THE TOPOLOGY of TILINGSPACES

Jean BELLISSARD
Georgia Institute of Technology, Atlanta
School of Mathematics \& School of Physics
e-mail: jeanbel@math.gatech.edu

Sponsoring

This material is hased upon work supported by the National Science Foundation Grant No. DMS-1160962

Contributors

R. Benedetti, U. Pisa, Italy
J.-M. Gambaudo, U. Nice, France
D.J.L. Herruann, U. Tïbingen, Germany
J. Kellendonk, U. Lyon I, France
J. Savinien, UU. Metz, France
M. Zarrouati, U. Toulouse, France

Main References

J. Bellissard, The Gap Labeling Theorems for Schrödinger's Operators, in From Number Theory to Physics, pp. 538-630, Les Houches March 89, Springer, J.M. Luck, P. Moussa \& M. Waldschmidt Eds., (1993).
J. Kellendonk,

The local structure of tilings and their integer group of coinvariants, Comm. Math. Phys., 187, (1997), 1823-1842.
J. E. Anderson, I. Putnam,

Topological invariants for substitution tilings and their associated C^{*}-algebras, Ergodic Theory Dynam. Systems, 18, (1998), 509-537.
A. H. Forrest, J. Hunton,

The cohomology and K-theory of commuting homeomorphisms of the Cantor set, Ergodic Theory Dynam. Systems, 19, (1999), 611-625.
J. C. Lagarias,

Geometric models for quasicrystals I \& II,
Discrete Comput. Geom., 21, (1999), 161-191 \& 345-372.
J. Bellissard, D. Herrmann, M. Zarrouati,

Hull of Aperiodic Solids and Gap Labeling Theorems,
In Directions in Mathematical Quasicrystals, CRM Monograph Series,
Volume 13, (2000), 207-259, M.B. Baake \& R.V. Moody Eds., AMS Providence.
L. Sadun, R. F. Williams,

Tiling spaces are Cantor set fiber bundles,
Ergodic Theory Dynam. Systems, 23, (2003), 307-316.
J. Bellissard, R. Benedetti, J. M. Gambaudo,

Spaces of Tilings, Finite Telescopic Approximations, Comm. Math. Phys., 261, (2006), 1-41.
J. Bellissard, J. Savinien,

A Spectral Sequence for the K-theory of Tiling Spaces, arXiv:0705.2483, submitted to Ergod. Th. Dyn. Syst., 2007.

Content

1. Tilings, Tilings...
2. The Hull as a Dynamical System
3. Branched Oriented Flat Riemannian Manifolds
4. Cohomology and K-Theory
5. Conclusion

I - Tilings, Tilings,...

- A triangle tiling -

- Dominos on a triangular lattice -

- Building the chair tiling -

- The chair tiling -

- The Penrose tiling -

- Kites and Darts -

- Rhombi in Penrose's tiling -

- Inflation rules in Penrose's tiling -

- The Penrose tiling -

- The octagonal tiling -

- Octagonal tiling: inflation rules -

- Another octagonal tiling -

- Another octagonal tiling -

- The Pinwheel Tiling -

Aperiodic Materials

1. Periodic Crystals in d-dimensions: translation and crystal symmetries.
Translation group $\mathcal{T} \simeq \mathbb{Z}^{d}$.
2. Periodic Crystals in a Uniform Magnetic Field; magnetic oscillations, Shubnikov-de Haas, de Haas-van Alfen. The magnetic field breaks the translation invariance to give some quasiperiodicity.
3. Quasicrystals: no translation symmetry, but icosahedral symmetry. Ex.:
(a) $\mathrm{Al}_{\mathbf{6 2 . 5}} \mathrm{Cu}_{\mathbf{2 5}} \mathrm{Fe}_{\mathbf{1 2 . 5}}$;
(b) $\mathrm{Al}_{70} \mathrm{Pd}_{22} \mathrm{Mn}_{8}$;
(c) $\mathrm{Al}_{70} \mathrm{Pd}_{22} \mathrm{Re}_{8}$;
4. Disordered Media: random atomic positions
(a) Normal metals (with defects or impurities);
(b) Alloys, bulk metallic glasses (CuZr-alloys)
(c) Doped semiconductors ($\mathbf{S i}, \mathbf{A s G a}, \ldots$);
(d) $3 D$-topological insulators $\left(\mathbf{B i}_{0.9} \mathbf{S b}_{0.1}\right)$

- The icosahedral quasicrystal $A l P d M n$ -

- The icosahedral quasicrystal HoMgZn -

II - The Hull as a Dynamical System

Delone Sets

- The set \mathcal{V} of atomic positions is uniformly discrete if there is $b>0$ such that in any ball of radius b there is at most one atomic nucleus.
(Then minimum distance between atoms is $\geq 2 b$)
- The set \mathcal{V} is relatively dense if there is $h>0$ such that in any ball of radius h there is at least one atomic nucleus.
(Then maximal vacancy diameter is $\leq 2 h$)
- If \mathcal{V} is both uniformly discrete and relatively dense, it is called a Delone set.
- Del $_{b, h}$ denotes the set of Delone sets with parameters b, h.

Voronoi Cells

- Let $\mathcal{V} \in \operatorname{Del}_{b, h}$. If $x \in \mathcal{V}$ its Voronoi cell is defined by

$$
V(x)=\left\{y \in \mathbb{R}^{d} ;|y-x|<\left|y-x^{\prime}\right| \forall x^{\prime} \in \mathcal{V}, x^{\prime} \neq x\right\}
$$

$V(x)$ is open. Its closure $T(x)=\overline{V(x)}$ is called the Voronoi tile of x

Proposition: If $\mathcal{V} \in \mathrm{Del}_{r_{0}, r_{1}}$ the Voronoi tile of any $x \in \mathcal{V}$ is a convex polytope

Voronoi Cells

- Let $\mathcal{V} \in \operatorname{Del}_{b, h}$. If $x \in \mathcal{V}$ its Voronoi cell is defined by

$$
V(x)=\left\{y \in \mathbb{R}^{d} ;|y-x|<\left|y-x^{\prime}\right| \forall x^{\prime} \in \mathcal{V}, x^{\prime} \neq x\right\}
$$

$V(x)$ is open. Its closure $T(x)=\overline{V(x)}$ is called the Voronoi tile of x

Proposition: If $\mathcal{V} \in \mathrm{Del}_{r_{0}, r_{1}}$ the Voronoi tile of any $x \in \mathcal{V}$ is a convex polytope containing the ball $\overline{\mathrm{B}}\left(x ; r_{0}\right)$ and contained in the ball $\overline{\mathrm{B}}\left(x ; r_{1}\right)$ with $b=r_{0}, h=r_{1}$.

The Delone Graph

Proposition: the Voronoi tiles of a Delone set touch face-to-face

The Delone Graph

Proposition: the Voronoi tiles of a Delone set touch face-to-face

Two atoms are nearest neighbors if their Voronoi tiles touch along a face of maximal dimension.

The Delone Graph

Proposition: the Voronoi tiles of a Delone set touch face-to-face

Two atoms are nearest neighbors if their Voronoi tiles touch along a face of maximal dimension.

An edge is a pair of nearest neighbors. \mathcal{E} denotes the set of edges.

The Delone Graph

Proposition: the Voronoi tiles of a Delone set touch face-to-face

Two atoms are nearest neighbors if their Voronoi tiles touch along a face of maximal dimension.

An edge is a pair of nearest neighbors. \mathcal{E} denotes the set of edges.

The family $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ is the Delone graph.

Finite Local Complexity

A discrete set $\mathcal{V} \in \operatorname{Del}_{b, h}$ has finite local complexity (FLC), whenever its Delone tiling has only finitely many tiles modulo translation

Equivalently \mathcal{V} is FLC iff the set $\mathcal{V}-\mathcal{V}$ of vectors joining two points in \mathcal{V} is discrete and closed.

Point Sets and Point Measures

$\mathfrak{M}\left(\mathbb{R}^{d}\right)$ is the set of Radon measures on \mathbb{R}^{d} namely the dual space to $C_{C}\left(\mathbb{R}^{d}\right)$ (continuous functions with compact support), endowed with the weak ${ }^{*}$ topology.

For \mathcal{V} a uniformly discrete point set in \mathbb{R}^{d} :

$$
v:=v^{\nu}=\sum_{y \in \mathcal{V}} \delta(x-y) \quad \in \mathfrak{M}\left(\mathbb{R}^{d}\right) .
$$

The Hull

A point measure is $\mu \in \mathfrak{M}\left(\mathbb{R}^{d}\right)$ such that $\mu(B) \in \mathbb{N}$ for any ball $B \subset \mathbb{R}^{d}$. Its support is

1. Discrete.
2. b-Uniformly discrete: iff $\forall B$ ball of radius $b, \mu(B) \leq 1$.
3. h-Relatively dense: iff for each ball B of radius $h, \mu(B) \geq 1$.
\mathbb{R}^{d} acts on $\mathfrak{M}\left(\mathbb{R}^{d}\right)$ by translation.

Theorem 1 The set of b-uniformly discrete point measures is compact and \mathbb{R}^{d}-invariant. Its subset of h-relatively dense measures is compact and \mathbb{R}^{d}-invariant.

Definition 1 Given \mathcal{V} a uniformly discrete subset of \mathbb{R}^{d}, the Hull of \mathcal{V} is the closure in $\mathfrak{M}\left(\mathbb{R}^{d}\right)$ of the \mathbb{R}^{d}-orbit of v^{ν}.

Hence the Hull is a compact metrizable space on which \mathbb{R}^{d} acts by homeomorphisms.

Properties of the Hull

If $\mathcal{V} \subset \mathbb{R}^{d}$ is b-uniformly discrete with $\operatorname{Hull} \Omega$, then, using compactness

1. each point $\omega \in \Omega$ is an b-uniformly discrete point measure with support \mathcal{V}_{ω}.
2. if $\mathcal{V} \in \operatorname{Del}_{b, h}$, so are all $\mathcal{V}_{\omega}{ }^{\prime}$ s.
3. if, in addition, \mathcal{V} is $F L C$, so are all the \mathcal{V}_{ω} 's. Moreover then $\mathcal{V}-\mathcal{V}=\mathcal{V}_{\omega}-\mathcal{V}_{\omega} \forall \omega \in \Omega$.

Definition 2 The transversal of the Hull Ω of a uniformly discrete set is the set of $\omega \in \Omega$ such that $0 \in \mathcal{V}_{\omega}$.

Theorem 2 If \mathcal{V} is FLC, then its transversal is completely discontinuous.

Local Isomorphism Classes and Tiling Space

A patch is a finite subset of \mathcal{V} of the form

$$
p=(\mathcal{V}-x) \cap \overline{B(0, r)} \quad x \in \mathcal{V}, r \geq 0
$$

Given \mathcal{V} a repetitive, FLC, Delone set let \mathcal{W} be its set of finite patches: it is called the the \mathcal{V}-dictionary.

A Delone set (or a Tiling) \mathcal{V}^{\prime} is locally isomorphic to \mathcal{V} if it has the same dictionary. The Tiling Space of \mathcal{V} is the set of Local Isomorphism Classes of \mathcal{V}.

Theorem 3 The Tiling Space of \mathcal{V} coincides with its Hull.

Minimality

\mathcal{V} is repetitive if for any finite patch p there is $R>0$ such that each ball of radius R contains an ϵ-approximant of a translated of p.

Theorem $4 \mathbb{R}^{d}$ acts minimaly on Ω if and only if \mathcal{V} is repetitive.

Examples

1. Crystals: $\Omega=\mathbb{R}^{d} / \mathcal{T} \simeq \mathbb{T}^{d}$ with the quotient action of \mathbb{R}^{d} on itself. (Here \mathcal{T} is the translation group leaving the lattice invariant. \mathcal{T} is isomorphic to \mathbb{Z}^{D}.)
The transversal is a finite set (number of point per unit cell).
2. Impurities in Si : let \mathcal{V} be the lattices sites for Si atoms (it is a Bravais lattice). Let \mathfrak{A} be a finite set (alphabet) indexing the types of impurities.
The transversal is $X=\mathfrak{A}^{Z^{d}}$ with \mathbb{Z}^{d}-action given by shifts.
The Hull Ω is the mapping torus of X.

- The Hull of a Periodic Lattice -

Quasicrystals

Use the cut-and-project construction:

$$
\begin{gathered}
\mathbb{R}^{d} \simeq \mathcal{E}_{\|} \stackrel{\pi_{\|}}{\longleftrightarrow} \mathbb{R}^{n} \xrightarrow{\pi_{\perp}} \mathcal{E}_{\perp} \simeq \mathbb{R}^{n-d} \\
\nu \stackrel{\pi_{\|}}{\longleftarrow} \tilde{\mathcal{V}} \xrightarrow{\pi_{\perp}} W,
\end{gathered}
$$

Here

1. $\tilde{\mathcal{V}}$ is a lattice in \mathbb{R}^{n},
2. the window W is a compact polytope.
3. \mathcal{V} is the quasilattice in $\mathcal{E}_{\|}$defined as

$$
\mathcal{V}=\left\{\pi_{\|}(m) \in \mathcal{E}_{\|} ; m \in \tilde{\mathcal{V}}, \pi_{\perp}(m) \in W\right\}
$$

- The cut-and-project construction -

- The transversal of the Octagonal Tiling is completely disconnected -

III - The Gap Labeling Theorem

J. Bellissard, R. Benedetti, J.-. Gambaudo, Commun. Math. Phys., 261, (2006), 1-41.
J. Kaminker, I. Putnam, Michigan Math. J., 51, (2003), 537-546.
M. Benameur, H. Oyono-Orono, C. R. Math. Acad. Sci. Paris, 334, (2002), 667-670.

Schrödinger's Operator

Ignoring electrons-electrons interactions, the one-electron Hamiltonian is given by

$$
H_{\omega}=-\frac{\hbar^{2}}{2 m} \Delta+\sum_{y \in \mathcal{V}_{\omega}} v(\cdot-y)
$$

Its integrated density of states (IDS) is defined by

$$
\mathcal{N}(E)=\lim _{\Lambda \uparrow \mathbb{R}^{d}} \frac{1}{|\Lambda|} \#\left\{\text { eigenvalues of } H_{\omega} \upharpoonright_{\Lambda} \leq E\right\}
$$

For any \mathbb{R}^{d}-invariant probability measure \mathbb{P} on Ω the limit exists a.e. and is independent of ω. It defines a nondecreasing function of E constant on the spectral gaps of H_{ω}. It is asymptotic at large E's to the IDS of the free Hamiltonian.

- An example of IDS -

Phonons, Vibrational Modes

Atom vibrations in the harmonic approximation are solution of

$$
M \frac{d^{2} \vec{u}_{(\omega, x)}}{d t^{2}}=\sum_{y \in \mathcal{V}_{\omega} ; y \neq x} K_{\omega}(x, y)\left(\vec{u}_{(\omega, x)}-\vec{u}_{(\omega, y)}\right)
$$

- $M=$ atomic mass,
- $\vec{u}_{(\omega, x)}$ displacement vector of the atom located at $x \in \mathcal{V}_{\omega}$,
- $K_{\omega}(x, y)$ is the matrix of spring constants.

The density of vibrational modes (IDVM) is the IDS of $K_{\omega}^{1 / 2}$.

Gap Labels

Theorem 5 The value of the IDS or of the IDVM on gaps is a linear combination of the occurrence probabilities of finite patches with integer coefficients.

The proof goes through the group of K-theory of the hull. The result is model independent.
The abstract result goes back to 1982 (J.B). In 1D, proved in 1993 (JB). Recent proof in any dimension for aperiodic, repetitive, aperiodic tilings by Kaminker-Putnam, Benameur \& Oyono-Oyono, JB-Bendetti-Gambaudo in 2001.

IV - Branched Oriented Flat Riemannian Manifolds

Laminations and Boxes

A lamination is a foliated manifold with C^{∞}-structure along the leaves but only finite C^{0}-structure transversally. The Hull of a Delone set is a lamination with \mathbb{R}^{d}-orbits as leaves.

If \mathcal{V} is a FLC, repetitive, Delone set, with Hull Ω a box is the homeomorphic image of

$$
\phi:(\omega, x) \in F \times U \mapsto \mathrm{~T}^{-x} \omega \in \Omega
$$

if F is a clopen subset of the transversal, $U \subset \mathbb{R}^{d}$ is open and T denotes the \mathbb{R}^{d}-action on Ω.

A quasi-partition is a family $\left(B_{i}\right)_{i=1}^{n}$ of boxes such that $\bigcup_{i} \overline{B_{i}}=\Omega$ and $B_{i} \cap B_{j}=\emptyset$.

Theorem 6 The Hull of a FLC, repetitive, Delone set admits a finite quasi-partition. It is always possible to choose these boxes as $\phi(F \times U)$ with U a d-rectangle.

Branched Oriented Flat Manifolds

Flattening a box decomposition along the transverse direction leads to a Branched Oriented Flat manifold. Such manifolds can be built from the tiling itself as follows

Step 1:

1. X is the disjoint union of all prototiles;
2. glue prototiles T_{1} and T_{2} along a face $F_{1} \subset T_{1}$ and $F_{2} \subset T_{2}$ if F_{2} is a translated of F_{1} and if there are $x_{1}, x_{2} \in \mathbb{R}^{d}$ such that $x_{i}+T_{i}$ are tiles of \mathcal{T} with $\left(x_{1}+T_{1}\right) \cap\left(x_{2}+T_{2}\right)=x_{1}+F_{1}=x_{2}+F_{2}$;
3. after identification of faces, X becomes a branched oriented flat manifold (BOF) B_{0}.

- Branching -

- Vertex branching for the octagonal tiling -

Step 2:

1. Having defined the patch p_{n} for $n \geq 0$, let \mathcal{V}_{n} be the subset of \mathcal{V} of points centered at a translated of p_{n}. By repetitivity this is a FLC repetitive Delone set too. Its prototiles are tiled by tiles of \mathcal{V} and define a finite family \mathfrak{P}_{n} of patches.
2. Each patch in $\mathcal{T} \in \mathfrak{P}_{n}$ will be collared by the patches of \mathfrak{P}_{n-1} touching it from outside along its frontier. Call such a patch modulo translation a a collared patch and \mathfrak{P}_{n}^{c} their set.
3. Proceed then as in Step 1 by replacing prototiles by collared patches to get the BOF-manifold B_{n}.
4. Then choose p_{n+1} to be the collared patch in $\mathfrak{P}_{n}^{\mathcal{C}}$ containing p_{n}.

- A collared patch -

Step 3:

1. Define a BOF-submersion $f_{n}: B_{n+1} \mapsto B_{n}$ by identifying patches of order n in B_{n+1} with the prototiles of B_{n}. Note that $D f_{n}=\mathbf{1}$.
2. Call Ω the projective limit of the sequence

$$
\cdots \xrightarrow{f_{n+1}} B_{n+1} \xrightarrow{f_{n}} B_{n} \xrightarrow{f_{n-1}} \cdots
$$

3. $X_{1}, \cdots X_{d}$ are the commuting constant vector fields on B_{n} generating local translations and giving rise to a \mathbb{R}^{d} action T on Ω.

Theorem 7 The dynamical system

$$
\left(\Omega, \mathbb{R}^{d}, \mathrm{~T}\right)=\lim _{\leftarrow}\left(B_{n}, f_{n}\right)
$$

obtained as inverse limit of branched oriented flat manifolds, is conjugate to the Hull of the Delone set of the tiling \mathcal{T} by an homemorphism.

V - Cohomology and K-Theory

Čech Cohomology of the Hull

Let \mathcal{U} be an open covering of the Hull. If $U \in \mathcal{U}, \mathcal{F}(U)$ is the space of integer valued locally constant function on U.

For $n \in \mathbb{N}$, the n-chains are the element of $C^{n}(\mathcal{U})$, namely the free abelian group generated by the elements of $\mathcal{F}\left(U_{0} \cap \cdots \cap U_{n}\right)$ when the U_{i} varies in \mathcal{U}. A differential is defined by

$$
\begin{gathered}
d: C^{n}(\mathcal{U}) \mapsto C^{n+1}(\mathcal{U}) \\
d f\left(\bigcap_{i=0}^{n+1} U_{i}\right)=\sum_{j=0}^{n}(-1)^{j} f\left(\bigcap_{i: i \neq j} U_{i}\right)
\end{gathered}
$$

This defines a complex with cohomology $\check{H}^{n}(\mathcal{U}, \mathbb{Z})$. The Čech cohomology group of the Hull Ω is defined as

$$
\check{H}^{n}(\Omega, \mathbb{Z})=\underset{\mathcal{U}}{\lim } \check{H}^{n}(\mathcal{U}, \mathbb{Z})
$$

with ordering given by refinement on the set of open covers. Thanks to properties of the cohomology, if f_{n}^{*} is the map induced by f_{n} on the cohomology

$$
\check{H}^{n}(\Omega, \mathbb{Z})=\underset{n}{\lim }\left(\check{H}^{n}\left(B_{n}, \mathbb{Z}\right), f_{n}^{*}\right)
$$

Examples

J. E. Anderson, I. Putnam, Ergodic Theory Dynam. Systems, 18, (1998), 509-537.
L. Sadun, Topology of Tiling Spaces. AMS (2008)

Examples

J. E. Anderson, I. Putnam, Ergodic Theory Dynam. Systems, 18, (1998), 509-537.
L. Sadun, Topology of Tiling Spaces. AMS (2008)

- Fibonacci: divides \mathbb{R} into intervals a, b of length $1, \sigma=(\sqrt{5}-1) / 2$ according to the substitution rule $a \mapsto a b, b \mapsto a$. Then $H^{0}=\mathbb{Z}, H^{1}=\mathbb{Z}^{2}$

- The Anderson-Putnam complex for the Fibonacci tiling -

Examples

J. E. Anderson, I. Putnam, Ergodic Theory Dynam. Systems, 18, (1998), 509-537.
L. Sadun, Topology of Tiling Spaces. AMS (2008)

- Fibonacci: divides \mathbb{R} into intervals a, b of length $1, \sigma=(\sqrt{5}-1) / 2$ according to the substitution rule $a \mapsto a b, b \mapsto a$. Then $H^{0}=\mathbb{Z}, H^{1}=\mathbb{Z}^{2}$

Examples

J. E. Anderson, I. Putnam, Ergodic Theory Dynam. Systems, 18, (1998), 509-537.
L. Sadun, Topology of Tiling Spaces. AMS (2008)

- Fibonacci: divides \mathbb{R} into intervals a, b of length $1, \sigma=(\sqrt{5}-1) / 2$ according to the substitution rule $a \mapsto a b, b \mapsto a$. Then $H^{0}=\mathbb{Z}, H^{1}=\mathbb{Z}^{2}$
- Thue-Morse: substitution $a \mapsto a b, b \mapsto b a$ $H^{0}=\mathbb{Z}, H^{1}=\mathbb{Z}[1 / 2] \oplus \mathbb{Z}$

Examples

J. E. Anderson, I. Putnam, Ergodic Theory Dynam. Systems, 18, (1998), 509-537.
L. Sadun, Topology of Tiling Spaces. AMS (2008)

- Fibonacci: divides \mathbb{R} into intervals a, b of length $1, \sigma=(\sqrt{5}-1) / 2$ according to the substitution rule $a \mapsto a b, b \mapsto a$. Then $H^{0}=\mathbb{Z}, H^{1}=\mathbb{Z}^{2}$
- Thue-Morse: substitution $a \mapsto a b, b \mapsto b a$ $H^{0}=\mathbb{Z}, H^{1}=\mathbb{Z}[1 / 2] \oplus \mathbb{Z}$
- Penrose 2D:
$H^{0}=\mathbb{Z}, H^{1}=\mathbb{Z}^{5}, H^{2}=\mathbb{Z}^{8}$

Examples

J. E. Anderson, I. Putnam, Ergodic Theory Dynam. Systems, 18, (1998), 509-537.
L. Sadun, Topology of Tiling Spaces. AMS (2008)

- Fibonacci: divides \mathbb{R} into intervals a, b of length $1, \sigma=(\sqrt{5}-1) / 2$ according to the substitution rule $a \mapsto a b, b \mapsto a$. Then $H^{0}=\mathbb{Z}, H^{1}=\mathbb{Z}^{2}$
- Thue-Morse: substitution $a \mapsto a b, b \mapsto b a$ $H^{0}=\mathbb{Z}, H^{1}=\mathbb{Z}[1 / 2] \oplus \mathbb{Z}$
- Penrose 2D:
$H^{0}=\mathbb{Z}, H^{1}=\mathbb{Z}^{5}, H^{2}=\mathbb{Z}^{8}$
- Chair tiling:

$$
H^{0}=\mathbb{Z}, H^{1}=\mathbb{Z}[1 / 2] \oplus \mathbb{Z}[1 / 2], H^{2}=\mathbb{Z}[1 / 4] \oplus \mathbb{Z}[1 / 2] \oplus \mathbb{Z}[1 / 2]
$$

Other Cohomologies

- Longitudinal Cohomology (Connes, Moore-Schochet)
- Pattern-equivariant cohomology (Kellendonk-Putnam, Sadun)
- PV-cohomology (Savinien-Bellissard)

In maximal degree the Čech Homology does exists. It contains a natural positive cone isomorphic to the set of positive \mathbb{R}^{d}-invariant measures on the Hull (Bellissard-Benedetti-Gambaudo).

Cohomomogy and K -heory

The main topological property of the Hull (or tiling psace) is summarized in the following

Theorem 8 (i) The various cohomologies, Čech, longitudinal, patternequivariant and $P V$, are isomorphic.
(ii) There is a spectral sequence converging to the K-group of the Hull with page 2 given by the cohomology of the Hull.
(iii) In dimension $d \leq 3$ the K-group coincides with the cohomology.

Conclusion

1. Tilings can be equivalently be represented by Delone sets or point measures.
2. The Hull allows to give tilings the structure of a dynamical system with a transversal.
3. This dynamical system can be seen as a lamination or, equivalently, as the inverse limit of Branched Oriented Flat Riemannian Manifolds.
4. The Čech cohomology is equivalent to the longitudinal one, obtained by inverse limit, to the pattern-equivariant one or to the PV-cohomology. They are equivalent Cohomologies of the Hull. The K-group of the Hull can be computed through a spectral sequence with the cohomology in page 2.
5. In maximum degree, the Homology gives the family of invariant measures and the Gap Labeling Theorem.
