A Toy Model for Viscosity

Jean BELLISSARD

Westfälische Wilhelms-Universität, Münster Department of Mathematics

Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics e-mail: jeanbel@math.gatech.edu

Main References

C. A. ANGELL Formation of Glasses from Liquids and Biopolymers, Science, **267**, No. 5206 (Mar. 31, 1995), pp. 1924-1935.

T. EGAMI, *Elementary Excitation and Energy Landscape in Simple Liquids*, Mod. Phys. Lett. B, **28**, (2014), 1430006:1-19.

J. BELLISSARD Delone Sets and Material Science: a Program, in Mathematics of Aperiodic Order, J. Kellendonk, D. Lenz, J. Savinien, Eds., "Progress in Mathematics" series, 309, Birkhäuser, pp. 405-428, (2015).

Content

Warning *This talk is reporting on a work in progress.*

- 1. Motivation
- 2. Anankeons and Phonons
- 3. Constructing the Model
- 4. Computing Maxwell's Time
- 5. Conclusion

I - Motivation

C. A. Angell, "Formation of Glasses from Liquids and Biopolymers", *Science*, **267**, No. 5206 (Mar. 31, 1995), pp. 1924-1935.

Comparison between the Maxwell relaxation time τ_M and the relaxation time τ_{LC} for local configurations.

T. Iwashita, D. M. Nicholson, T. Egami, *Phys. Rev. Lett.*, **110**, 205504-1:5, (2013).

Specific Heat for Fragile Glasses

M. H. Cohen, D. Turnbull, J. *Chem. Phys.*, **31**, 1164 (1959).

FIG. 4. Smoothed values of specific heats, C_p , of a Au_{0.77}Ge_{0.136}Si_{0.094}

Specific Heat for Fragile Glasses:

contributions of *phonons* & *anankeons*

- At temperature $T > T_{co}$ larger than the *crossover* temperature, only the *anankeons* contribute to the specific heat.
- If $T_g < T < T_{co}$ phonons and anankeon *interact*.
- Question: *How* ?

II - Anankeons and Phonons

The set *L* of position of atomic nuclei is a *Delone set*, namely

- The *minimum distance* between atoms is $2r_0 > 0$.
- The *maximum* diameter of a *hole* without atoms is $2r_1 < \infty$.

• Let \mathcal{L} be Delone. If $x \in \mathcal{L}$ its *Voronoi cell* is defined by

$$V(x) = \{ y \in \mathbb{R}^d ; |y - x| < |y - x'| \,\forall x' \in \mathcal{L} , \, x' \neq x \}$$

V(x) is open. Its closure $T(x) = \overline{V(x)}$ is called the *Voronoi tile* of x

• Let \mathcal{L} be Delone. If $x \in \mathcal{L}$ its *Voronoi cell* is defined by

$$V(x) = \{ y \in \mathbb{R}^d ; |y - x| < |y - x'| \, \forall x' \in \mathcal{L} , \, x' \neq x \}$$

V(x) is open. Its closure $T(x) = \overline{V(x)}$ is called the *Voronoi tile* of x

• Let \mathcal{L} be Delone. If $x \in \mathcal{L}$ its *Voronoi cell* is defined by

$$V(x) = \{ y \in \mathbb{R}^d ; |y - x| < |y - x'| \ \forall x' \in \mathcal{L} , x' \neq x \}$$

V(x) is open. Its closure $T(x) = \overline{V(x)}$ is called the *Voronoi tile* of x

Proposition: If \mathcal{L} is Delone, the Voronoi tile of any $x \in \mathcal{L}$ is a convex polytope

• Let \mathcal{L} be Delone. If $x \in \mathcal{L}$ its *Voronoi cell* is defined by

$$V(x) = \{ y \in \mathbb{R}^d ; |y - x| < |y - x'| \ \forall x' \in \mathcal{L} , x' \neq x \}$$

V(x) is open. Its closure $T(x) = \overline{V(x)}$ is called the *Voronoi tile* of x

Proposition: If \mathcal{L} is Delone, the Voronoi tile of any $x \in \mathcal{L}$ is a convex polytope containing the closed ball $\overline{B}(x;r_0)$ and contained in the ball $\overline{B}(x;r_1)$

Proposition: *the Voronoi tiles of a Delone set touch face-to-face*

Proposition: *the Voronoi tiles of a Delone set touch face-to-face*

Two atoms are *nearest neighbors* if their Voronoi tiles touch along a face of *maximal dimension*.

Proposition: *the Voronoi tiles of a Delone set touch face-to-face*

Two atoms are *nearest neighbors* if their Voronoi tiles touch along a face of *maximal dimension*.

An *edge* is a pair of nearest neighbors. *E* denotes the set of edges.

Proposition: *the Voronoi tiles of a Delone set touch face-to-face*

Two atoms are *nearest neighbors* if their Voronoi tiles touch along a face of *maximal dimension*.

An *edge* is a pair of nearest neighbors. E denotes the set of edges.

The family $\mathcal{G} = (\mathcal{L}, \mathcal{E})$ is the Delone graph.

Fig. 1. Diagram of neighbourhood polyhedra, geometrical and physical, for two-dimensional arrays of points. (a) High co-ordinated; -, physical neighbours; (b) low co-ordinated;, geometrical neighbours

taken from J. D. BERNAL, Nature, 183, 141-147, (1959)

Modulo graph isomorphism, the Delone graph encodes the local topology

Atomic Movements

(edges in red)

(edges in red and black)

small, deterministic, conserves local topology

large, unpredictable, quick jump, change the local topology

III - Constructing the Model

Harmonic Motion

- The vibration of an atom around its equilibrium position is assumed to be *harmonic*.
- To simplify further, the oscillator will be supposed to be *one-dimensional*.
- The frequency ω of the harmonic oscillator is defined by the *curvature* of the potential energy near the equilibrium position.
- Let *q* denotes the position of the harmonic particle *relative* to the equilibrium position. Then *X* will denote the *phase space vector*

$$X = \begin{bmatrix} \omega q \\ \cdot \\ q \end{bmatrix} = \begin{bmatrix} u \\ v \end{bmatrix}$$

Harmonic Motion

• Equation of motion

$$m\frac{d^2q}{dt^2}+kq=0\,,\qquad\qquad\omega=\sqrt{\frac{k}{m}}\,.$$

• Equivalently

$$\frac{dX}{dt} = \omega JX, \qquad \qquad J = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

• Or else

$$X(t) = e^{\omega t J} X(0) = \begin{bmatrix} \cos \omega t & \sin \omega t \\ -\sin \omega t & \cos \omega t \end{bmatrix} \begin{bmatrix} u(0) \\ v(0) \end{bmatrix}$$

Anankeon Interaction

- At *random times* $\cdots < \tau_{n-1} < \tau_n < \tau_{n+1} < \cdots$, the atom *jumps quickly* from one potential well to another one.
- Each jump will be considered as *instantaneous*.
- In the new potential well, the *curvature is different*, hence, after the time *τ_n*, the new frequency is *ω_n*.
- After the jump, the new relative *phase space position is changed* by a vector ξ_n , namely

 $X(\tau_n + 0) = X(\tau_n - 0) + \xi_n$

Randomness: Assumptions

• The random times are *Poissonian*, namely the variables $\tau_{n+1} - \tau_n$ are *i.i.d*, with exponential distribution and average

$$\mathbb{E}\{\tau_{n+1} - \tau_n\} = \langle \tau_{n+1} - \tau_n \rangle = \tau_{\scriptscriptstyle LC}$$

- The frequencies ω_n are also *random* and *i.i.d.*, such that $\mathbb{E}(\omega_n) = \omega$, $\mathbb{E}\{(\omega_n - \omega)^2\} = \sigma^2$
- The phase-space initial positions ξ_n are also *random* and *i.i.d*, with *Gibbs distribution*

$$\operatorname{Prob}\{\xi_n \in \Lambda\} = \int_{\Lambda} e^{-\beta m |\xi|^2/2} \frac{d^2 \xi}{2\pi k_{\mathrm{B}} T/m}, \qquad \beta = \frac{1}{k_{\mathrm{B}} T}$$

Correlation Function

• The goal is to compute the *stress-stress correlation function*. It is sufficient to compute

 $C_f(t) = \mathbb{E}\{f(X(t))\overline{f(X(0))}\}$

for any complex valued function f defined on the phase space and vanishing at infinity.

• The *viscosity* is given by the Green-Kubo formula

$$\eta = \frac{V}{k_{\rm B}T} \int_0^\infty C_f(t) \, dt$$

for a suitable f

Correlation Function

• Then, the goal is to show that

$$C_f(t) \stackrel{t\uparrow\infty}{\sim} e^{-t/\tau_M}$$

• Hence $\eta \sim \tau_M$, which allows to interpret τ_M as the *Maxwell relax*-*ation time*.

Correlation Function

• The *dissipative evolution* operator *P*_t acting on the *set of functions f* is defined by

 $P_t f(x) = \mathbb{E}\{f(X(t)) | X(0) = x\}$

• Then

$$C_f(t) = \int_{\mathbb{R}^2} \overline{f(x)} P_t f(x) d^2 x$$

IV - Computing Maxwell's Time

Laplace Transform

• The *Laplace transform* of **C**(*t*) is defined by

$$\mathfrak{L}C(\zeta) = \int_0^\infty e^{-t\zeta} C(t) dt$$

• The function C admits the asymptotic $C(t) \stackrel{t\uparrow\infty}{\sim} e^{-t/\tau_M}$

if and only if

 $\mathfrak{L}(\zeta)$ is *holomorphic w.r.t.* ζ in the domain $\mathfrak{R}\zeta > -1/\tau_M$

• In practice, $-1/\tau_{M}$ is the *singularity nearest to the origin* in the complex plane.

Dual Actions

• **Phase Space Rotation:** If *f* is a function, and x = (u, v) a point in the phase space, then

$$f\left(e^{\omega t J}x\right) = \left(e^{-\omega t \mathbb{J}}f\right)(x), \qquad -\mathbb{J} = v\partial_u - u\partial_v$$

Hence **J** is the *phase-space angular momentum*.

• **Phase Space Translation:** Similarly, if $\xi = (\xi^1, \xi^2)$ is a phase-space vector,

$$f(x + \xi) = \left(e^{\xi \cdot \nabla} f\right)(x), \qquad \xi \cdot \nabla = \xi^1 \partial_u + \xi^2 \partial_v$$

Hence $\xi \cdot \nabla$ is the *phase-space momentum* along the vector ξ .

- Let X(t) the stochastic value of the *phase-space position* at time t, with initial condition X(0) = x.
- If *n* anankeons occurred during this time then $\tau_n \le t < \tau_{n+1}$, with $\tau_0 = 0$, so that

$$f(X(t)) = \left\{ \prod_{j=1}^{n} \left(e^{-(\tau_j - \tau_{j-1})\omega_{j-1} \mathbb{J}} e^{\xi_j \cdot \nabla} \right) e^{-(t - \tau_n)\omega_n \mathbb{J}} f \right\} (x)$$

• In this expression the the $\tau_j - \tau_{j-1}$'s, the ω_j 's and the ξ_j 's are *random, independent and identically distributed*.

• *Averaging* and taking the *Laplace transform* leads to

$$\mathfrak{L}P_{\zeta}f(x) = \int_0^\infty e^{-t\zeta} P_t f(x) \, dt \,, \qquad \zeta \in \mathbb{C}$$

• Equivalently

$$\mathfrak{Q}P_{\zeta}f(x) = \mathbb{E}\left\{\sum_{n=0}^{\infty}\int_{\tau_n}^{\tau_{n+1}} e^{-t\zeta} \prod_{j=1}^n \left(e^{-(\tau_j-\tau_{j-1})\omega_{j-1}\mathbb{J}} e^{\xi_j\cdot\nabla}\right) e^{-(t-\tau_n)\omega_n\mathbb{J}} f(x) dt\right\}$$

• **Remark:** $\tau_0 = 0$, thus $t = t - \tau_n + (\tau_n - \tau_{n-1}) + \dots + (\tau_1 - \tau_0)$. Hence ω_{j-1} can be replaced by ω_{j-1} + ζ and the exponential pre-factor $e^{-t\zeta}$ disappears.

• First *evaluate* the integral *over time* between τ_n and τ_{n+1} , by setting $s = t - \tau_n$

$$\int_0^{\tau_{n+1}-\tau_n} e^{-s\zeta} e^{-s\omega_n \mathbb{J}} ds = \frac{1-e^{(\tau_{n+1}-\tau_n)(\zeta+\omega_n \mathbb{J})}}{\zeta+\omega_n \mathbb{J}}$$

• Second, *average* over the $\tau_j - \tau_{j-1}$'s, using the formula (here *A* is an operator)

$$\mathbb{E}_{\tau}\left\{e^{-(\tau_{j}-\tau_{j-1})A}\right\} = \int_{0}^{\infty} e^{-s/\tau_{LC}} - sA \frac{ds}{\tau_{LC}} = \frac{1}{1+\tau_{LC}A}$$

• **Reminder:** if two random variables *X*, *Y* are *stochastically independent* then $\mathbb{E}{XY} = \mathbb{E}{X} \mathbb{E}{Y}$.

• The average over the $\tau_j - \tau_{j-1}$'s gives

$$\mathfrak{Q}P_{\zeta}f(x) = \tau_{LC}\sum_{n=0}^{\infty} \mathbb{E}\left\{\prod_{j=1}^{n} \left(\frac{1}{1+\tau_{LC}(\zeta+\omega_{j-1}]\mathbb{J})} e^{\xi_{j}\cdot\nabla}\right) \frac{1}{1+\tau_{LC}(\zeta+\omega_{n}]\mathbb{J})} f(x)\right\}$$

• This gives a new averaging over a product of *independent* variables.

• Averaging over the ξ_i 's can be done using (Gibbs average is a Gaussian integral)

$$\mathbb{E}_{\xi}\left\{e^{\xi_{j}\cdot\nabla}\right\} = e^{k_{\mathrm{B}}T\Delta/2m}, \qquad \Delta = \nabla\cdot\nabla = \partial_{u}^{2} + \partial_{v}^{2}$$

• *Averaging* over the ω_i 's leads to defining the following operator

$$\mathbb{A}(\zeta) = \mathbb{E}\left\{\frac{1}{1 + \tau_{\scriptscriptstyle LC}(\zeta + \omega_{j-1}\mathbb{J})}\right\}$$

• **Remark:** $A(\zeta)$ does not depend on *j* since all the ω_j 's have same distribution.

• *Inserting* into the expression of the Laplace transform leads to

$$\begin{split} \mathfrak{L}P_{\zeta}f(x) &= \tau_{\scriptscriptstyle LC} \sum_{n=0}^{\infty} \left\{ \mathbb{A}(\zeta) \ e^{k_{\scriptscriptstyle B}T\Delta/2m} \right\}^n \mathbb{A}(\zeta) \ f(x) \\ &= \tau_{\scriptscriptstyle LC} \frac{1}{1 - \mathbb{A}(\zeta) \ e^{k_{\scriptscriptstyle B}T\Delta/2m}} \ \mathbb{A}(\zeta) \ f(x) \end{split}$$

- Questions:
 - How do we evaluate this function ?
 - How can we compute the *domain of analyticity* in ζ ?

- Trick: the operator A(ζ) is a function of the phase-space *angular momentum* J.
- The *polar coordinates* in the 2*D*-phase space are given by

$$\begin{cases} u = r \cos \theta \\ v = r \sin \theta \end{cases} \Leftrightarrow \begin{cases} r^2 = u^2 + v^2 \\ \tan \theta = v/u \end{cases}$$

• It follows that

$$\mathbb{J} = \frac{\partial}{\partial \theta}$$

- Consequently the *eigenvalues* of J are given by *l* with *l* = 0, ±1, ±2, ···, namely *l* ∈ Z.
- The eigenfunctions have the form

 $g_{\ell}(r,\theta) = \hat{g}_{\ell}(r) \ e^{i\ell\theta}$

• *Projecting* a function f onto the eigenspace of eigenvalue l is given by

$$\Pi_{\ell} f(r,\theta) = e^{i\ell\theta} \int_0^{2\pi} f(r,\theta) \ e^{-i\ell\theta} \ \frac{d\theta}{2\pi}$$

• Hence the *spectral decomposition* gives

$$\mathbb{J} = \sum_{\ell \in \mathbb{Z}} \iota \ \ell \ \Pi_{\ell}$$

• Any function of **J** can be written as

$$F(\mathbb{J}) = \sum_{\ell \in \mathbb{Z}} F(\iota\ell) \, \Pi_{\ell}$$

• It leads to

$$\mathbb{A}(\zeta) = \sum_{\ell \in \mathbb{Z}} a_{\ell}(\zeta) \, \Pi_{\ell}$$

with $a_{\ell}(\zeta)$ a complex number given by

$$a_{\ell}(\zeta) = \mathbb{E}_{\omega} \left\{ \frac{1}{1 + \tau_{\scriptscriptstyle LC}(\zeta + \iota \ell \omega_j)} \right\}$$

• **New Trick:** the operator △ commutes with **J**, more precisely, the polar decomposition gives

$$\Delta = -p_r^2 + \frac{\mathbb{J}^2}{r^2} \qquad \qquad -p_r^2 = \partial_r^2 + \frac{1}{r} \partial_r$$

• This gives

$$\mathfrak{L}P_{\zeta} = \tau_{\scriptscriptstyle LC} \sum_{\ell \in \mathbb{Z}} \frac{1}{1 - a_{\ell}(\zeta)e^{-k_{\scriptscriptstyle B}T(p_r^2 + \ell^2/r^2)}} a_{\ell}(\zeta) \Pi_{\ell}$$

• Remark that if $\omega > 0$ the function $(1 + \tau_{LC}(\zeta + \iota \ell \omega))^{-1}$ admits a pole at

$$\zeta = -\frac{1}{\tau_{LC}} - \iota \ell \omega$$

- It follows that $a_{\ell}(\zeta)$ is analytic in $\Re(\zeta) > -1/\tau_{LC}$
- The operator p²_r + ℓ²/r² is positive, and its spectrum is the *entire positive real line*. Hence, 𝔅P_ζ is analytic in the domain for which there is no ℓ ∈ ℤ nor any p ≥ 0 such that a_ℓ(ζ) = e^{p²} ≥ 1. It means the set of ζ must satisfy a_ℓ(ζ) ∉ [1,∞)

The *domain of analyticity* of $a_l(\zeta)$ is given by $\Re \zeta > -1/\tau_{LC}$

Analyticity

- The *correlation function* for X(t) involves only the angular momentum $\ell = \pm 1$.
- Assume that the distribution of ω_j is *uniform* with average ω and variance σ . Then the ω_j 's are uniformly distributed in the interval $[\omega \sqrt{3}\sigma, \omega + \sqrt{3}\sigma]$ and

$$a_{\pm 1} = \frac{1}{2\iota\sqrt{3}\tau_{LC}\sigma} \ln\left(\frac{1+\tau_{LC}(\zeta+\iota\omega+\iota\sqrt{3}\sigma)}{1+\tau_{LC}(\zeta+\iota\omega-\iota\sqrt{3}\sigma)}\right)$$

• If $\zeta + \iota \omega$ is *not real*, then the imaginary part of the *r.h.s.* is non zero, so that $a_{\pm 1} \notin [1, \infty)$.

Analyticity

• If $\xi = \zeta + \iota \omega$ is *real* then

$$a_{\pm 1} = \frac{1}{2\iota\sqrt{3}\tau_{LC}\sigma} \ln\left(\frac{1+\tau_{LC}(\zeta+\iota\omega+\iota\sqrt{3}\sigma)}{1+\tau_{LC}(\zeta+\iota\omega-\iota\sqrt{3}\sigma)}\right) = \frac{\theta}{\sqrt{3}\tau_{LC}\sigma}$$

where

$$\tan \theta = \frac{\sqrt{3}\tau_{\rm LC}\sigma}{1+\tau_{\rm LC}\xi} \qquad \qquad |\theta| < \frac{\pi}{2}$$

• After some algebra, this gives

$$\tau_{M} = \begin{cases} \tau_{LC} & \text{if } \sqrt{3}\tau_{LC}\sigma \geq \pi/2 \\ \tau_{LC} \left(1 - \frac{\sqrt{3}\tau_{LC}\sigma}{\tan\sqrt{3}\tau_{LC}\sigma}\right)^{-1} > \tau_{LC} & \text{otherwise} \end{cases}$$

- Using *a uniform distribution* of oscillator frequencies is a reasonable approximation. If $\tau_{LC} \sigma$ decreases to zero as $T \downarrow 0$, then
 - This gives a *crossover* temperature T_{co} above which the *anankeon dominates* and $\tau_{LC} = \tau_M$ for $T \ge T_{co}$
 - If $T < T_{co}$, the *phonons resist* and $\tau_{\rm M}/\tau_{\rm LC} > 1$.

- The *variance* σ of the random frequencies depend upon the *modification of the local landscape* by anankeons. However, each anankeon involves several atoms, at least d + 2 atoms in dimension d. So the landscape is modified in a region that might be large compared with the mean atomic distance.
- For this reason, σ is expected to be proportional to a Gibbs factor, namely to follow also an *Arrhenius law*

$$\sigma = \sigma_{\infty} e^{-W_v/k_{\rm B}T} \qquad \sigma_{\infty} = \lim_{T\uparrow\infty} \sigma(T)$$

• **Question:** What is the meaning of W_v ?

• Similarly the local configuration time τ_{LC} is also given by a similar expression, thanks to *Kramers formula*, where now *W* is the *potential energy barrier* to be crossed when an analyse occurs

$$\tau_{LC} = \tau_{\infty} e^{W/k_{\rm B}T} \qquad \qquad \tau_{\infty} = \lim_{T\uparrow\infty} \tau(T)$$

• If the hypothesis made on σ is correct, then

 $K(T) = \tau_{LC}(T)\sigma(T) = K_{\infty} e^{-(W_v - W)/k_{\rm B}T} \qquad K_{\infty} = \sigma_{\infty} \tau_{\infty}$

The condition $K(T) \xrightarrow{T\downarrow 0} 0$ *requires* $W_v > W$

• Hence, if $T_g < T < T_{co}$

$$\frac{\tau_{M}}{\tau_{LC}} = \frac{1}{1 - \frac{\sqrt{3}K(T)}{\tan(\sqrt{3}K(T))}} \quad \stackrel{T\downarrow 0}{\sim} \quad \frac{e^{2(W_{v} - W)/k_{B}T}}{K_{\infty}^{2}}$$

• Similarly the *crossover temperature* is reached whenever $\sqrt{3}\tau_{LC}\sigma = \pi/2$, which gives

$$(W_{\mathcal{V}} - W) = \frac{k_{\rm B}T_{co}}{10.2}$$

V - Conclusion

To Summarize

- The liquid phase of *fragile glasses* is dominated by *anankeons* at least above the crossover temperature $T > T_{co}$.
- If $T_g < T < T_{co}$, the *phonon-anankeon interaction* becomes essential to explain the difference between the Maxwell and the local configuration times. Hence the change of the Arrhenius behavior of the viscosity is explained through a *dynamical effect*. As the temperature decreases, phonons become more coherent and *limit the dissipative* effect of the anankeons.
- The crossover temperature is related to the difference *W_s W* between the activation energies associated with the *phonon frequency fluctuation* and the *anankeon potential barrier*.