − Γy→x(ω) (1 − nx) ny

}
where nx = a†x ax , (1 − nx) = ax a†x



Santiago November 23-28, 2009 34

Remark: The contribution of the thermal bath to the current van-
ishes in the infinite volume limit. Only the kinetic part of the
dissipation participates to the current. This is because the cur-
rent is produced by the electron-phonon interaction, pushing the
electron out of impurity sites.

Theorem 4 (i)- The current-density defines a covariant continuous field
of operators.

(ii)- At equilibrium the thermal average of the current vanishes

Consequently to produce a nontrivial macroscopic current, the system
must be put out of equilibrium.
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Non Equilibrium Dissipative Dynamics
Only the effect of a uniform static electric field will be investigated
here, namely ∇µ = −eE. On a mesoscopic length scale the chemical
potential should be replaced by

µ→ µ − eE · (x − x0)

where x0 will be chosen in each term as a natural origin. Such a
change affects

1. The coherent dynamics, namely the Hamiltonian

2. The kinetic part of the dissipation namely
εx − εy → εx − εy + eE · (x − y)

3. The thermal part of the dissipation also
εx − µ → εx − µ + eE · (x − x?)
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Let LEω denotes the corresponding Linblad generator

Theorem 5 (i)-LEω is well defined onAloc(ω) and generates a continuous
covariant field of Markov semi-groups on A.

(ii)- This semigroup admits a continuous covariant field of stationary
state ρE.

(iii)- the averaged current density defines a function jEω ∈ R
d such that

ρEω(Jx(ω)) = jE
−xω

.

(iv)- The disorder average of this local current defines the experimental
current-density jexp(E) which is smooth w.r.t. E near E = 0.

In other words, the linear response theory is valid within this model !
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The Kubo Formula
As a result

jexp(E) = σE +O(E2)

where σ is the conductivity tensor which is given by

σ = β

∫
Ω

dP(ω)
∑
x∈L

〈Jx(ω)|
1

Dω
J0(ω)〉 [Kubo]

• The inner product is defined by the GNS representation of the
equilibrium state

• The formula restricts to the sub-Hilbert spaceKω contained in
{ξω}⊥ and spanned by the {nx1 · · · nxkξω ; xi ∈ Lω}.

•Dω is the positive operator induced onKω by D.
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Estimates

• The operator Dω satisfies

Dω ≥ Γ? 1Kω

• a more complicated upper bound is available

• Various positivity properties implies

σ ≤
β

Γ?

∫
Ω

dP(ω)
∑

x∈Lω

〈Jx(ω)|J0(ω)〉

• The r.h.s. can be computed explicitly in terms of the transition
rates Γx→y and lead to expressions similar to the ones obtained
in the Mott argument.
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• A lower bound is in principle possible.

• Consequence: there are constant C > 0, T0 > 0 such that

σ ≤ C exp


(
T0
T

)1/d+1
 [Mott’s law]

It is expected that there are constant C− > 0, T1 > 0, α ≤ 1 such
that

σ ≥ C− exp


(
T1
T

)α/d+1

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V - To conclude
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A long arduous way

• Describing electrons in a semi-conductor at very low temper-
ature requires to use a random environment provided by the
sub-lattice of impurities.

• In Mott’s argument, level repulsion for impurities too close
from each other is an essential ingredient and lead to the defi-
nition of a probability measure for the electronic states. An old
argument by Dobrushin is used here.

• A formalism of second quantization is required to take into
account statistical correlations. It leads to a covariant field of
C∗-algebras. As a consequence the mathematics becomes heavy
and painful.



Santiago November 23-28, 2009 42

•However, using the full strength of Tomita-Takesaki theory,
the use of the Araki-Connes positive cones, gives the right
mathematical framework through which the Mott model can
be described.

• The Mott model is given in terms of a Lindblad operator gen-
erating a Markov semi-group.

• Then the formalism behind the Non-equilibrium Statistical Me-
chanics, leads (i) to distinguish various time scales, length
scales, energy scales (ii) to define the notion of local equilibrium
(iii) to a logical way to define mesoscopic currents.

• It becomes possible to prove rigorously the validity of the linear
response theory and the Kubo formula.

• Thanks to the positivity properties emphasized by the formal-
ism, it is possible to estimate rigorously the conductivity in
terms of the temperature leading to Mott’s law.
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Thanks for your patience !


