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I)- Aperiodic media :

Examples

1. Perfect crystals in d-dimensions:
translation and crystal symmetries.
Translation group T ' Z

d.

2. Quasicrystals: no translation symmetry, but
icosahedral symmetry. Ex.:

(a) Al62.5Cu25Fe12.5;

(b) Al70Pd22Mn8;

(c) Al70Pd22Re8;

3. Disordered media: random atomic positions

(a) Normal metals (with defects or impurities);

(b) Doped semiconductors (Si, AsGa, . . .);
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σ ≈ σ0 + a T γ with 1 < γ < 1.5

for 1 K ≤ T ≤ 1000 K
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Mathematical Description

1. Closing suitably the set of translated of the set of
atomic positions leads to the Hull : it is a compact
metrizable space Ω endowed with an R

d-action.

2. An invariant ergodic probability measure P is pro-
vided by the Gibbs state at zero temperature.

3. Observables are random operators A = (Aω)ω∈Ω
acting on the Hilbert space H of quantum states
(such as L2(Rd) for spinless electrons) with:

(a) Covariance : T (a)AωT (a)−1 = Aτ−aω.

(b) ω 7→ Aω is strongly continuous.

4. The trace per unit volume, defined by P, exists:

TP(A) = lim
Λ↑Rd

1

|Λ|
Tr(Aω �Λ) =

∫

Ω

dP(ω)〈x|Aω|x〉

5. Differential: (~∇A)ω = −ı[ ~X,Aω]
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II)- Coherent Transport :

Local Exponents

Given a positive measure µ on R:

α±
µ (E) = lim

{

sup
inf

}

ε ↓ 0

ln
∫

E + ε

E − ε
dµ

ln ε

For ∆ a Borel subset of R:

α±
µ (∆) = µ−ess

{

sup
inf

}

E∈∆
α±

µ (E)

1. For all E, α±
µ (E) ≥ 0.

α±
µ (E) ≤ 1 for µ-almost all E.

2. If µ is ac on ∆ then α±
µ (∆) = 1,

if µ is pp on ∆ then α±
µ (∆) = 0.

3. If µ and ν are equivalent measures on ∆, then
α±

µ (E) = α±
ν (E) µ-almost surely.

4. α+
µ coincides with the packing dimension.

α−
µ coincides with the Hausdorff dimension.
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Fractal Exponents

For p ∈ R :

D±
µ, ∆(q) = lim

q′→q

1

q′ − 1
lim
ε ↓ 0

{

sup

inf

} ln

(

∫

∆ dµ(E)
{

∫ E + ε
E − ε dµ

}q′−1
)

ln ε

1. D±
µ, ∆(q) is a non decreasing function of q.

2. D±
µ, ∆(q) is not an invariant of the measure class, in

general.

3.(a) If µ is ac on ∆ then D±
µ, ∆(q) = 1.

(b) If µ is pp on ∆ then D±
µ, ∆(q) = 0.
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Spectral Exponents

Given a Hamiltonian H = (Hω)ω∈Ω, namely a selfad-
joint observable, we define:

1. The local density of state (LDOS) is the spectral
measure of Hω relative to a vector ϕ ∈ H.

2. The corresponding local exponent is obtained after
maximizing (+) or minimizing (-) over ϕ. It is de-
noted α±

LDOS
. It is P − a. s. independent of ω.

3. The density of states (DOS) as the measure defined
by

∫

dNP(E)f (E) = TP(f (H))

4. The local exponent associated with the DOS is de-
noted by α±

DOS
.

5. Inequality : α±
LDOS

(∆) ≤ α±
DOS

(∆) .

6. The fractal exponents for the LDOS are defined in
the same way, provided we consider the average over
ω before taking the logarithm and the limit ε ↓ 0.
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Transport Exponents

1. For ∆ ⊂ R Borel, let P∆, ω be the corresponding
spectral projection of Hω. Set:

~Xω(t) = eıtHω ~X e−ıtHω

2. The averaged spread of a typical wave packet with
energy in ∆ is measured by:

L
(p)
∆ (t) =

(
∫ t

0

ds

t

∫

Ω

dP 〈x|P∆, ω| ~Xω(t) − ~X|pP∆, ω|x〉

)1/p

3. Define β = β±
p (∆) similarly so that L

(p)
∆ (t) ∼ tβ.

4. β−
p (∆) ≤ β+

p (∆).

β±
p (∆) are non decreasing in p.

5. Heuristic
β = 0 → absence of diffusion (ex: localization),
β = 1 → ballistic motion (ex: in crystals),
β = 1/2 → quantum diffusion
(ex: weak localization).
β < 1 → subballistic regime,
β < 1/2 → subdiffusive regime
(ex: in quasicrystals).
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Inequalities

1. Guarneri’s inequality: (Guarneri ’89, Combes , Last ’96)

β±
p (∆) ≥

α±
LDOS

(∆)

d

2. BGT inequalities: (Barbaroux, Germinet, Tcheremchantsev ’00)

β±
p (∆) ≥

1

d
D±

LDOS,∆(
d

d + p
)

3. Heuristics:

(a) ac spectrum implies β ≥ 1/d.

(b) ac spectrum implies ballistic motion in d = 1

(c) ac spectrum is compatible with quantum diffu-
sion in d = 2. This is expected in weak localiza-
tion regime.

(d) ac spectrum is compatible with subdiffusion for
d ≥ 3.
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Results for Models

1. For Jacobi matrices (1D chains), the position oper-
ator is defined by the spectral measure (orthogonal
polynomials) ⇒ transport exponents should be de-
fined through the spectral ones.

2. For Jacobi matrices of a Julia set, with µ the σ-
balanced measure (Barbaroux, Schulz-Baldes ’99)

β+
p ≤ Dµ(1 − p) for all 0 ≤ p ≤ 2

3. If H1, · · · , Hd are Jacobi matrices, η1, · · · , ηd are
positive numbers and if

H(η) =

d
∑

j=1

ηj 1 ⊗ · · · ⊗ Hj ⊗ · · · ⊗ 1

Then (Schulz-Baldes, Bellissard ’00)

β+
p (H(η)) = max

j
β+
p (Hj)

αLDOS(H
(η)) = min{1,

∑

j

αLDOS(Hj)}

for a.e. η. In addition if
∑

j αLDOS(Hj) > 1, H(η)

has a.c. spectrum.
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4. For any ε > 0, there is a Jacobi matix H0 such that
if Hj = H0, ∀j, H(η) has a.c. spectrum for d ≥ 3
and spectral exponent ≤ 1/d − ε for a.e. η.
(Schulz-Baldes, Bellissard ’00)

5. There is a class of models of Jacobi matrices on an
infinite dimensional hypercube with a.c. spectrum
and vanishing transport exponents.
(Vidal, Mosseri, Bellissard ’99)
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III)- Dissipative Transport :

The Drude Model (1900)

Hypothesis :

1. Electrons in a metal are free classical particles of
mass m∗ and charge q.

2. They experience collisions at random poissonnian
times · · · < tn < tn+1 < · · ·, with average relax-
ation time τrel.

3. If pn is the electron momentum between times tn
and tn+1, then the pn+1−pn’s are independent ran-
dom variables distributed according to the Maxwell
distribution at temperature T .

Then the conductivity follows the Drude formula

σ =
q2n

m∗
τrel



Transport Princeton Univ Dec. 12 2000 13

random scatterers

p p
p

p

1 2
3

4

test particle

The Drude Kinetic Model



Transport Princeton Univ Dec. 12 2000 14

Anomalous Drude formula (RTA)

1. Replace the classical dynamics by the quantum one
electron dynamic in the aperiodic solid.

2. At each collision, force the density matrix to come
back to equilibrium. (Relaxation time Approxima-
tion or RTA).

3. There is then one relaxation time τrel. The electric
conductivity is then given by Kubo’s formula:

σi,j =
q2

~
TP

(

∂j

(

1

1 + eβ(H−µ)

)

1

1/τrel − LH
∂iH

)

Here q is the charge of the carriers, β = 1/kBT , µ
is the chemical potential and LH = ı/~ [H, .].

4. For the Hilbert-Schmidt inner product defined by
TP, LH is anti-selfadjoint. Thus as τrel ↑ ∞, the
resolvent of LH is evaluated closer to the spectrum
near 0. Then (Mayou ’92, Sire ’93 Bellissard, Schulz-Baldes ’95):

σ
τrel ↑ ∞
∼ τ 2βF − 1

rel

where βF is the transport exponent β2(EF ) evalu-
ated at Fermi level.
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Heuristic

1. In practice, τrel ↑ ∞ as T ↓ 0.

2. If βF = 1 (ballistic motion), σ ∼ τrel (Drude). The
system behaves as a conductor.

3. If βF = 0 (absence of diffusion) σ ∼ 1/τrel. The
system behaves as an insulator. The RTA is incor-
rect however at low temperature.

4. If βF = 1/2 (quantum diffusion), σ ∼ const.:
residual conductivity at low temperature.

5. For 1/2 < βF ≤ 1, σ ↑ ∞ as T ↓ 0:the system
behaves as a conductor.

6. For 0 ≤ βF < 1/2, σ ↓ 0 as T ↓ 0: the system
behaves as an insulator.

7. If we assume in addition that the Bloch law τrel ∼
T−5 (Roche, Fujiwara ’98), then σ follows a scaling law
(compatible with the behaviour of quasicrystals).
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Beyond the RTA

1. At low temperature, the RTA is invalid. There is a
spectrum of relaxation times.

2. A kinetic model of quantum jumps has been pro-
posed leading to the validity of linear response.
(Spehner, Bellissard ’00, Bellissard, Rebolledo, Spehner, von Waldenfels ’00).

3. The current admits two parts : the coherent one,
induced by ~J = ı[ ~X,H ], and a dissipative one in-
cluding other effects like phonon drag, etc.

4. The Kubo formula becomes more involved and can
be decomposed into five contributions in general.

5. Applied to strongly localized electrons, this formal-
ism gives rise to a justification of the Abrahams and
Miller random resistor network model (Spehner, Thesis ’00,

Spehner, Bellissard, ’00).
This model describes the Mott variable range hop-
ping and leads to

σ
T ↓ 0
∼ e (−T0

T )1/d+1
(Mott ’64)
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IV)- Conclusions :

1. The electron dynamics in an aperiodic solid can be described
by using random operators and rules of Non Commutative
Calculus.

2. The quantum evolution of a typical wave packet leads to ano-
malous diffusion, described through various spectral and trans-
port exponents.

3. These exponents are related by inequalities that allow subdif-
fusion together with absolutely continuous spectrum for d ≥ 3.

4. Dissipative mechanisms, such as electron-phonon interaction,
may be described through kinetic models, generalizing the
Drude model.

5. The interplay between coherent and dissipative transport is
revealed at low temperature. Anomalous diffusion then leads
to an anomalous Drude formula within the RTA.

6. The anomalous Drude formula may explain the behaviour of
quasicrystals.

7. Beyond the RTA, the kinetic models are still valid but involve
more conditions. One consequence is the justification of the
Abraham-Miller random resistor network which usually leads
to a better understanding of the Mott variable range hopping
conductivity, in strongly disordered systems.


