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Motivation

o Attemperature T > T, larger than the crossover temperature, only
the anankeons contribute to the specific heat.

o If To <T < Ty phonons and anankeon interact.

e Question: How ?



II - Anankeons and Phonons




Atomic Configurations

The set £ of position of atomic nuclei is a Delone set, namely

e The minimum distance between atoms is 2ry > 0.

e The maximum diameter of a hole without atoms is 21y < co.
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Voronoi Cells

e Let £ be Delone. If x € £ its Voronoi cell is defined by
V(x) = {yeIRd; ly—x| <|ly—x"|Vx" € £, x" # x}

V(x) is open. Its closure T(x) = V(x) is called the Voronoi tile of x
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Voronoi Cells

e Let £ be Delone. If x € £ its Voronoi cell is defined by
V(x) = {yeIRd; ly—x| <|ly—x"|Vx" € £, x" # x}

V(x) is open. Its closure T(x) = V(x) is called the Voronoi tile of x

Proposition: If £ is Delone, the Voronoi
tile of any x € £ is a convex polytope

containing the closed ball B(x; o) and
contained in the ball B(x;r1)
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The Delone Graph

Proposition: the Voronoi tiles
of a Delone set touch face-to-face

Two atoms are nearest neighbors
if their Voronoi tiles touch
along a face of maximal
dimension.

An edge is a pair of nearest
neighbors. € denotes the set of
edges.

The family § = (£, €) is the
Delone graph.



The Delone Graph
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The Delone Graph

Modulo graph isomorphism, the Delone graph encodes the local topology




Atomic Movements
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Harmonic Motion

e The vibration of an atom around its equilibrium position is as-
sumed to be harmonic.

e To simplity further, the oscillator will be supposed to be one-
dimensional.

e The frequency w of the harmonic oscillator is defined by the cur-
vature of the potential energy near the equilibrium position.

e Let g denotes the position of the harmonic particle relative to the
equilibrium position. Then X will denote the phase space vector

|71 L



Harmonic Motion

e Equation of motion

m% +kq=0, ©= %
e Equivalently
%:wjx, ]=[_01(1)]
e Or else
X(H) = e*X(0) = [_C o (S:g; Zﬁ] [1558”



Anankeon Interaction

o At random times --- < 7,1 < Ty < Tyy1 < ---, the atom jumps
quickly from one potential well to another one.

e Each jump will be considered as instantaneous.

e In the new potential well, the curvature is different, hence, after the
time 75, the new frequency is wy.

o After the jump, the new relative phase space position is changed by
a vector &;;, namely

X(ty +0) = X(tyy = 0) + &5



Randomness: Assumptions

e The random times are Poissonian, namely the variables 7,1 — T4
are i.i.d, with exponential distribution and average

1E{T1fl+1 - T?’l} — <Tn+1 — Tn) = Tic

e The frequencies w;, are also random and i.1.d, such that

E(wn) = o, E{(wy — w)?} = 02

e The phase-space initial positions & are also random and i.1.d, with
Gibbs distribution

2
_ | —pme2 _47°C _ 1
Probicn € Al fAe 2riky T/’ P =T




Correlation Function

e The goal is to compute the stress-stress correlation function. It is
sufficient to compute

C4(t) = E{f(X(H) FXO))

for any complex valued function f defined on the phase space
and vanishing at infinity.

e The viscosity is given by the Green-Kubo formula

n= kB f Cf(t) dt

for a suitable f



Correlation Function

e Then, the goal is to show that

Cety 7 et

e Hence n ~ t,, which allows to interpret 7,, as the Maxwell relax-
ation time.



Correlation Function

e The dissipative evolution operator P; acting on the set of functions f
is defined by

Pif(x) = Eif(X(£)) |X(0) = x]

e Then

oty = [ T Pifo s



[V - Computing Maxwell’s Time




Laplace Transform

e The Laplace transform of C(t) is defined by

2C(Q) = fo T i C(t) dt

e The function C admits the asymptotic C(¢) e et/ Tw

if and only if

LC(Q) is holomorphic w.r.t. Cin the domain ‘R > —1/7,,

e In practice, —1/7,, is the singularity nearest to the origin in the com-
plex plane.



Dual Actions

e Phase Space Rotation: If f is a function, and x = (#,v) a point in
the phase space, then

f (ew” x) = (e_“)ﬂ[ f) (x), —J = vdy, — udy

Hence ] is the phase-space angular momentum.

e Phase Space Translation: Similarly, if £ = (51, 52) is a phase-
space vector,

flae+&) =(*Vf) (), £V =&, + E20y

Hence ¢ - V is the phase-space momentum along the vector &.



Stochastic Evolution

e Let X(t) the stochastic value of the phase-space position at time f,
with initial condition X(0) = x.

e If n anankeons occurred during this time then 7, <t < 7,41, with
7o = 0, so that

( - )

Fxe) = [ (@ m0emd oY) emtmmend £ ()
(/=1

J

e In this expression the the 7; — 7;_1’s, the w;’s and the ¢/’s are
. RS A J ]
random, independent and identically distributed.



Stochastic Evolution

o Averaging and taking the Laplace transform leads to

LPf(x) = foooe_tc P:f(x) dt, CeC

e Equivalently
o Tn+1 n
LP:f(x) =E {Z f e iC H (e_(Tf‘Tj—l)wf—l]I e‘fj'v) e~ (t=m@n] £(5) dt}
n=0 ¥ Tn j=1

e Remark: 75 =0,thust=t—1,+(ty—7,-1)+ - +(71—70). Hence
@;-1]] can be replaced by w;_1]] + C and the exponential pre-factor

e~tC disappears.



Stochastic Evolution

e First evaluate the integral over time between 1, and 7,1, by setting
S=1-— Tn

f7n+1_Tn e—SC e—SCUnH e — 1 — e(Tn+1_Tn)(C+CUnH)
0 C+ wnl

e Second, average over the T =T j_l’s, using the formula (here A is
an operator)

—(T]'—T]'_l)A — OO —S/TLC —sA @ — 1
B {e } fo ¢ T, 14+71A




Stochastic Evolution

e Reminder: if two random variables X, Y are stochastically inde-
pendent then E{XY} = E{X} [E{Y}.

e The average over the 7; — 7;_1’s gives

o NVEIT 1 30 1
#Pef() = Tuc nZ:6 E {H (1 + Trc(C + wj]) ‘ ) 1+ 70c(C + wy]) f(x)}

=1

e This gives a new averaging over a product of independent vari-
ables.



Stochastic Evolution

® Avemg an over the CS ] ‘s can be done us1ng (Gibbs average is a Gaussian integml)

Eg { eV} = oTA/Zm, A=V-V=32+5
e Averaging over the w’s leads to defining the following operator

1
AQ=E {1 + Tic(C+ w]'—ﬂl)}

e Remark: A(C) does not depend on j since all the w i's have same
distribution.




Stochastic Evolution

e [nserting into the expression of the Laplace transform leads to

0

- Z (A©) ekBTA/2m}” AQ) F(x)

n=0

LPrf(x)

1
Tre 1- A0 ok TA/2m

A(C) f(x)

e Questions:

— How do we evaluate this function ?
— How can we compute the domain of analyticity in C ?



Angular Momentum

e Trick: the operator A(C) is a function of the phase-space angular
momentum J.

e The polar coordinates in the 2D-phase space are given by

u=rcos0 r2 = u? + v?
v =rsinB tan @ = v/u

e It follows that



Angular Momentum

e Consequently the eigenvalues of ] are givenby i with¢ =0, +1,+2,---,
namely ¢ € Z.

e The eigenfunctions have the form

8¢(r,0) = &(r) &
e Projecting a function f onto the eigenspace of eigenvalue 1f is
given by

o do
[1,f0,0) =7 [ 0,000 3
0 27T

e Hence the spectral decomposition gives

HZZZng

te”.



Angular Momentum

e Any function of J] can be written as

FO) = ) FGO) 11,

te”.

e It leads to
A@Q) =) a0 T,

te”.

with a,(C) a complex number given by

1
1¢(C) = Bo {1 +7,(C+ z&u]-)}




Angular Momentum

e New Trick: the operator A commutes with ], more precisely, the
polar decomposition gives

> I 2_ 1
e This gives
LPr =1 E ! ap(C) IT
- {21 - ag(Qe BT+ 2/r) Y



Analyticity

e Remark that if w > 0 the function (1 + 7,(C + 1fw)) ! admits a pole
at

1
(= —— —ibw
Tic

o It follows that a,(C) is analytic in ‘A(C) > —1/7,c

e The operator p? + £?/r? is positive, and its spectrum is the entire
positive real line. Hence, P is analytic in the domain for which

there isno ¢ € Z nor any p > 0 such that a,(C) = e’ > 1.
It means the set of C must satisty a,(C) € [1, o0)



Analyticity

Complex C-plane

A

]

\
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-1/7,. -ilo

N

The domain of analyticity of a;(C) is given by A > —1/1,c



Analyticity

e The correlation function tor X(t) involves only the angular momen-
tum ¢ = +1.

e Assume that the distribution of w; is uniform with average w and
variance 0. Then the w;’s are uniformly distributed in the interval

[w— V30,w+ V30]and

1 1+ 7,(C + 10 + 1V30)
21 \/§TLC(7 1+ 7,(C+1w—1V30)

o [f C+1w is not real, then the imaginary part of the r.h.s. is non zero,
so thata,q ¢ [1, o).



Analyticity

o If £ =+ 1w is real then

b = 1 1+ 7,(C+ 1w + 1 V30) _ 6
21V31,.0 1+ 7,(C+ 1w - 1\/5(7) V31,0
where
tan 6 = V3t.c0 10| < X

1+7,¢ 2



Maxwell Relaxation Time

o After some algebra, this gives

Ty = o

/

\

Tic if  \31,.0>7m/2
-1
\/gTLCG ) .
T.o11— > T,. otherwise
e ( tan \@TLCG e

e Using a uniform distribution of oscillator frequencies is a reasonable
approximation. If 7,. o decreases to zero as T | 0, then

— This gives a crossover temperature 1o above which the anankeon
dominates and 7,0 = 7, for T > T,

- If T < T, the phonons resist and /7, > 1.



Maxwell Relaxation Time

e The variance o of the random frequencies depend upon the modifi-
cation of the local landscape by anankeons. However, each anankeon
involves several atoms, at least d + 2 atoms in dimension d. So the
landscape is modified in a region that might be large compared
with the mean atomic distance.

e For this reason, o is expected to be proportional to a Gibbs factor,
namely to follow also an Arrhenius law

e_WU/kBT

0 = Oco Oco = lim o(T)

TToo

e Question: What is the meaning of Wy ?



Maxwell Relaxation Time

e Similarly the local configuration time 7, is also given by a sim-
ilar expression, thanks to Kramers formula, where now W is the
potential enerqgy barrier to be crossed when an anankeon occurs

WiksT Too = lim 7(T)

TToo

Tic = Too €
e If the hypothesis made on o is correct, then

K(T) = 7,(T)o(T) = Koo e~ WomW)/ksT Koo = Ooo Teo

T
The condition K(T) &O 0 requires Wy > W



Maxwell Relaxation Time

e Hence, if To < T < T

ﬂ B 1 T10 eZ(WU—W)/kBT
Te 4 __ V3K(D) K2,
tan ( V3K(T))

e Similarly the crossover temperature is reached whenever V37,0 =
7/2, which gives

kBTCO
10.2

(Wo — W) =



V - Conclusion




To Summarize

e The liquid phase of fragile glasses is dominated by anankeons at
least above the crossover temperature T > T',.

o [f To < T < Te, the phonon-anankeon interaction becomes essen-
tial to explain the difference between the Maxwell and the local
configuration times. Hence the change of the Arrhenius behavior
of the viscosity is explained through a dynamical effect. As the
temperature decreases, phonons become more coherent and /imit
the dissipative etfect of the anankeons.

e The crossover temperature is related to the difference W5 — W be-
tween the activation energies associated with the phonon frequency
fluctuation and the anankeon potential barrier.



