

Jean BELLISSARD

Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics e-mail: jeanbel@math.gatech.edu

Collaborations

- J. PEARSON, (*Gatech*, Atlanta, GA)
- J. SAVINIEN, (U. Metz, Metz, France)
- A. JULIEN, (U. Victoria, Victoria, BC)
- I. PALMER, (NSA, Washington DC)
- R. PARADA, (Gatech, Atlanta, GA)

Main References

A. BEURLING, J. DENY, Dirichlet spaces, Proc. Nat. Acad. Sci. U.S.A., 45, (1959), 208-215.

M. Fukushima, *Dirichlet forms and Markov processes*, North-Holland Math. Lib., 23., Amsterdam-New York; Kodansha, Ltd., Tokyo, 1980.

A. CONNES, Noncommutative Geometry, Academic Press, 1994.

G. MICHON, Les Cantors réguliers, C. R. Acad. Sci. Paris Sér. I Math., (19), 300, (1985) 673-675.

J. PEARSON, J. BELLISSARD, Noncommutative Riemannian Geometry and Diffusion on Ultrametric Cantor Sets, J. Noncommutative Geometry, **3**, (2009), 447-480.

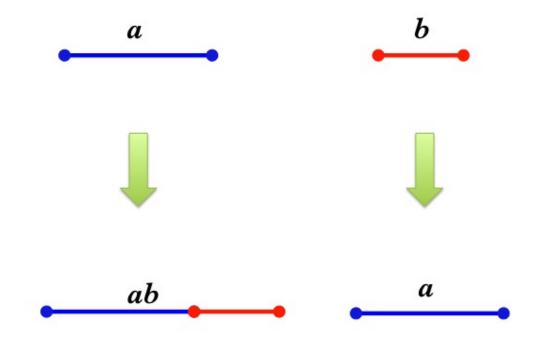
A. JULIEN, J. SAVINIEN, *Transverse Laplacians for substitution tilings*, Comm. Math. Phys., **301**, (2011), 285-318.

I. PALMER, Noncommutative Geometry and Compact Metric Spaces, PhD Thesis, Georgia Institute of Technology, May 2010

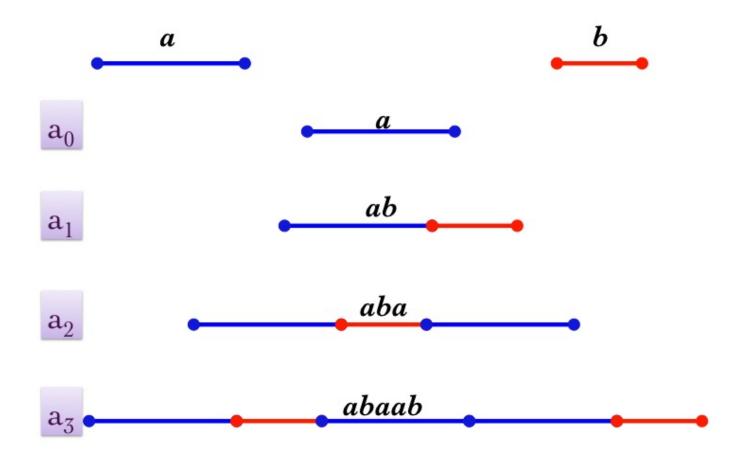
Content

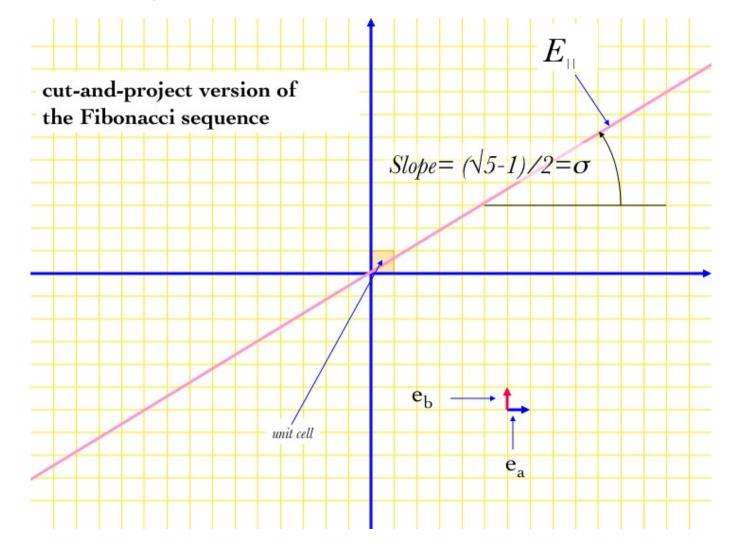
- 1. Tilings and their Transversal
- 2. Spectral Triple
- 3. The Pearson Laplacian
- 4. Open Problems

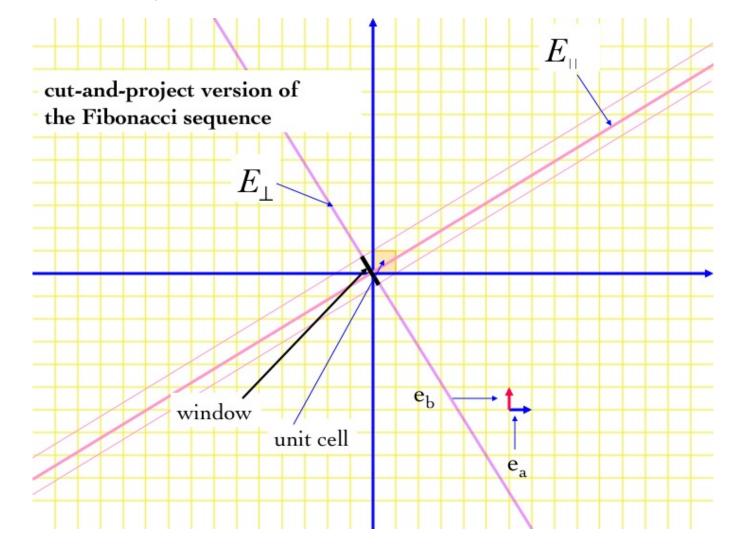
I - Tilings and their Transversal

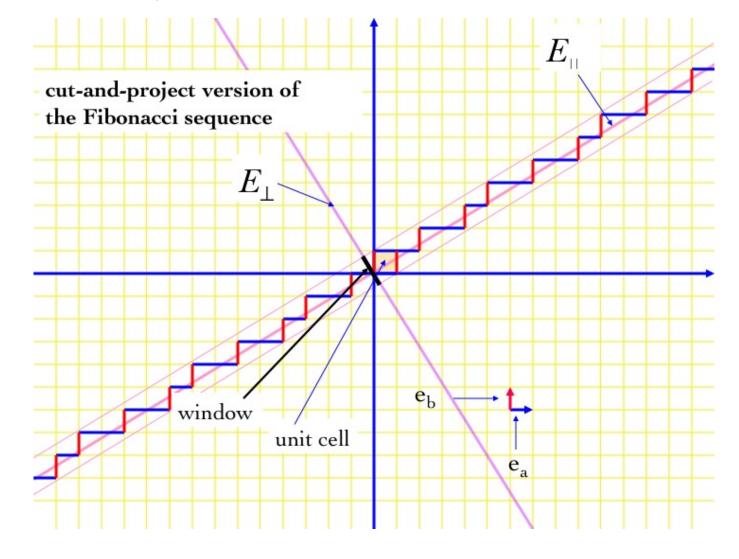


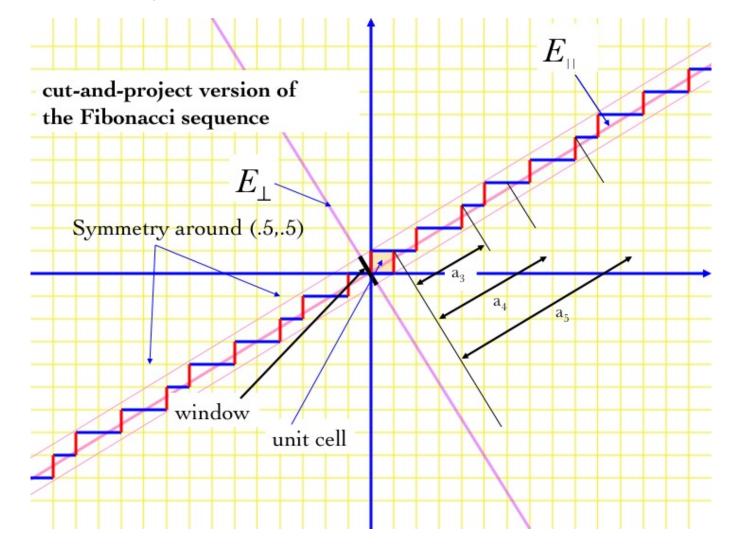
The Fibonacci Substitution

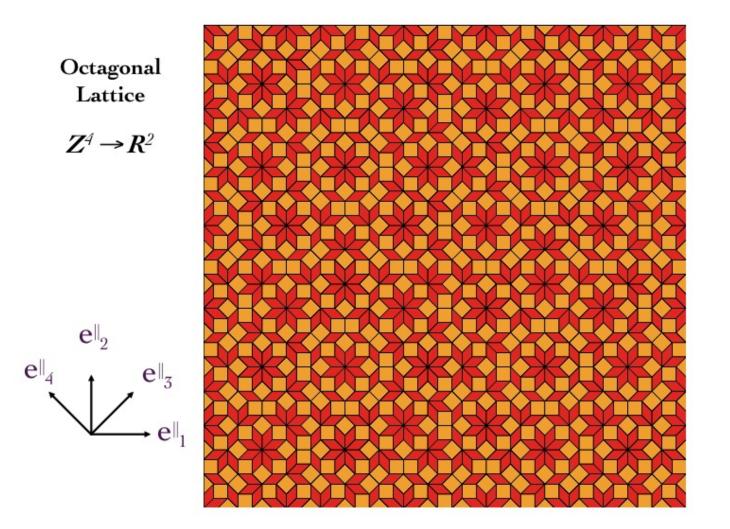




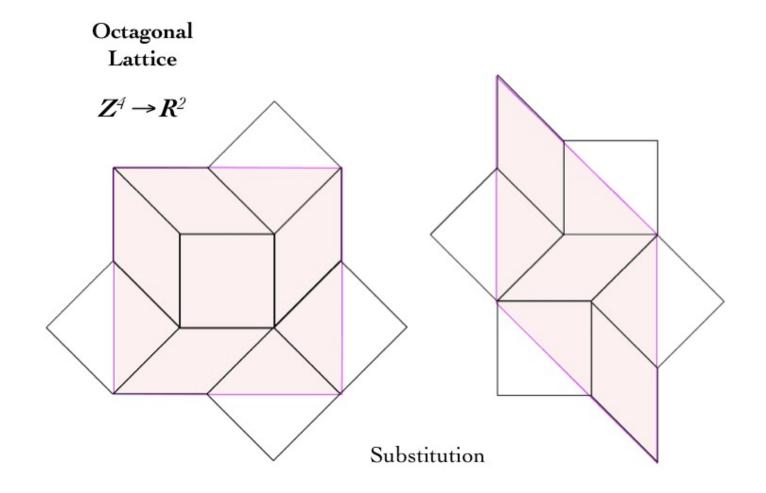




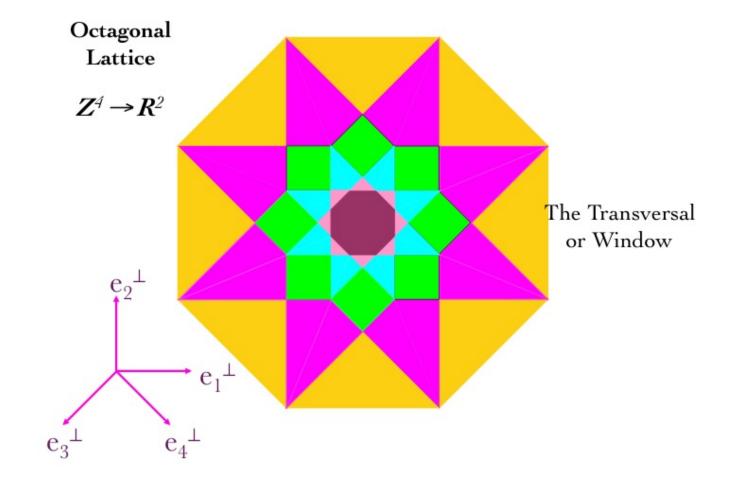




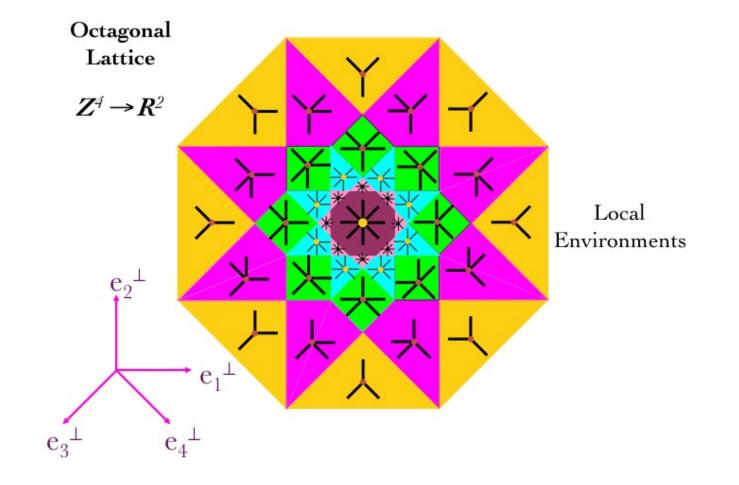
The Octagonal Tiling



The Octagonal Tiling



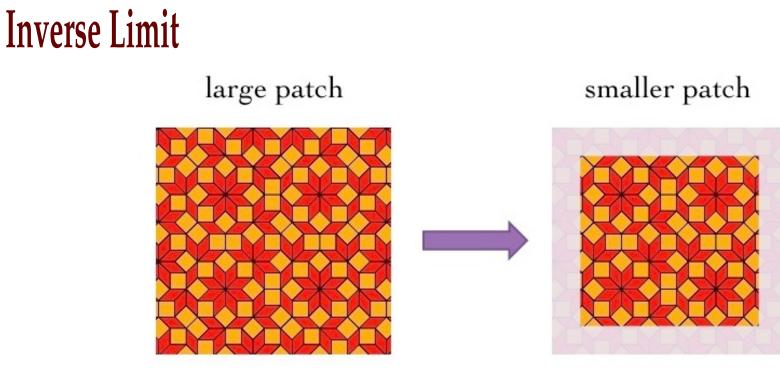
The Octagonal Tiling



Inverse Limit

Let \mathcal{P}_R be the set of patches of radius *R*, modulo translation.

The tiling has *finite local complexity* (FLC), if and only if \mathcal{P}_R is a *finite* set for all *R*. In particular $R \to \mathcal{P}_R$ is *locally constant* and *nondecreasing*. Thus there is a sequence $R_0 = 0 < R_1 < \cdots < R_n < \cdots$ with $R_n \to \infty$ such that $\mathcal{P}_R = \mathcal{P}_n$ for $R_n \leq R < R_{n+1}$.



restriction map

There is a restriction map $\pi : \mathcal{P}_{n+1} \to \mathcal{P}_n$. Then the *transversal* is defined by the inverse limit

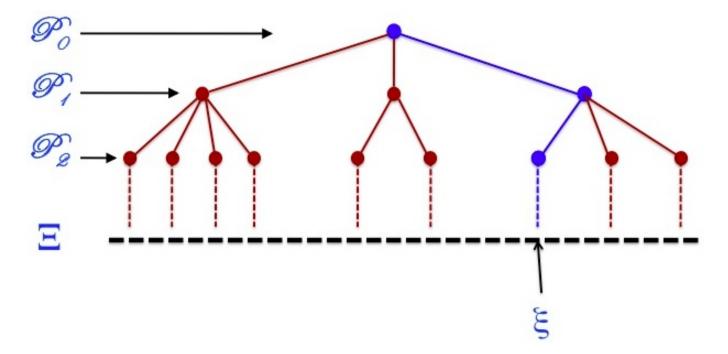
$$\Xi = \lim_{\leftarrow \pi} \mathcal{P}_n$$

Rooted Tree

Since all the \mathcal{P}_n 's are finite set, Ξ is a *Cantor set*.

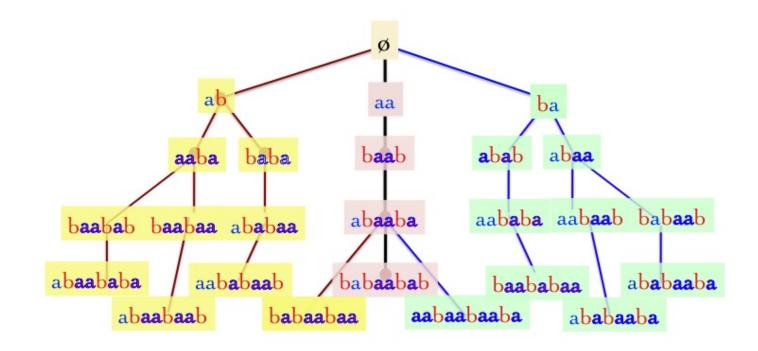
A point of Ξ is an infinite sequence $\xi = (p_n)_{n=0}^{\infty}$ of compatible patches, so it defines a unique *tiling*.

This inverse limit can be represented by a *rooted tree*



Rooted Tree

For the *Fibonacci sequence* this gives



The Fibonacci Tree

II - Spectral Triples

A *spectral triple* for a C^{*}-algebra \mathcal{A} is a family $X = (\mathcal{A}, \mathcal{H}, D)$ where \mathcal{H} is a Hilbert space, D and unbounded operator on \mathcal{H} such that

A *spectral triple* for a C^{*}-algebra \mathcal{A} is a family $X = (\mathcal{A}, \mathcal{H}, D)$ where \mathcal{H} is a Hilbert space, D and unbounded operator on \mathcal{H} such that

• there is a (faithful) representation $\pi : \mathcal{A} \to \mathcal{B}(\mathcal{H})$

A *spectral triple* for a C^{*}-algebra \mathcal{A} is a family $X = (\mathcal{A}, \mathcal{H}, D)$ where \mathcal{H} is a Hilbert space, D and unbounded operator on \mathcal{H} such that

- there is a (faithful) representation $\pi : \mathcal{A} \to \mathcal{B}(\mathcal{H})$
- *D* is selfadjoint with compact resolvent (*Dirac operator*)

A *spectral triple* for a C*-algebra \mathcal{A} is a family $X = (\mathcal{A}, \mathcal{H}, D)$ where \mathcal{H} is a Hilbert space, D and unbounded operator on \mathcal{H} such that

- there is a (faithful) representation $\pi : \mathcal{A} \to \mathcal{B}(\mathcal{H})$
- *D* is selfadjoint with compact resolvent (*Dirac operator*)
- the set $C^1(X)$ of elements $a \in \mathcal{A}$ leaving the domain of D invariant and such that $\|[D, \pi(a)]\| < \infty$, is dense in \mathcal{A}

A *spectral triple* for a C*-algebra \mathcal{A} is a family $X = (\mathcal{A}, \mathcal{H}, D)$ where \mathcal{H} is a Hilbert space, D and unbounded operator on \mathcal{H} such that

- there is a (faithful) representation $\pi : \mathcal{A} \to \mathcal{B}(\mathcal{H})$
- *D* is selfadjoint with compact resolvent (*Dirac operator*)
- the set $C^1(X)$ of elements $a \in \mathcal{A}$ leaving the domain of D invariant and such that $\|[D, \pi(a)]\| < \infty$, is dense in \mathcal{A}

Proposition: Then $C^1(X)$ is a dense *-subalgebra of \mathcal{A} , invariant under the holomorphic functional calculus.

Let *M* be a *spin^c Riemannian manifold*, $\mathcal{A} = C(M)$, \mathcal{H} the space of L^2 -sections of the *spin bundle* and *D* the corresponding *Dirac operator*, where \mathcal{A} acts by pointwise multiplication.

Let *M* be a *spin^c Riemannian manifold*, $\mathcal{A} = C(M)$, \mathcal{H} the space of L^2 -sections of the *spin bundle* and *D* the corresponding *Dirac operator*, where \mathcal{A} acts by pointwise multiplication.

Theorem (Connes) *The family* $X_M = (\mathcal{A}, \mathcal{H}, D)$ *above is a spectral triple. The geodesic distance between* $x, y \in M$ *can be recovered through*

Let *M* be a *spin^c Riemannian manifold*, $\mathcal{A} = C(M)$, \mathcal{H} the space of L^2 -sections of the *spin bundle* and *D* the corresponding *Dirac operator*, where \mathcal{A} acts by pointwise multiplication.

Theorem (Connes) The family $X_M = (\mathcal{A}, \mathcal{H}, D)$ above is a spectral triple. The geodesic distance between $x, y \in M$ can be recovered through

 $d(x, y) = \sup\{|f(x) - f(y)|; f \in \mathcal{A}, \|[D, f]\| \le 1\}$

Let *M* be a *spin^c Riemannian manifold*, $\mathcal{A} = C(M)$, \mathcal{H} the space of L^2 -sections of the *spin bundle* and *D* the corresponding *Dirac operator*, where \mathcal{A} acts by pointwise multiplication.

Theorem (Connes) The family $X_M = (\mathcal{A}, \mathcal{H}, D)$ above is a spectral triple. The geodesic distance between $x, y \in M$ can be recovered through

 $d(x, y) = \sup\{|f(x) - f(y)|; f \in \mathcal{A}, \|[D, f]\| \le 1\}$

Actually $||[D, f]|| = ||\nabla f||_{L^{\infty}} = ||f||_{\mathcal{C}_{Lip}}$ and $\mathcal{C}^{1}(X) = Lip(M)$.

Let *M* be a *spin^c Riemannian manifold*, $\mathcal{A} = C(M)$, \mathcal{H} the space of L^2 -sections of the *spin bundle* and *D* the corresponding *Dirac operator*, where \mathcal{A} acts by pointwise multiplication.

Theorem (Connes) The family $X_M = (\mathcal{A}, \mathcal{H}, D)$ above is a spectral triple. The geodesic distance between $x, y \in M$ can be recovered through

 $d(x, y) = \sup\{|f(x) - f(y)|; f \in \mathcal{A}, \|[D, f]\| \le 1\}$

Actually $||[D, f]|| = ||\nabla f||_{L^{\infty}} = ||f||_{\mathcal{C}_{Lip}}$ and $\mathcal{C}^{1}(X) = Lip(M)$.

Hence the algebra \mathcal{A} encodes the *space*, the Dirac operator D encodes the *metric*. \mathcal{H} is needed to define D.

Ultrametric on $\boldsymbol{\Xi}$

A *weight* on the rooted tree associated with Ξ is an assignment $\kappa(p) \in (0, \infty)$ on each patch *p* (vertex of the graph), such that

A *weight* on the rooted tree associated with Ξ is an assignment $\kappa(p) \in (0, \infty)$ on each patch *p* (vertex of the graph), such that

• $\kappa(p)$ is non increasing as *p* changes from father to son,

Ultrametric on $\boldsymbol{\Xi}$

A *weight* on the rooted tree associated with Ξ is an assignement $\kappa(p) \in (0, \infty)$ on each patch *p* (vertex of the graph), such that

- $\kappa(p)$ is non increasing as *p* changes from father to son,
- $\kappa(p)$ converges to zero as *p* tends to the end of the path.

A *weight* on the rooted tree associated with Ξ is an assignment $\kappa(p) \in (0, \infty)$ on each patch *p* (vertex of the graph), such that

- $\kappa(p)$ is non increasing as p changes from father to son,
- $\kappa(p)$ converges to zero as *p* tends to the end of the path.

Theorem, (Michon '84) *If* $\xi, \eta \in \Xi$ *let* $\xi \wedge \eta$ *be the least common ancestor of the path* ξ *and* η *. Then* $d_{\kappa}(\xi, \eta) = \kappa(\xi \wedge \eta)$ *defines an ultrametric on* Ξ .

A *weight* on the rooted tree associated with Ξ is an assignement $\kappa(p) \in (0, \infty)$ on each patch *p* (vertex of the graph), such that

- $\kappa(p)$ is non increasing as *p* changes from father to son,
- $\kappa(p)$ converges to zero as *p* tends to the end of the path.

Theorem, (Michon '84) If $\xi, \eta \in \Xi$ let $\xi \wedge \eta$ be the least common ancestor of the path ξ and η . Then $d_{\kappa}(\xi, \eta) = \kappa(\xi \wedge \eta)$ defines an ultrametric on Ξ .

Then $\kappa(p)$ *is the diameter of the set of tilings compatible with p.*

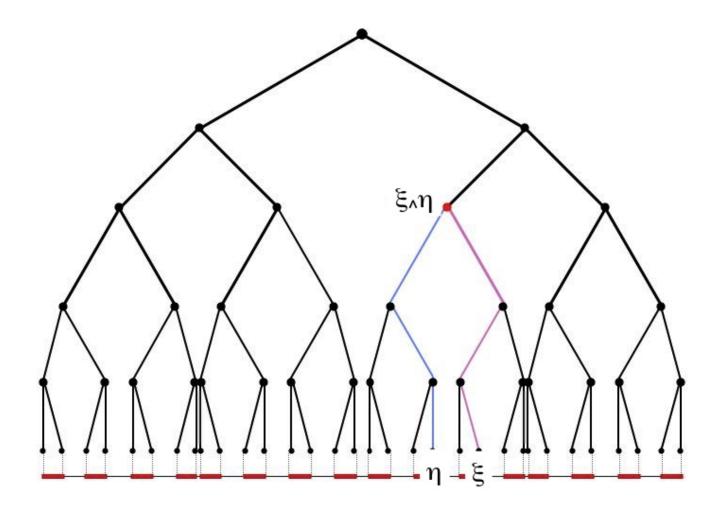
A *weight* on the rooted tree associated with Ξ is an assignement $\kappa(p) \in (0, \infty)$ on each patch *p* (vertex of the graph), such that

- $\kappa(p)$ is non increasing as p changes from father to son,
- $\kappa(p)$ converges to zero as *p* tends to the end of the path.

Theorem, (Michon '84) If $\xi, \eta \in \Xi$ let $\xi \wedge \eta$ be the least common ancestor of the path ξ and η . Then $d_{\kappa}(\xi, \eta) = \kappa(\xi \wedge \eta)$ defines an ultrametric on Ξ .

Then $\kappa(p)$ is the diameter of the set of tilings compatible with p. Each ultrametric on Ξ can be obtained in such a way through a rooted tree defined from the metric.

Ultrametric on Ξ



Ultrametric on Ξ

Examples:

• If *p* is a patch of radius *R*, take $\kappa(p) = 1/R$,

Ultrametric on Ξ

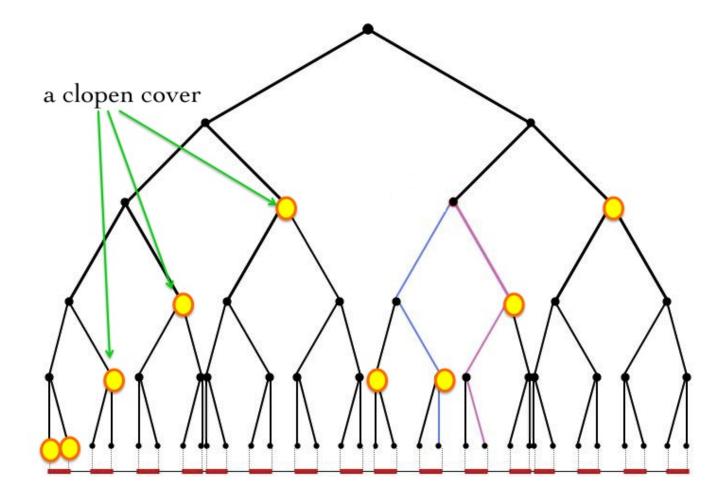
Examples:

- If *p* is a patch of radius *R*, take $\kappa(p) = 1/R$,
- If *p* is a patch, take $\kappa(p)$ to be the *maximum potential energy difference* at the origin, produced by atoms outside *p* on all tilings of Ξ compatible with *p*.

Given *p* a patch, let $\Xi(p)$ be the set of all tilings in Ξ compatible with *p* at the origin. The family $(\Xi(p))_{p\in\mathbb{P}}$ is a basis of clopen set for the topology of Ξ .

Given *p* a patch, let $\Xi(p)$ be the set of all tilings in Ξ compatible with *p* at the origin. The family $(\Xi(p))_{p\in\mathbb{P}}$ is a basis of clopen set for the topology of Ξ .

A *clopen cover* \mathcal{P} is a finite family of patches partitionning Ξ .



Given *p* a patch, let $\Xi(p)$ be the set of all tilings in Ξ compatible with *p* at the origin. The family $(\Xi(p))_{p\in\mathbb{P}}$ is a basis of clopen set for the topology of Ξ .

A *clopen cover* \mathcal{P} is a finite family of patches partitionning Ξ . Then

diam $\mathcal{P} = \max{\kappa(p); p \in \mathcal{P}}$

An infinite sequence $(\mathcal{P}_n)_{n \in \mathbb{N}}$ of clopen cover is called *resolving* if $\lim_{n \to \infty} \operatorname{diam} \mathcal{P}_n = 0$.

• Algebra: $\mathcal{A} = C(\Xi)$,

- Algebra: $\mathcal{A} = C(\Xi)$,
- **Hilbert Space:** $\mathcal{H} = \bigoplus_{n \in \mathbb{N}} \ell^2(\mathcal{P}_n) \otimes \mathbb{C}^2$, with $(\mathcal{P}_n)_{n \in \mathbb{N}}$ a resolving sequence of clopen covers.

- Algebra: $\mathcal{A} = C(\Xi)$,
- **Hilbert Space:** $\mathcal{H} = \bigoplus_{n \in \mathbb{N}} \ell^2(\mathcal{P}_n) \otimes \mathbb{C}^2$, with $(\mathcal{P}_n)_{n \in \mathbb{N}}$ a resolving sequence of clopen covers.
- Dirac Operator: for $\psi \in \mathcal{H}$

$$(D\psi)(p) = \frac{1}{\kappa(p)} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \psi(p) \, .$$

- Algebra: $\mathcal{A} = C(\Xi)$,
- **Hilbert Space:** $\mathcal{H} = \bigoplus_{n \in \mathbb{N}} \ell^2(\mathcal{P}_n) \otimes \mathbb{C}^2$, with $(\mathcal{P}_n)_{n \in \mathbb{N}}$ a resolving sequence of clopen covers.
- Dirac Operator: for $\psi \in \mathcal{H}$

$$(D\psi)(p) = \frac{1}{\kappa(p)} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \psi(p) \, .$$

• **Choice:** it is an assignment, for each $p \in \bigcup_n \mathcal{P}_n$ of two points $\tau(p) = (\xi_p, \eta_p)$, with $\xi_p, \eta_p \in \Xi(p)$ and $\xi_p \wedge \eta_p = p$.

- Algebra: $\mathcal{A} = C(\Xi)$,
- **Hilbert Space:** $\mathcal{H} = \bigoplus_{n \in \mathbb{N}} \ell^2(\mathcal{P}_n) \otimes \mathbb{C}^2$, with $(\mathcal{P}_n)_{n \in \mathbb{N}}$ a resolving sequence of clopen covers.
- Dirac Operator: for $\psi \in \mathcal{H}$

$$(D\psi)(p) = \frac{1}{\kappa(p)} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \psi(p) \, .$$

- **Choice:** it is an assignment, for each $p \in \bigcup_n \mathcal{P}_n$ of two points $\tau(p) = (\xi_p, \eta_p)$, with $\xi_p, \eta_p \in \Xi(p)$ and $\xi_p \wedge \eta_p = p$.
- **Representation**: for each choice τ and $f \in C(\Xi)$

$$(\pi_{\tau}(f)\psi)(p) = \begin{bmatrix} f(\xi_p) & 0\\ 0 & f(\eta_p) \end{bmatrix} \psi(p) \,.$$

The ζ -function: is defined by

$$\zeta(s) = \operatorname{Tr}\left(\frac{1}{|D|^s}\right)$$

The ζ -function: is defined by

$$\zeta(s) = \operatorname{Tr}\left(\frac{1}{|D|^s}\right)$$

Theorem: There is a resolving sequence of clopen covers and an s > 0 such that $\zeta(s) < \infty$ if and only if the metric space (Ξ, d_{κ}) has finite Hausdorff dimension.

The ζ -function: is defined by

$$\zeta(s) = \operatorname{Tr}\left(\frac{1}{|D|^s}\right)$$

Theorem: There is a resolving sequence of clopen covers and an s > 0 such that $\zeta(s) < \infty$ if and only if the metric space (Ξ, d_{κ}) has finite Hausdorff dimension.

If so, the abscissa of convergence, defined by $s_0 = \inf\{s > 0; \zeta(s) < \infty\}$ satisfies

 $s_0 \ge \dim_H(\Xi)$

The ζ -function: is defined by

$$\zeta(s) = \operatorname{Tr}\left(\frac{1}{|D|^s}\right)$$

Theorem: There is a resolving sequence of clopen covers and an s > 0 such that $\zeta(s) < \infty$ if and only if the metric space (Ξ, d_{κ}) has finite Hausdorff dimension.

If so, the abscissa of convergence, defined by $s_0 = \inf\{s > 0; \zeta(s) < \infty\}$ satisfies

$s_0 \ge \dim_H(\Xi)$

There exists a (non unique) resolving sequence of clopen covers $(\mathcal{P}_n)_{n \in \mathbb{N}}$ *, called a Hausdorff sequence, such that* $s_0 = \dim_H(\Xi)$ *.*

The Connes state is defined by

$$\mathcal{T}(f) = \lim_{s \to s_0} \frac{1}{\zeta(s)} \operatorname{Tr} \left(\frac{1}{|D|^s} \, \pi_\tau(f) \right), \qquad f \in \mathcal{C}(\Xi)$$

The Connes state is defined by

$$\mathcal{T}(f) = \lim_{s \to s_0} \frac{1}{\zeta(s)} \operatorname{Tr} \left(\frac{1}{|D|^s} \, \pi_\tau(f) \right), \qquad f \in \mathcal{C}(\Xi)$$

Theorem: If (Ξ, d_{κ}) has finite Hausdorff dimension and if $(\mathcal{P}_n)_{n \in \mathbb{N}}$ is a Hausdorff sequence, the Connes state exists if and only if Ξ has a finite nonzero Hausdorff measure.

The Connes state is defined by

$$\mathcal{T}(f) = \lim_{s \to s_0} \frac{1}{\zeta(s)} \operatorname{Tr} \left(\frac{1}{|D|^s} \, \pi_\tau(f) \right), \qquad f \in \mathcal{C}(\Xi)$$

Theorem: If (Ξ, d_{κ}) has finite Hausdorff dimension and if $(\mathcal{P}_n)_{n \in \mathbb{N}}$ is a Hausdorff sequence, the Connes state exists if and only if Ξ has a finite nonzero Hausdorff measure.

If so, T is independent of the choice τ .

The Connes state is defined by

$$\mathcal{T}(f) = \lim_{s \to s_0} \frac{1}{\zeta(s)} \operatorname{Tr} \left(\frac{1}{|D|^s} \, \pi_\tau(f) \right), \qquad f \in \mathcal{C}(\Xi)$$

Theorem: If (Ξ, d_{κ}) has finite Hausdorff dimension and if $(\mathcal{P}_n)_{n \in \mathbb{N}}$ is a Hausdorff sequence, the Connes state exists if and only if Ξ has a finite nonzero Hausdorff measure.

If so, T is independent of the choice τ .

If so, \mathcal{T} *coincides with the normalized Hausdorff measure on* Ξ *.*

III - The Pearson Laplacian

If $\tau(p) = (\xi_p, \eta_p)$ then

$$[D, \pi_{\tau}(f)] \psi(p) = \frac{f(\xi_p) - f(\eta_p)}{d(\xi_p, \eta_p)} \begin{bmatrix} 0 & -1\\ 1 & 0 \end{bmatrix} \psi(p)$$

If $\tau(p) = (\xi_p, \eta_p)$ then

$$[D, \pi_{\tau}(f)] \psi(p) = \frac{f(\xi_p) - f(\eta_p)}{d(\xi_p, \eta_p)} \begin{bmatrix} 0 & -1\\ 1 & 0 \end{bmatrix} \psi(p)$$

The commutator with the Dirac operator is a coarse grained version of a *directional derivative*.

If $\tau(p) = (\xi_p, \eta_p)$ then

$$[D, \pi_{\tau}(f)] \psi(p) = \frac{f(\xi_p) - f(\eta_p)}{d(\xi_p, \eta_p)} \begin{bmatrix} 0 & -1\\ 1 & 0 \end{bmatrix} \psi(p)$$

The commutator with the Dirac operator is a coarse grained version of a *directional derivative*. In particular

• $\tau(p)$ can be interpreted as a coarse grained version of a *unit tangent vector* at *p*.

If $\tau(p) = (\xi_p, \eta_p)$ then

$$[D, \pi_{\tau}(f)] \psi(p) = \frac{f(\xi_p) - f(\eta_p)}{d(\xi_p, \eta_p)} \begin{bmatrix} 0 & -1\\ 1 & 0 \end{bmatrix} \psi(p)$$

The commutator with the Dirac operator is a coarse grained version of a *directional derivative*. In particular

- $\tau(p)$ can be interpreted as a coarse grained version of a *unit tangent vector* at *p*.
- the set Υ of all possible choices, can be seen as the set of *sections* of the tangent sphere bundle.

If $\tau(p) = (\xi_p, \eta_p)$ then

$$[D, \pi_{\tau}(f)] \psi(p) = \frac{f(\xi_p) - f(\eta_p)}{d(\xi_p, \eta_p)} \begin{bmatrix} 0 & -1\\ 1 & 0 \end{bmatrix} \psi(p)$$

The commutator with the Dirac operator is a coarse grained version of a *directional derivative*. In particular

- $\tau(p)$ can be interpreted as a coarse grained version of a *unit tangent vector* at *p*.
- the set Υ of all possible choices, can be seen as the set of *sections* of the tangent sphere bundle.
- $[D, \pi_{\tau}(f)]$ could be written as $\nabla_{\tau} f$.

• The *choice space* Υ is given by $\prod_p \Upsilon(p)$ where $\Upsilon(p)$ is a clopen subset of $\Xi(p) \times \Xi(p)$.

- The *choice space* Υ is given by $\prod_p \Upsilon(p)$ where $\Upsilon(p)$ is a clopen subset of $\Xi(p) \times \Xi(p)$.
- Let v_p be the probability measure on $\Upsilon(p)$ induced by the Hausdorff measure $\mu_H \otimes \mu_H$ on $\Xi(p) \times \Xi(p)$.

- The *choice space* Υ is given by $\prod_p \Upsilon(p)$ where $\Upsilon(p)$ is a clopen subset of $\Xi(p) \times \Xi(p)$.
- Let v_p be the probability measure on $\Upsilon(p)$ induced by the Hausdorff measure $\mu_H \otimes \mu_H$ on $\Xi(p) \times \Xi(p)$.
- This leads to the probability

$$\nu = \bigotimes_p \ \nu_p$$

- The *choice space* Υ is given by $\prod_p \Upsilon(p)$ where $\Upsilon(p)$ is a clopen subset of $\Xi(p) \times \Xi(p)$.
- Let v_p be the probability measure on $\Upsilon(p)$ induced by the Hausdorff measure $\mu_H \otimes \mu_H$ on $\Xi(p) \times \Xi(p)$.
- This leads to the probability

$$\nu = \bigotimes_p \ \nu_p$$

Hence v_p can be interpreted as the average over the tangent unit sphere at p.

The Pearson quadratic form is defined by (if $f, g \in C(\Xi)$)

$$Q_s(f,g) = \int_{\Upsilon} d\nu(\tau) \operatorname{Tr} \left(\frac{1}{|D|^s} [D, \pi_{\tau}(f)]^* [D, \pi_{\tau}(g)] \right)$$

The Pearson quadratic form is defined by (if $f, g \in C(\Xi)$)

$$Q_s(f,g) = \int_{\Upsilon} d\nu(\tau) \operatorname{Tr} \left(\frac{1}{|D|^s} [D, \pi_{\tau}(f)]^* [D, \pi_{\tau}(g)] \right)$$

Theorem: If (Ξ, d_{κ}) has positive finite Hausdorff measure, for each $s \in \mathbb{R}$, the quadratic forms Q_s is densely defined, closable in $L^2(X, \mu_H)$ and is a Dirichlet form.

The Pearson quadratic form is defined by (if $f, g \in C(\Xi)$)

$$Q_s(f,g) = \int_{\Upsilon} d\nu(\tau) \operatorname{Tr} \left(\frac{1}{|D|^s} [D, \pi_{\tau}(f)]^* [D, \pi_{\tau}(g)] \right)$$

Theorem: If (Ξ, d_{κ}) has positive finite Hausdorff measure, for each $s \in \mathbb{R}$, the quadratic forms Q_s is densely defined, closable in $L^2(X, \mu_H)$ and is a Dirichlet form.

The corresponding positive operator Δ_s has pure point spectrum. It is bounded if and only if $s > \dim_H(\Xi) + 2$ and has compact resolvent otherwise.

The Pearson quadratic form is defined by (if $f, g \in C(\Xi)$)

$$Q_s(f,g) = \int_{\Upsilon} d\nu(\tau) \operatorname{Tr} \left(\frac{1}{|D|^s} [D, \pi_{\tau}(f)]^* [D, \pi_{\tau}(g)] \right)$$

Theorem: If (Ξ, d_{κ}) has positive finite Hausdorff measure, for each $s \in \mathbb{R}$, the quadratic forms Q_s is densely defined, closable in $L^2(X, \mu_H)$ and is a Dirichlet form.

The corresponding positive operator Δ_s has pure point spectrum. It is bounded if and only if $s > \dim_H(\Xi) + 2$ and has compact resolvent otherwise.

The eigenspaces are common to all s's and can be explicitly computed.

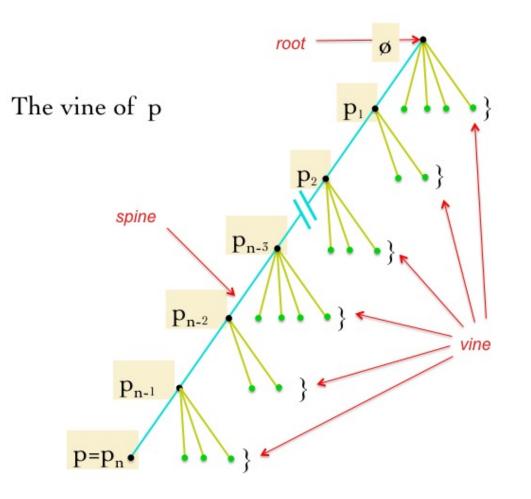
Jump Process

 Δ_s generates a Markov semigroup, thus a stochastic process $(X_t)_{t\geq 0}$ where the X_t 's takes on values in Ξ .

Jump Process

 Δ_s generates a Markov semigroup, thus a stochastic process $(X_t)_{t\geq 0}$ where the X_t 's takes on values in Ξ .

Given a patch p, its *spine* is the set of vertices located along the finite path joining the root to p. The *vine* $\mathcal{V}(p)$ *of* p is the set of patches, not in the spine, which are children of one vertex of the spine.



The vine of a vertex *v*

Jump Process

 Δ_s generates a Markov semigroup, thus a stochastic process $(X_t)_{t\geq 0}$ where the X_t 's takes on values in Ξ .

Given a patch p, its *spine* is the set of vertices located along the finite path joining the root to p. The *vine* $\mathcal{V}(p)$ *of* p is the set of patches, not in the spine, which are children of one vertex of the spine.

If χ_p is the characteristic function of $\Xi(p)$, the Pearson operator acts as

$$\Delta_s \chi_p = \sum_{q \in \mathcal{V}(p)} M(p,q)(\chi_q - \chi_p)$$

Jump Process

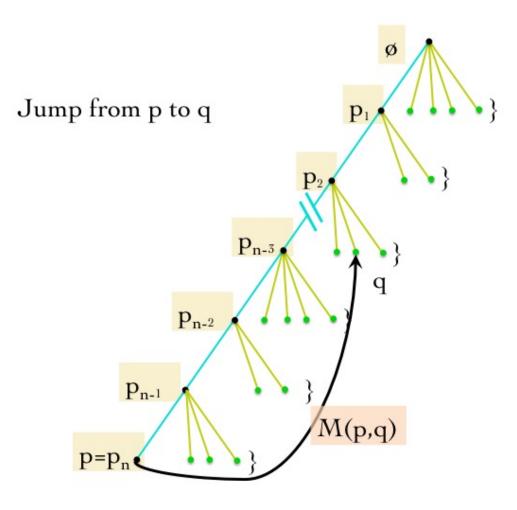
 Δ_s generates a Markov semigroup, thus a stochastic process $(X_t)_{t\geq 0}$ where the X_t 's takes on values in Ξ .

Given a patch p, its *spine* is the set of vertices located along the finite path joining the root to p. The *vine* $\mathcal{V}(p)$ *of* p is the set of patches, not in the spine, which are children of one vertex of the spine.

If χ_p is the characteristic function of $\Xi(p)$, the Pearson operator acts as

$$\Delta_s \chi_p = \sum_{q \in \mathcal{V}(p)} M(p,q)(\chi_q - \chi_p)$$

where M(p,q) > 0 represents the probability rate (per unit time) for X_t to jump from $\Xi(p)$ to $\Xi(q)$.



Jump process from *v* to *w*

Jump Process

Concretely, if \hat{q} denotes the *father* of *q* (which belongs to the spine)

$$M(p,q) = 2\kappa(\hat{q})^{s-2} \frac{\mu_p}{Z_{\hat{q}}} \qquad \mu_p = \mu_H(\Xi(p))$$

where $Z_{\hat{q}}$ is the *normalization constant* for the measure $v_{\hat{q}}$ on the set of choices at \hat{q} , namely

$$Z_{\hat{q}} = \sum_{q' \neq q'' \in \mathbf{Ch}(\hat{q})} \mu_{q'} \mu_{q''}$$

where $Ch(\hat{q})$ denotes the set of children of \hat{q} .

uOttawa

Thanks for Listening!