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Specific Heat for
Fragile Glasses:

contributions of
phonons & anankeons



Motivation

• At temperature T > Tco larger than the crossover temperature, only
the anankeons contribute to the specific heat.

• If Tg < T < Tco phonons and anankeon interact.

•Question: How ?



II - Anankeons and Phonons



Atomic Configurations

The set L of position of atomic nuclei is a Delone set, namely

• The minimum distance between atoms is 2r0 > 0.

• The maximum diameter of a hole without atoms is 2r1 < ∞.
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Voronoi Cells
• Let L be Delone. If x ∈ L its Voronoi cell is defined by

V(x) = {y ∈ Rd ; |y − x| < |y − x′| ∀x′ ∈ L , x′ , x}

V(x) is open. Its closure T(x) = V(x) is called the Voronoi tile of x
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Voronoi Cells
• Let L be Delone. If x ∈ L its Voronoi cell is defined by

V(x) = {y ∈ Rd ; |y − x| < |y − x′| ∀x′ ∈ L , x′ , x}

V(x) is open. Its closure T(x) = V(x) is called the Voronoi tile of x

Proposition: If L is Delone, the Voronoi
tile of any x ∈ L is a convex polytope
containing the closed ball B(x; r0) and
contained in the ball B(x; r1)
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The Delone Graph
Proposition: the Voronoi tiles
of a Delone set touch face-to-face

Two atoms are nearest neighbors
if their Voronoi tiles touch
along a face of maximal
dimension.

An edge is a pair of nearest
neighbors. E denotes the set of
edges.

The family G = (L,E) is the
Delone graph.



The Delone Graph

taken from J. D. Bernal, Nature, 183, 141-147, (1959)



The Delone Graph

Modulo graph isomorphism, the Delone graph encodes the local topology



Atomic Movements

small, deterministic,
conserves local topology

large, unpredictable, quick jump,
change the local topology



III - Constructing the Model



Harmonic Motion

• The vibration of an atom around its equilibrium position is as-
sumed to be harmonic.

• To simplify further, the oscillator will be supposed to be one-
dimensional.

• The frequency ω of the harmonic oscillator is defined by the cur-
vature of the potential energy near the equilibrium position.

• Let q denotes the position of the harmonic particle relative to the
equilibrium position. Then X will denote the phase space vector

X =

ωq
·
q

 =

[
u
v

]



Harmonic Motion

• Equation of motion

m
d2q
dt2 + kq = 0 , ω =

√
k
m
.

• Equivalently

dX
dt

= ωJX , J =

[
0 1
−1 0

]
• Or else

X(t) = eωtJX(0) =

[
cosωt sinωt
− sinωt cosωt

] [
u(0)
v(0)

]



Anankeon Interaction

• At random times · · · < τn−1 < τn < τn+1 < · · ·, the atom jumps
quickly from one potential well to another one.

• Each jump will be considered as instantaneous.

• In the new potential well, the curvature is different, hence, after the
time τn, the new frequency is ωn.

• After the jump, the new relative phase space position is changed by
a vector ξn, namely

X(τn + 0) = X(τn − 0) + ξn



Randomness: Assumptions

• The random times are Poissonian, namely the variables τn+1 − τn
are i.i.d, with exponential distribution and average

E{τn+1 − τn} = 〈τn+1 − τn〉 = τLC

• The frequencies ωn are also random and i.i.d, such that

E(ωn) = ω , E{(ωn − ω)2
} = σ2

• The phase-space initial positions ξn are also random and i.i.d, with
Gibbs distribution

Prob{ξn ∈ Λ} =

∫
Λ

e−βm|ξ|2/2 d2ξ
2πkBT/m

, β =
1

kBT



Correlation Function

• The goal is to compute the stress-stress correlation function. It is
sufficient to compute

C f (t) = E{ f (X(t)) f (X(0))}

for any complex valued function f defined on the phase space
and vanishing at infinity.

• The viscosity is given by the Green-Kubo formula

η =
V

kBT

∫
∞

0
C f (t) dt

for a suitable f



Correlation Function

• Then, the goal is to show that

C f (t)
t↑∞
∼ e−t/τM

•Hence η ∼ τM, which allows to interpret τM as the Maxwell relax-
ation time.



Correlation Function

• The dissipative evolution operator Pt acting on the set of functions f
is defined by

Pt f (x) = E{ f (X(t)) |X(0) = x}

• Then

C f (t) =

∫
R2

f (x) Pt f (x) d2x



IV - Computing Maxwell’s Time



Laplace Transform

• The Laplace transform of C(t) is defined by

LC(ζ) =

∫
∞

0
e−tζ C(t) dt

• The function C admits the asymptotic C(t) t↑∞
∼ e−t/τM

if and only if

LC(ζ) is holomorphic w.r.t. ζ in the domain<ζ > −1/τM

• In practice, −1/τM is the singularity nearest to the origin in the com-
plex plane.



Dual Actions

• Phase Space Rotation: If f is a function, and x = (u, v) a point in
the phase space, then

f
(
eωt Jx

)
=

(
e−ωtJ f

)
(x) , −J = v∂u − u∂v

Hence J is the phase-space angular momentum.

• Phase Space Translation: Similarly, if ξ = (ξ1, ξ2) is a phase-
space vector,

f (x + ξ) =
(
eξ·∇ f

)
(x) , ξ · ∇ = ξ1∂u + ξ2∂v

Hence ξ · ∇ is the phase-space momentum along the vector ξ.



Stochastic Evolution

• Let X(t) the stochastic value of the phase-space position at time t,
with initial condition X(0) = x.

• If n anankeons occurred during this time then τn ≤ t < τn+1, with
τ0 = 0, so that

f (X(t)) =


n∏

j=1

(
e−(τ j−τ j−1)ω j−1J eξ j·∇

)
e−(t−τn)ωnJ f

 (x)

• In this expression the the τ j − τ j−1’s, the ω j’s and the ξ j’s are
random, independent and identically distributed.



Stochastic Evolution

• Averaging and taking the Laplace transform leads to

LPζ f (x) =

∫
∞

0
e−tζ Pt f (x) dt , ζ ∈ C

• Equivalently

LPζ f (x) = E


∞∑

n=0

∫ τn+1

τn

e−tζ
n∏

j=1

(
e−(τ j−τ j−1)ω j−1J eξ j·∇

)
e−(t−τn)ωnJ f (x) dt


• Remark: τ0 = 0, thus t = t−τn+(τn−τn−1)+ · · ·+(τ1−τ0). Hence
ω j−1J can be replaced by ω j−1J+ ζ and the exponential pre-factor
e−tζ disappears.



Stochastic Evolution

• First evaluate the integral over time between τn and τn+1, by setting
s = t − τn ∫ τn+1−τn

0
e−sζ e−sωnJ ds =

1 − e(τn+1−τn)(ζ+ωnJ)

ζ + ωnJ

• Second, average over the τ j − τ j−1’s, using the formula (here A is
an operator)

Eτ
{
e−(τ j−τ j−1)A}

=

∫
∞

0
e−s/τLC −sA ds

τLC

=
1

1 + τLCA



Stochastic Evolution

• Reminder: if two random variables X,Y are stochastically inde-
pendent then E{XY} = E{X} E{Y}.

• The average over the τ j − τ j−1’s gives

LPζ f (x) = τLC

∞∑
n=0

E


n∏

j=1

(
1

1 + τLC(ζ + ω j−1J)
eξ j·∇

)
1

1 + τLC(ζ + ωnJ)
f (x)


• This gives a new averaging over a product of independent vari-

ables.



Stochastic Evolution

• Averaging over the ξ j’s can be done using (Gibbs average is a Gaussian integral)

Eξ
{

eξ j·∇
}

= ekBT∆/2m , ∆ = ∇ · ∇ = ∂2
u + ∂2

v

• Averaging over the ω j’s leads to defining the following operator

A(ζ) = E

 1
1 + τLC(ζ + ω j−1J)


• Remark: A(ζ) does not depend on j since all the ω j’s have same

distribution.



Stochastic Evolution

• Inserting into the expression of the Laplace transform leads to

LPζ f (x) = τLC

∞∑
n=0

{
A(ζ) ekBT∆/2m

}n
A(ζ) f (x)

= τLC

1
1 −A(ζ) ekBT∆/2m

A(ζ) f (x)

•Questions:

– How do we evaluate this function ?
– How can we compute the domain of analyticity in ζ ?



Angular Momentum

• Trick: the operatorA(ζ) is a function of the phase-space angular
momentum J.

• The polar coordinates in the 2D-phase space are given by{
u = r cosθ
v = r sinθ ⇔

{
r2 = u2 + v2

tanθ = v/u

• It follows that

J =
∂
∂θ



Angular Momentum

• Consequently the eigenvalues of Jare given by ı`with ` = 0,±1,±2, · · ·,
namely ` ∈ Z.

• The eigenfunctions have the form

g`(r, θ) = ĝ`(r) eı`θ

• Projecting a function f onto the eigenspace of eigenvalue ı` is
given by

Π` f (r, θ) = eı`θ
∫ 2π

0
f (r, θ) e−ı`θ

dθ
2π

•Hence the spectral decomposition gives

J =
∑
`∈Z

ı ` Π`



Angular Momentum

• Any function of J can be written as

F(J) =
∑
`∈Z

F(ı`) Π`

• It leads to
A(ζ) =

∑
`∈Z

a`(ζ) Π`

with a`(ζ) a complex number given by

a`(ζ) = Eω

 1
1 + τLC(ζ + ı`ω j)





Angular Momentum

•New Trick: the operator ∆ commutes with J, more precisely, the
polar decomposition gives

∆ = −p2
r +
J2

r2 − p2
r = ∂2

r +
1
r
∂r

• This gives

LPζ = τLC

∑
`∈Z

1

1 − a`(ζ)e−kBT(p2
r+`2/r2)

a`(ζ) Π`



Analyticity

• Remark that ifω > 0 the function (1 +τLC(ζ+ ı`ω))−1 admits a pole
at

ζ = −
1
τLC

− ı`ω

• It follows that a`(ζ) is analytic in<(ζ) > −1/τLC

• The operator p2
r + `2/r2 is positive, and its spectrum is the entire

positive real line. Hence, LPζ is analytic in the domain for which

there is no ` ∈ Z nor any p ≥ 0 such that a`(ζ) = ep2
≥ 1.

It means the set of ζ must satisfy a`(ζ) < [1,∞)



Analyticity

The domain of analyticity of al(ζ) is given by<ζ > −1/τLC



Analyticity

• The correlation function for X(t) involves only the angular momen-
tum ` = ±1.

• Assume that the distribution of ω j is uniform with average ω and
variance σ. Then theω j’s are uniformly distributed in the interval
[ω −

√
3 σ,ω +

√
3 σ] and

a±1 =
1

2ı
√

3τLCσ
ln

1 + τLC(ζ + ıω + ı
√

3σ)

1 + τLC(ζ + ıω − ı
√

3σ)


• If ζ+ ıω is not real, then the imaginary part of the r.h.s. is non zero,

so that a±1 < [1,∞).



Analyticity

• If ξ = ζ + ıω is real then

a±1 =
1

2ı
√

3τLCσ
ln

1 + τLC(ζ + ıω + ı
√

3σ)

1 + τLC(ζ + ıω − ı
√

3σ)

 =
θ

√
3τLCσ

where

tanθ =

√
3τLCσ

1 + τLCξ
|θ| <

π
2



Maxwell Relaxation Time

• After some algebra, this gives

τM =


τLC if

√
3τLCσ ≥ π/2

τLC

(
1 −

√
3τLCσ

tan
√

3τLCσ

)−1
> τLC otherwise

• Using a uniform distribution of oscillator frequencies is a reasonable
approximation. If τLC σ decreases to zero as T ↓ 0, then

– This gives a crossover temperature Tco above which the anankeon
dominates and τLC = τM for T ≥ Tco

– If T < Tco, the phonons resist and τM/τLC > 1.



Maxwell Relaxation Time

• The variance σ of the random frequencies depend upon the modifi-
cation of the local landscape by anankeons. However, each anankeon
involves several atoms, at least d + 2 atoms in dimension d. So the
landscape is modified in a region that might be large compared
with the mean atomic distance.

• For this reason, σ is expected to be proportional to a Gibbs factor,
namely to follow also an Arrhenius law

σ = σ∞ e−Wv/kBT σ∞ = lim
T↑∞

σ(T)

•Question: What is the meaning of Wv ?



Maxwell Relaxation Time

• Similarly the local configuration time τLC is also given by a sim-
ilar expression, thanks to Kramers formula, where now W is the
potential energy barrier to be crossed when an anankeon occurs

τLC = τ∞ eW/kBT τ∞ = lim
T↑∞

τ(T)

• If the hypothesis made on σ is correct, then

K(T) = τLC(T)σ(T) = K∞ e−(Wv−W)/kBT K∞ = σ∞ τ∞

The condition K(T)
T↓0
→ 0 requires Wv > W



Maxwell Relaxation Time

•Hence, if Tg < T < Tco

τM

τLC

=
1

1 −
√

3K(T)
tan (

√
3K(T))

T↓0
∼

e2(Wv−W)/kBT

K2
∞

• Similarly the crossover temperature is reached whenever
√

3τLCσ =
π/2, which gives

(Wv −W) =
kBTco
10.2



V - Conclusion



To Summarize

• The liquid phase of fragile glasses is dominated by anankeons at
least above the crossover temperature T > Tco.

• If Tg < T < Tco, the phonon-anankeon interaction becomes essen-
tial to explain the difference between the Maxwell and the local
configuration times. Hence the change of the Arrhenius behavior
of the viscosity is explained through a dynamical effect. As the
temperature decreases, phonons become more coherent and limit
the dissipative effect of the anankeons.

• The crossover temperature is related to the difference Ws −W be-
tween the activation energies associated with the phonon frequency
fluctuation and the anankeon potential barrier.


