The THEORY of APERIODCCSOLIDS

Jean BELLISSARD ${ }^{12}$
Georgia Institute of Technology E
Institut Universitaire de France

Lectures delivered at UCLA, Math Department May 3-6 2005

Collaborations:

D. SPEHNER (Grenoble, France)
H. SCHULZ-BALDES (Erlangen, Germany)
A. van ELST

[^0]
Lecture III

The IITEGER QUAITIUS

HALL EPFECT

I - INTRODUCTION to the IQHE

J. Beluissard, H. Schulz-Baldes, A. van Elst, J. Math. Phys., 35, (1994), 5373-5471.

$$
\begin{aligned}
\mathrm{B} & =\text { magnetic field } \\
\mathrm{j} & =\text { current density } \\
E & =\text { Hall electric field } \\
\mathrm{n} & =\text { charge carrier density }
\end{aligned}
$$

I.1)- The Classical Hall Effect:

In the stationnary state: \quad en $\overrightarrow{\mathcal{E}}+\vec{j} \times \vec{B}=0$

$$
\Rightarrow \quad \vec{j}=\left(\begin{array}{cc}
0 & \sigma_{H} \\
-\sigma_{H} & 0
\end{array}\right) \overrightarrow{\mathcal{E}}, \quad \sigma_{H}=\frac{n e}{B} .
$$

$$
\text { Units : } \frac{n}{B}=\left[\frac{1}{\text { flux }}\right], \frac{h}{e}=[f l u x] \Rightarrow \nu=[1] \text {. }
$$

$$
\text { where : } \quad \nu=\frac{n h}{e B}=\quad \text { filling factor. }
$$

Hall's formula

$$
\sigma_{H}=\frac{\nu}{R_{H}}, \quad R_{H}=\frac{h}{e^{2}}=25812.80 \Omega
$$

I.2)- The (Integer) Quantum Hall Effect:

\rightarrow Conditions of observation:

1. Low temperatures (\leq few Kelvins)
2. Large sample size (\geq few μm)
3. High mobility together with large enough quenched disorder.
4. $2 D$ fermion fluid.
\rightarrow Experiments show that:
5. Very flat plateaux at ν close to integers, namely if:

$$
\sigma_{H}=\frac{i}{R_{H}} \quad i=1,2,3, \cdots \quad \text { quantization (Von Klitzing et al.) }
$$

2. On plateaux $\delta \sigma_{H} / \sigma_{H}$ and $\sigma_{/ /} / \sigma_{H} \leq 10^{-8}$.

This indicates localization
(Prange, Thouless, Halperin).
3. For $i \geq 2$, Coulomb interaction becomes negligible.
\rightarrow Questions:

1. Why is σ_{H} quantized ?
2. What is the rôle of localization?
I.3)- Earlier Works:
R.B. Laughlin, Phys. Rev. B23, 5632 (1981).

- Piercing the plane at x with a flux tube adiabatically varying from 0 to $\phi_{0}=h / e$ forces 1 charge per filled Landau level to transfer from x to ∞.
- This adiabatic change induces a unitary tranformation on the Landau Hamiltonian (gauge transformation).
- This gives the quantization of the Hall conductance.
R.E. Prange, Phys. Rev. B23, 4802 (1981).
D.J. Thouless, J. Phys. C14, 3475 (1981).
R. Joynt, R.E. Prange, Phys. Rev. B29, 3303 (1984).
- Localized states do not see the adiabatic change !

D. Thouless, M. Kohmoto, M. Nightingale, M. den Niss, Phys. Rev. Lett. 49, 405 (1982).
J.E. Avron, R. Seller, B. Simon, Phys. Rev. Lett. 51, 51 (1983).

Harper's model: one electron on a square lattice in a uniform magnetic field. Magnetic translations U_{1}, U_{2}, satisfy:

$$
U_{1} U_{2}=e^{2 \imath \pi \alpha} U_{2} U_{1}, \quad \alpha=\frac{\phi}{\phi_{0}}=\frac{B a^{2}}{h / e}
$$

Harper's Hamiltonian:

$$
H_{H}=U_{1}+U_{1}^{-1}+U_{2}+U_{2}^{-1}
$$

$\mathrm{a}=$ lattice spacing
$\phi=$ flux through unit cell

- If $\alpha=p / q$ then H_{H} is q-periodic;
- Bloch theory \Rightarrow wave function Ψ depends on quasimomenta $\vec{k}=\left(k_{1}, k_{2}\right)$.
- $\vec{k} \in \mathbb{B}$ where $\mathbb{B} \approx \mathbb{T}^{2}$ is the Brillouin zone.
- Ψ defines a line bundle over \mathbb{B}.
- Non triviality controlled by the Chern class

$$
\left.\mathbf{C h}(\Psi)=\frac{1}{\pi} \int_{0}^{2 \pi} d k_{1} \int_{0}^{2 \pi} d k_{2} \Im m<\frac{\partial \Psi}{\partial k_{1}} \right\rvert\, \frac{\partial \Psi}{\partial k_{2}}>
$$

- $\mathbf{C h}(\Psi) \in \mathbb{Z}$ and is homotopy invariant.
- Assume Fermi level E_{F} lies in a gap.
- Assume N bands $E_{1}(\vec{k})<\cdots<E_{N}(\vec{k})<E_{F}<$ $E_{N+1}(\vec{k})$ below Fermi level.
- Set $P_{F}=\sum_{i \leq N}\left|\Psi_{i}><\Psi_{i}\right|$ (Fermi projection).
- Set $\mathbf{C h}\left(P_{F}\right)=\sum_{i \leq N} \mathbf{C h}\left(\Psi_{i}\right)$.
- The following holds true:

$$
\mathbf{C h}\left(P_{F}\right)=2 \imath \pi \int_{\mathbb{T}^{2}} \frac{d^{2} \vec{k}}{4 \pi^{2}} \operatorname{Tr}\left(P_{F}(\vec{k})\left[\partial_{1} P_{F}(\vec{k}), \partial_{2} P_{F}(\vec{k})\right]\right)
$$

- Then Hall conductance is given by the Chern-Kubo formula

$$
\sigma_{H}=\frac{e^{2}}{h} \mathbf{C h}\left(P_{F}\right)
$$

- \Rightarrow Hall conductivity is quantized from topological origin.

I.4)- Difficulties with Earlier Works

1. If the magnetic flux is irrational \Rightarrow no Bloch theory !
2. Disorder destroys also periodicity \Rightarrow no Bloch theory !
3. Robustness against small disorder suggested from the Kubo-Chern formula, (see H. Kunz, Communn. Math. Phys. 112,121 (1987).). But a general proof is needed.
4. How does one understand localization in this context?
\rightarrow Proposal
1)- J. Bellissard, in Lecture Notes in Phys, $11^{\circ} 153$, Springeer Verlag, Berlin, Heidelberg, New York, (1982).
2)- J. Beluissard, in Lecture Notes in Physics 257, Springer-Verlag, Berlin, Heidelberg, New York, (1986).

> Use C^{*}-algebras and their Non Commutative Geometry !

II - The NON COMMUTATIVE BRILLOUNN ZONE

J. Beluissard, in From Number Theory to Physics, Springer-Verlag, Berlin, (1992).

II.1)- The Hull of Aperiodic Media

II.1.1- A typical Hamiltonian

The Schrödinger Hamiltonian for an electron submitted to atomic forces is given by (ignoring interactions):

$$
H=\frac{1}{2 m}(\vec{P}-q \vec{A}(.))^{2}+\sum_{r=1}^{K} \sum_{y \in L_{r}} v_{r}(.-y) .
$$

acting on $\mathcal{H}=L^{2}\left(\mathbb{R}^{d}\right)$.

- d : physical space dimension
- $r=1, \ldots, K$ labels the atomic species,
- L_{r} : set of positions of atoms of type r,
- v_{r} : effective potential for valence electrons near an atom of type r,
- m and q : mass and charge of the carrier,
- $\vec{P}=-\imath \hbar \vec{\nabla}$: momentum operator,
- \vec{A} : magnetic vector potential.

II.1.2- Magnetic translations

- In $d=2$, uniform magnetic field $B=\partial_{1} A_{2}-\partial_{2} A_{1}$.
- Magnetic translations

$$
U(\vec{a})=e^{\frac{\imath}{\hbar} \oint_{0}^{\vec{a}} d \vec{s}(\vec{P}-q \vec{A}(\vec{s}))}
$$

- Weyl's commutations relations

$$
U(\vec{a}) U(\vec{b})=e^{\imath q} B \vec{\hbar} \times \vec{b} \quad U(\vec{b}) U(\vec{a})
$$

- Translation invariance of the kinetic part.

$$
U(\vec{a})(\vec{P}-q \vec{A}(.))^{2} U(\vec{a})^{-1}=(\vec{P}-q \vec{A}(.))^{2}
$$

- Translation of the potential

$$
U(\vec{a}) V(.) U(\vec{a})^{-1}=V(.-\vec{a})
$$

II.1.3- The Hul

- The set $\left\{H_{a}=U(a) H U(a)^{-1} ; a \in \mathbb{R}^{2}\right\}$ of translated of H, is endowed with the strong-resolvent topology.
- Let Ω be its closure and $\omega^{(0)}$ be the representative of H.

Definition 1 The operator H is homogeneous if Ω is compact.

- $\left(\Omega, \mathbb{R}^{2}\right)$ becomes a dynamical system, the Hull of H . It is topologically transitive (one dense orbit). The action is denoted by $\omega \mapsto \tau^{a} \omega\left(a \in \mathbb{R}^{2}\right)$.
- If the potential V is continuous, there is a continuous function \hat{v} on Ω such that if $\omega \in \Omega$ the corresponding operator H_{ω} is a Schrödinger operator with potential $V_{\omega}(x)=\hat{v}\left(\tau^{-x} \omega\right)$.
- Covariance $U(a) H_{\omega} U(a)^{-1}=H_{\tau^{a} \omega}$
- The observable algebra \mathcal{A}_{H} is the C^{*}-algebra generated by bounded functions of the H_{a} 's. It is related to the twisted crossed product $C^{*}\left(\Omega \rtimes \mathbb{R}^{2}, B\right)$.

II.2)- The C^{*}-algebra $C^{*}\left(\Omega \rtimes \mathbb{R}^{2}, B\right)$ II.2.1- Definition

Endow $\mathcal{A}_{0}=\mathcal{C}_{c}\left(\Omega \times \mathbb{R}^{2}\right)$ with (here $A, A^{\prime} \in \mathcal{A}_{0}$):

1. Product

$$
A \cdot A^{\prime}(\omega, \vec{x})=\int_{\vec{y} \in \mathbb{R}^{2}} d^{2} \vec{y} A(\omega, \vec{y}) A^{\prime}\left(\tau^{-\vec{y}} \omega, \vec{x}-\vec{y}\right) e^{\frac{\mu \overrightarrow{2}}{\underline{2} \vec{x}} \vec{x}}
$$

2. Involution

$$
A^{*}(\omega, \vec{x})=\overline{A\left(\tau^{-\vec{x}_{\omega}} \omega,-\vec{x}\right)}
$$

3. A faithfull family of representations in $\mathcal{H}=L^{2}\left(\mathbb{R}^{2}\right)$

$$
\pi_{\omega}(A) \psi(\vec{x})=\int_{\mathbb{R}^{2}} d^{2} \vec{y} A\left(\tau^{-\vec{x}} \omega, \vec{y}-\vec{x}\right) e^{\frac{\mu P}{2 \vec{j}} \vec{y} \vec{x}} \psi(\vec{y}) .
$$

if $A \in \mathcal{A}_{0}, \psi \in \mathcal{H}$.
4. C^{*}-norm

$$
\|A\|=\sup _{\omega \in \Omega}\left\|\pi_{\omega}(A)\right\| .
$$

Definition 2 The C^{*}-algebra $\mathcal{A}=C^{*}\left(\Omega \rtimes \mathbb{R}^{2}, B\right)$ is the completion of \mathcal{A}_{0} under this norm.

II.2.2- Tight-Binding Representation

J. BeluISsard, in Lecture Notes in Physics 257, Springer-Verlag, Berlin, Heidelberg, New York, (1986).

1. If \mathcal{L} is the original set of atomic positions, let Σ be the closure of the set $\left\{\tau^{-\vec{x}} \omega^{(0)} \in \Omega ; \vec{x} \in \mathcal{L}\right\}$. Σ is a transversal.
2. Replace $\Omega \times \mathbb{R}^{2}$ by $\Gamma=\left\{(\omega, \vec{x}) \in \Omega \times \mathbb{R}^{2} ; \omega \in\right.$ $\left.\Sigma, \tau^{-\vec{x}} \omega \in \Sigma\right\} . \Gamma$ is a groupoid.
3. Replace integral over \mathbb{R}^{2} by discrete sum over \vec{x}.
4. Replace \mathcal{A}_{0} by $\mathcal{C}_{c}(\Gamma)$, the space of continuous function with compact support on Γ. Then proceed as before to get $C^{*}(\Gamma, B)$.
5. $C^{*}(\Gamma, B)$ is unital.
6. One can restrict the original Hamiltonian H to a spectral bounded interval (in practice near the Fermi level), so as to get an effective Hamiltonian $H_{\text {eff }}$ in $C^{*}(\Gamma, B)$. Thus $H_{\text {eff }}$ is bounded.

II.2.3- Calculus

- Let \mathbf{P} be an \mathbb{R}^{2}-invariant ergodic probability measure on Ω. Then set (for $\left.A \in \mathcal{A}_{0}\right)$):

Then \mathcal{T} extends as a positive trace on \mathcal{A}.

- \mathcal{T} is a trace per unit volume, thanks to Birkhoff's theorem:

$$
\mathcal{T}(A)=\lim _{\Lambda \uparrow \mathbb{R}^{2}} \frac{1}{|\Lambda|} \operatorname{Tr}\left(\pi_{\omega}(A) \upharpoonright_{\Lambda}\right) \quad \text { a.e. } \omega
$$

- A commuting set of $*$-derivations is given by

$$
\partial_{i} A(\omega, \vec{x})=\imath x_{i} A(\omega, \vec{x})
$$

defined on \mathcal{A}_{0}. It satisfies $\pi_{\omega}\left(\partial_{i} A\right)=-\imath\left[X_{i}, \pi_{\omega}(A)\right]$ where $\vec{X}=\left(X_{1}, X_{2}\right)$ are the coordinates of the position operator.

II.2.4- Properties of \mathcal{A}

Theorem 1 Let \mathcal{L} be a periodic lattice in \mathbb{R}^{2}. If H is \mathcal{L}-invariant, \mathcal{A} is isomorphic to $\mathcal{C}(\mathbb{B}) \otimes \mathcal{K}$, where \mathbb{B} is the Brillouin zone and \mathcal{K} is the C^{*}-algebra of compact operators.
\mathcal{A} is the non commutative analog of the space of continuous functions on the Brillouin zone: it will be called the Non Commutative Brillouin zone.

Theorem 2 Let H be a homogeneous Schrödinger operator with hull Ω. Then for any $z \in \mathbb{C} \backslash \sigma(H)$ there is an element $R(z) \in \mathcal{A}$ (which is C^{∞}), such that

$$
\pi_{\omega}(R(z))=\left(z 1-H_{\omega}\right)^{-1}
$$

for all $\omega \in \Omega$.
Moreover, the spectrum of $R(z)$ is given by

$$
\sigma(R(z))=\left\{(z-\zeta)^{-1} ; \zeta \in \Sigma\right\}, \Sigma=\cup_{\omega \in \Omega} \sigma\left(H_{\omega}\right)
$$

II.2.5- IDoS and Shubin's formula

- Let \mathbf{P} be an invariant ergodic probability on Ω. Let

$$
\mathcal{N}(E)=\lim _{\Lambda \uparrow \mathbb{R}^{2}} \frac{1}{|\Lambda|} \#\left\{\text { eigenvalues of } H_{\omega} \upharpoonright_{\Lambda} \leq E\right\}
$$

It is the Integrated Density of states or IDoS.

- The limit above exists \mathbf{P}-almost surely and

$$
\mathcal{N}(E)=\mathcal{T}(\chi(H \leq E))
$$

(Shubin, 1976)
$\chi(H \leq E)$ is the eigenprojector of H in $\mathcal{L}^{\infty}(\mathcal{A})$.

- \mathcal{N} is non decreasing, non negative and constant on gaps. $\mathcal{N}(E)=0$ for $E<\inf \Sigma$. For $E \rightarrow \infty$ $\mathcal{N}(E) \sim \mathcal{N}_{0}(E)$ where \mathcal{N}_{0} is the IDoS of the free case (namely $V=0$).
- $d \mathcal{N} / d E=n_{\text {Dos }}$ defines a Stieljes measure called the Density of States or DOS.

II.2.6- States

We consider states on \mathcal{A} of the form

$$
A \in \mathcal{A} \rightarrow \mathcal{T}\{\rho A\}
$$

with $\rho \geq 0$ and $\mathcal{T}\{\rho\}=n$ if n is the charge carrier density. Then

$$
\rho \in L^{1}(\mathcal{A}, \mathcal{T})
$$

The Fermi-Dirac state:
describes equilibrium of a fermion gas of independent particles at inverse temperature $\beta=1 / k_{\mathrm{B}} T$ and chemical potential μ :

$$
\rho_{\beta, \mu}=\frac{1}{1+e^{\beta(H-\mu)}}
$$

μ is fixed by the normalization condition

$$
\mathcal{T}\left\{\rho_{\beta, \mu}\right\}=n
$$

II.3)- To Summarize

1. The C^{*}-algebra $\mathcal{A}=C^{*}\left(\Omega \rtimes \mathbb{R}^{2}, B\right)$ is a Non Commutative analog of the space of continuous functions over the Brillouin zone \mathbb{B} if the lattice of atoms is no longer periodic, or if there is a magnetic field.
2. A groupoid Γ associated to the discrete set of atomic positions, gives rise to tight-binding models.
3. Calculus on \mathcal{A} is available and generalizes the usual calculus on \mathbb{B}.
4. Textbook formulæ valid for perfect crystals can be easily generalized using this calculus. If P_{F} is the zero temperature limit of the Fermi-Dirac state, constrained by $\mathcal{T}\left(P_{F}\right)=n$, the expression

$$
\mathbf{C h}\left(P_{F}\right)=2 \imath \pi \mathcal{T}\left(P_{F}\left[\partial_{1} P_{F}, \partial_{2} P_{F}\right]\right)
$$

is valid at least if $E_{F}=\mu \upharpoonright_{T=0}$ belongs to a gap of the energy spectrum.

III - The FOUR TRACE WAY

J. Beluissard, H. Schulz-Baldes, A. van Elst, J. Math. Phys., 35, (1994), 5373-5471.

III.1)- The Kubo Formula
III.1.1- BACKGROUND

- The (non dissipative) current is

$$
\vec{J}=q \frac{d \vec{X}}{d t}=\frac{\imath q}{\hbar}[H, \vec{X}]=\frac{q}{\hbar} \vec{\nabla} H
$$

- The thermal average of $A \in \mathcal{A}$

$$
<A>_{\beta, \mu}=\mathcal{T}\left(A \rho_{\beta, \mu}\right)
$$

- The Liouville operator acts on \mathcal{A}

$$
\mathcal{L}_{H}=\frac{\imath}{\hbar}[H, .]
$$

- A dissipative evolution requires an operator C acting on \mathcal{A} such that $\exp \{-t C\}: \mathcal{A} \mapsto \mathcal{A}$ is a completely positive contraction semigroup. C has the dimension of $[t i m e]^{-1}$. The (dissipative) evolution, with a uniform electric field, is given by the Master Equation:

$$
\frac{d A}{d t}=\mathcal{L}_{H}(A)+\frac{q}{\hbar} \overrightarrow{\mathcal{E}} \cdot \vec{\nabla} A-C(A)
$$

III.1.2- Linear Response Theory

- The thermal averaged current satifies:

$$
\vec{j}=<q \frac{d \vec{X}}{d t}>_{\beta, \mu}=\sigma \overrightarrow{\mathcal{E}}+O\left(\overrightarrow{\mathcal{E}}^{2}\right)
$$

- The 2×2 matrix σ is the conductivity tensor. It is given by Kubo's formula

$$
\sigma_{i j}=\frac{q^{2}}{\hbar} \mathcal{T}\left(\partial_{j} \rho_{\beta, \mu} \frac{1}{\hbar C-\hbar \mathcal{L}_{H}}\left(\partial_{i} H\right)\right)
$$

- C usually depends on T so that as $T \downarrow 0, C \downarrow 0$.
- We have $\lim _{T \downarrow 0} \rho_{\beta, \mu}=P_{F}$.

Theorem 3 Let assume

1. The Fermi level E_{F} is not a discontinuity point of the DOS of H.
2. $\lim _{T \downarrow 0} C=0$.
3. P_{F} is Sobolev differentiable: $\mathcal{T}\left\{\left(\vec{\nabla} P_{F}\right)^{2}\right\}<\infty$.

Then, as $T \downarrow 0$, the conductivity tensor converges to

$$
\sigma_{i j}=\frac{q^{2}}{h} 2 \imath \pi \mathcal{T}\left(P_{F}\left[\partial_{i} P_{F}, \partial_{j} P_{F}\right]\right)
$$

In particular the direct conductivity vanishes and

$$
\sigma_{12}=\sigma_{H}=\frac{q^{2}}{h} \mathbf{C h}\left(P_{F}\right)
$$

III.2)- The Four Traces

- On every Hilbert space \mathcal{H}, the usual trace is denoted by Tr.
- In \mathcal{A} we have the trace per unit volume \mathcal{T}, associated to a translation invariant probability measure \mathbf{P} on the Hull.
III.2.1- Dixmier's Traces
J. Dixmier, C.R.A.S., 1107 (1966).
- On a Hilbert space $\mathcal{H}, \mathcal{L}^{p}(\mathcal{H})$ denotes the Schatten ideal of those compact operator on \mathcal{H} such that $\operatorname{Tr}\left(|T|^{p}\right)<\infty$.
- Given T a compact operator on \mathcal{H}, let $\mu_{0} \geq \cdots \geq$ $\mu_{n} \geq \ldots \geq 0$ be its singular values (eigenvalues of $|T|)$ labelled in decreasing order. Set

$$
\|T\|_{p+}=\left(\limsup _{n \in \mathbb{N}} \frac{1}{\ln N} \sum_{n=0}^{N-1} \mu_{n}^{p}\right)^{1 / p}
$$

- The set of $\left\{T ;\|T\|_{p+}<\infty\right\}$ is denoted by $\mathcal{L}^{p+}(\mathcal{H})$. This a Mačaev ideal.

Theorem $4 \operatorname{Set}^{\mathcal{L}^{p-}}(\mathcal{H})=\left\{T\right.$ compact; $\left.\|T\|_{p+}=0\right\}$. 1. $\mathcal{L}^{p-}(\mathcal{H})$ and $\mathcal{L}^{p+}(\mathcal{H})$ are two-sided ideals in $\mathcal{L}(\mathcal{H})$. 2. For $p<p^{\prime} \in[0, \infty)$,

$$
\mathcal{L}^{p}(\mathcal{H}) \subset \mathcal{L}^{p-}(\mathcal{H}) \subset \mathcal{L}^{p+}(\mathcal{H}) \subset \mathcal{L}^{p^{\prime}}(\mathcal{H})
$$

3. $\|T\|_{p+}$ is a seminorm making $\mathcal{L}^{p+}(\mathcal{H}) / \mathcal{L}^{p-}(\mathcal{H})$ a Banach space.

- Given a euclidean invariant mean M on \mathbb{R}, one can define a linear form Lim_{M} on $\ell^{\infty}(\mathbb{N})$ such that
(i) $\operatorname{Lim}_{M}\left(a_{0}, a_{1}, a_{2}, \cdots\right)=\operatorname{Lim}_{M}\left(a_{1}, a_{2}, a_{3}, \cdots\right)$,
(ii) $\operatorname{Lim}_{M}\left(a_{0}, a_{1}, a_{2}, \cdots\right)=\operatorname{Lim}_{M}\left(a_{0}, a_{0}, a_{1}, a_{1}, \cdots\right)$,
(iii) if $a \in \ell^{\infty}(\mathbb{N})$ converges, $\operatorname{Lim}_{M}(a)=\lim _{n \rightarrow \infty} a_{n}$.
- The Dixmier trace associated to M is given by

$$
\operatorname{Tr}_{\text {Dix }}(T)=\operatorname{Lim}_{M}\left(\frac{1}{\ln N} \sum_{n=0}^{N-1} \mu_{n}\right)
$$

if $T \in \mathcal{L}^{1+}(\mathcal{H})$ is positive.

- $\mathrm{Tr}_{\text {Dix }}$ can be extended as a positive continuous linear form on $\mathcal{L}^{1+}(\mathcal{H})$ vanishing on $\mathcal{L}^{1-}(\mathcal{H})$ such that
$\operatorname{Tr}_{\text {Dix }}\left(U T U^{-1}\right)=\operatorname{Tr}_{\text {Dix }}(T), \quad \operatorname{Tr}_{\text {Dix }}(S T)=\operatorname{Tr}_{\text {Dix }}(T S)$ for $U \in \mathcal{L}(\mathcal{H})$ unitary and $S, T \in \mathcal{L}^{1+}(\mathcal{H})$.

III.2.2- Graded Trace and Fredhom Module

M. Atiyah, K-Theory, (Benjamin, New York, 1967).
A. Connes, Publ. IHES, 62, 257 (1986).

- Set $\hat{\mathcal{H}}=\mathcal{H} \otimes \mathbb{C}^{2}$ with $\mathcal{H}=L^{2}\left(\mathbb{R}^{2}\right)$. The grading operator G is

$$
G=\left(\begin{array}{cc}
+\mathbf{1} & 0 \\
0 & -\mathbf{1}
\end{array}\right)
$$

- $T \in \mathcal{L}(\hat{\mathcal{H}})$ has degree 0 if $G T-T G=0$
$T \in \mathcal{L}(\hat{\mathcal{H}})$ has degree 1 if $G T+T G=0$.
- The graded commutator is given by

$$
\left[T, T^{\prime}\right]_{S}=T T^{\prime}-(-)^{d^{\circ} T \cdot d^{\circ} T^{\prime}} T^{\prime} T
$$

- A degree 1 operator F is defined by

$$
F=\left(\begin{array}{cc}
0 & u \\
u^{*} & 0
\end{array}\right)
$$

where $u=X /|X|$ and $X=X_{1}+\imath X_{2}$ is the position operator. Then $F=F^{*}, F^{2}=1$.

- A differential d with $d^{2}=0$ is given by

$$
d T=[F, T]_{S}
$$

- The Leibniz rule becomes

$$
d\left(T T^{\prime}\right)=d T T^{\prime}+(-)^{d^{0} T} T d T^{\prime}
$$

- A graded trace is defined as

$$
\operatorname{Tr}_{S}(T)=\frac{1}{2} \operatorname{Tr}(G F d T)
$$

if $d T \in \mathcal{L}^{1}(\hat{\mathcal{H}})$.

- Tr_{S} is linear and satisfies

$$
d T, d T^{\prime} \in \mathcal{L}^{1}(\hat{\mathcal{H}}), \Rightarrow \operatorname{Tr}_{S}\left(\left[T, T^{\prime}\right]_{S}\right)=0
$$

- Note:

1. Tr_{S} is not positive in general.
2. $u=X /|X|$ coincides precisely with the singular gauge transformation corresponding to piercing the plane adiabatically with one flux quantum. J.E. Avkon, R. Selier, B. Simon, Commun. Math. Phys., 159,399 (1994).
III.3)- Connes Formulæ
iII.3.1- First Connes Formula

- Let $\mathcal{A}=C^{*}\left(\Omega \rtimes \mathbb{R}^{2}, B\right)$ acts on $\hat{\mathcal{H}}$ by $\hat{\pi}_{\omega}=\pi_{\omega} \otimes \mathrm{id}$ through degree 0 elements.
- First Connes Formula : for $A \in \mathcal{A}_{0}$ and P-almost all ω 's:

$$
\mathcal{T}\left(|\vec{\nabla} A|^{2}\right)=\frac{1}{\pi} \operatorname{Tr}_{\mathrm{Dix}}\left(\left|d \hat{\pi}_{\omega}(A)\right|^{2}\right)
$$

- Let \mathcal{S} be the Non Commutative Sobolev space namely the Hilbert space generated by $A \in \mathcal{A}_{0}$ such that $\mathcal{T}\left(|A|^{2}+|\vec{\nabla} A|^{2}\right)<\infty$. Then

$$
A \in \mathcal{S} \Rightarrow d \hat{\pi}_{\omega}(A) \in \mathcal{L}^{2+}(\hat{\mathcal{H}})
$$

- Also $d \hat{\pi}_{\omega}(A)$ is compact for any $A \in \mathcal{A}$.

III.3.2- A Cyclic 2-cocycle

- For $A_{0}, A_{1}, A_{2} \in \mathcal{A}_{0}$, a cyclic 2-cocycle is defined by

$$
\mathcal{T}_{2}\left(A_{0}, A_{1}, A_{2}\right)=2 \imath \hat{\pi} \mathcal{T}\left(A_{0} \partial_{1} A_{1} \partial_{2} A_{2}-A_{0} \partial_{2} A_{1} \partial_{1} A_{2}\right)
$$

This trilinear form extends by continuity to \mathcal{S}.

- \mathcal{T}_{2} is cyclic

$$
\mathcal{T}_{2}\left(A_{0}, A_{1}, A_{2}\right)=\mathcal{T}_{2}\left(A_{2}, A_{0}, A_{1}\right)
$$

- \mathcal{T}_{2} is Hochschild closed

$$
\begin{aligned}
& 0=\left(b \mathcal{T}_{2}\right)\left(A_{0}, A_{1}, A_{2}, A_{3}\right) \equiv \\
& \mathcal{T}_{2}\left(A_{0} A_{1}, A_{2}, A_{3}\right)-\mathcal{T}_{2}\left(A_{0}, A_{1} A_{2}, A_{3}\right) \\
& +\mathcal{T}_{2}\left(A_{0}, A_{1}, A_{2} A_{3}\right)-\mathcal{T}_{2}\left(A_{3} A_{0}, A_{1}, A_{2}\right)
\end{aligned}
$$

- Second Tonnes Formula : for $A_{i} \in \mathcal{A}_{0}$:

$$
\mathcal{T}_{2}\left(A_{0}, A_{1}, A_{2}\right)=\int_{\Omega} d \mathbf{P} \operatorname{Tr}_{S}\left(\hat{\pi}_{\omega}\left(A_{0}\right) d \hat{\pi}_{\omega}\left(A_{1}\right) d \hat{\pi}_{\omega}\left(A_{2}\right)\right)
$$

III.4)- Quantization of Hall conductivity

Recall that at $T=0$, the Hall conductivity becomes

$$
\sigma_{H}=\frac{e^{2}}{\hbar} \mathbf{C h}\left(P_{F}\right)
$$

III.4.1- Fredholm Index

- FACT 1 : let P be a projection on \mathcal{H} and $\hat{P}=$ $P \otimes \mathbf{1}_{2}$. If $d \hat{P} \in \mathcal{L}^{3}(\mathcal{H})$ then $P u P$ is Fredholm on $P \mathcal{H}$ and

$$
\operatorname{Tr}_{S}(\hat{P} d \hat{P} d \hat{P})=\operatorname{Ind}\left(P u P \upharpoonright_{P \mathcal{H}}\right) \in \mathbb{Z}
$$

- FACT $2: d \hat{P} \in \mathcal{L}^{3}(\mathcal{H}) \Longleftrightarrow\left(u P u^{*}-P\right) \in \mathcal{L}^{3}(\mathcal{H})$ and
$\operatorname{Ind}\left(P u P \upharpoonright_{P \mathcal{H}}\right)=\operatorname{Tr}\left(\left(u P u^{*}-P\right)^{2 n+1}\right) \quad \forall n \geq 1$
- Thus $\operatorname{Ind}\left(P u P \upharpoonright_{P \mathcal{H}}\right)$ measures the increase of the dimension of $P \mathcal{H}$ after applying u.

III.4.2- $\mathbf{C h}\left(P_{F}\right)$ IS AN INTEGER

- Assume : $P_{F} \in \mathcal{S}$.

Then $d \hat{\pi}_{\omega}\left(P_{F}\right) \in \mathcal{L}^{2+}(\mathcal{H}) \subset \mathcal{L}^{3}(\mathcal{H})$ (1st Connes formula).

- By the 2nd Connes formula we get

$$
\mathbf{C h}\left(P_{F}\right)=\int_{\Omega} d \mathbf{P} \operatorname{Tr}_{S}\left(\hat{\pi}_{\omega}\left(P_{F}\right) d \hat{\pi}_{\omega}\left(P_{F}\right) d \hat{\pi}_{\omega}\left(P_{F}\right)\right)
$$

The r.h.s. is the disordered average of

$$
n(\omega)=\operatorname{Ind}\left(\pi_{\omega}\left(P_{F}\right) u \pi_{\omega}\left(P_{F}\right) \upharpoonright_{\pi_{\omega}\left(P_{F}\right) \mathcal{H}}\right) \in \mathbb{Z}
$$

- By covariance one gets

$$
n\left(\tau^{\vec{x}} \omega\right)=n(\omega) \quad \mathbf{P} \text {-almost all } \omega \text { and } \vec{x} \in \mathbb{R}^{2}
$$

- Since \mathbf{P} is invariant ergodic, $n(\omega)$ is almost surely constant so that

$$
P_{F} \in \mathcal{S} \Rightarrow \mathbf{C h}\left(P_{F}\right) \in \mathbb{Z}
$$

and $\mathbf{C h}\left(P_{F}\right)$ measures the number of states created if one applies u namely the Laughlin singular gauge transformation! This is indeed the number of charges sent at ∞.

III.4.3- Existence of Plateaux

- The Fermi level E_{F} is defined as the limit as $T \downarrow 0$ of the chemical potential μ, constrained to

$$
\mathcal{T}\left(\rho_{\beta, \mu}\right)=n
$$

where n is the charge carrier density.

- Experimentally one can change E_{F} either by changing the magnetic field B or by changing n. Both ways are used in practice.
- Remark that $P \in \mathcal{S} \mapsto \mathbf{C h}(P) \in \mathbb{Z}$ is continuous thanks to Connes formulæ.
- Since $P_{F}=\chi\left(H \leq E_{F}\right)$, if we assume that the map $E_{F} \in\left(E_{-}, E_{+}\right) \mapsto P_{F} \in \mathcal{S}$ is continuous (for the Sobolev norm), then $\mathbf{C h}\left(P_{F}\right)$ stay constant for E_{F} in the interval $\left(E_{-}, E_{+}\right)$!
This is the mechanism through which plateaux occur in the Hall conductivity.
- In the next section we will see that the condition $P_{F} \in \mathcal{S}$ is a consequence of the existence of localized states around the Fermi level.

IV - LOCALIZATION and TRANSPORT

J. Beluissard, H. Schulz-Baldes, A. van Elst, J. Math. Phys., 35, (1994), 5373-5471. J. Bellissard, H. Schulz-Baldes, Rev. Math. Phys., 10, 1-46 (1998).
J. Beluissard, H. Schulz-Baldes, J. Stat. Phys., 91, (1998), 991-1026.
J. Bellissard, D. Spehner, work in progress.
IV.1)- Localization Theory
IV.1.1- Definitions

- The DOS of $H=H^{*}$ affiliated to \mathcal{A}, was defined as the Stieljies-Lebesgue measure

$$
d \mathcal{N}(E)=d \mathcal{T}\left(P_{E}\right)
$$

with $P_{E}=\chi(H \leq E)$.
For $\Delta \subset \mathbb{R}$ borelian, we set $P_{\Delta}=\chi(H \in \Delta)$.

- The non dissipative current is given by $\vec{J}=q / \hbar \vec{\nabla} H$.
- The current-current correlation is the measure m defined on $\mathbb{R} \times \mathbb{R}$ by:

$$
\int_{\mathbb{R} \times \mathbb{R}} m\left(d E, d E^{\prime}\right) f(E) g\left(E^{\prime}\right)=\mathcal{T}(f(H) \vec{\nabla} H g(H) \vec{\nabla} H)
$$

for f, g continuous functions with compact support on \mathbb{R}. In physicists notations (ignoring q / \hbar)

$$
m\left(d E, d E^{\prime}\right) "="|<E| \vec{J}\left|E^{\prime}>\right|^{2}
$$

- If H_{ω} is the representative of H associated to $\omega \in \Omega$ we set

$$
\vec{X}_{\omega}(t)=e^{i \frac{t}{\hbar} H_{\omega}} \vec{X} e^{-\imath \frac{t}{\hbar} H_{\omega}}
$$

IV.1.2- Localization Length

- Given $\Delta \subset \mathbb{R}$ borelian, the average localization length $\ell(\Delta)$ of states with energy within Δ is defined through the following steps

1. Project the initial state $\mid \vec{x}>$ on $\Delta: \pi_{\omega}\left(P_{\Delta}\right)|\vec{x}\rangle$.
2. Measure the distance it goes during time t by applying $\left(\vec{X}_{\omega}(t)-\vec{X}\right) \pi_{\omega}\left(P_{\Delta}\right) \mid \vec{x}>$
3. Square it to get the quantum average, average over time
average over disorder to get

$$
L_{\Delta}(t)^{2}=\frac{1}{t} \int_{0}^{t} \frac{d s}{s} \int_{\Omega} d \mathbf{P}<\vec{x}\left|\pi_{\omega}\left(P_{\Delta}\right)\left(\vec{X}_{\omega}(t)-\vec{X}\right)^{2} \pi_{\omega}\left(P_{\Delta}\right)\right| \vec{x}>
$$

4. Then

$$
\ell(\Delta)=\limsup _{t \rightarrow \infty} L_{\Delta}(t)
$$

- FACT :

$$
L_{\Delta}(t)^{2}=\frac{1}{t} \int_{0}^{t} \frac{d s}{s} \mathcal{T}\left(\left|\vec{\nabla} e^{-\imath \frac{t}{\hbar} H}\right|^{2} P_{\Delta}\right)
$$

Thus the localization length is algebraic and independent of the representation of the Hamiltonian !

IV.1.3- Localization: Results

Assume $\ell(\Delta)<\infty$:

1. The spectrum of H_{ω} in Δ is pure point almost surely w.r.t. ω : all states in Δ are localized.
2. There is an \mathcal{N}-measurable function ℓ on Δ such that for any $\Delta^{\prime} \subset \Delta$ borelian,

$$
\ell\left(\Delta^{\prime}\right)=\int_{\Delta^{\prime}} d \mathcal{N}(E) \ell(E)^{2}
$$

$\ell(E)$ is the localization length at energy E
3. One has

$$
\ell\left(\Delta^{\prime}\right)=\left.\int_{\Omega} d \mathbf{P} \int_{\mathbb{R}^{2}} d^{2} \vec{x}|\vec{x}|^{2} \sum_{E \in \sigma_{p p}\left(H_{\omega}\right) \cap \Delta^{\prime}}|<0| P_{\{E\}, \omega \mid}|\vec{x}\rangle\right|^{2}
$$

where $P_{\{E\}, \omega}$ is the eigenprojection of H_{ω} on the energy E.
4. One also gets:

$$
\ell\left(\Delta^{\prime}\right)=2 \int_{\Delta^{\prime} \times \mathbb{R}} \frac{m\left(d E, d E^{\prime}\right)}{\left|E-E^{\prime}\right|^{2}}
$$

5. If $\left[E_{0}, E_{1}\right] \subset \Delta$

$$
\left\|P_{E_{1}}-P_{E_{0}}\right\|_{\mathcal{S}} \leq \int_{E_{0}}^{E_{1}}\left(1+\ell^{2}\right) d \mathcal{N}
$$

IV.1.4- Existence of Plateaux

- From the previous results $P_{F} \in \mathcal{S}$ as long as E_{F} belongs to a region of localized states. Thus localization \Rightarrow existence of plateaux for the Hall conductivity.
- From previous results by Fröhlich \& Spencer, Aizenman \& Molčanov, the localization length is finite at high disorder for the Anderson model.
- More recent results by Combes \& Hislop, W.m. Wang, the same is true for the Landau Hamiltonian with a random potential, at least $O\left(B^{-\infty}\right)$-away from the Landau levels.
IV.2)- Why are Hall Plateaux so Flat?

The theorems concerning the Hall conductance quantization requires the following conditions

- The sample has infinite area in space.
- The electric field is vanishingly small.
- The temperature vanishes.
- The collision operator C vanishes at zero temperature.

Questions : Can one estimate the error when we are away from these conditions ?

1. Can one estimate the error when we are away from these conditions?
2. If Yes, can one explain the accuracy of the plateaux?

Results :

- It is possible to show that the accuracy of plateaux is limited only by the dissipation mechanisms in practice.
The size of the sample, the electric field, the temperature can be arranged so that they do not contribute.
- An estimate of the dissipation based upon the RTA gives the following estimate

$$
\frac{\delta \sigma_{H}}{\sigma_{H}} \leq \text { const } \cdot \nu \frac{e}{h} \frac{\ell^{2}}{\mu_{c}}
$$

where ν is the filling factor, ℓ is the localization length (typically of the order of $100 \AA$) and μ_{c} is the mobility of the sample.
Putting realistic numbers in it leads to

$$
\frac{\delta \sigma_{H}}{\sigma_{H}} \leq 10^{-4}
$$

far from 10^{-8} that are observed !

- The origin of this discrepancy is due to Mott's variable range hopping.
D. Polyakov, B. Shkiovskil, Phys. Rev, B48, 11167, (1993).

[^0]: ${ }^{1}$ Georgia Institute of Technology, School of Mathematics, Atlanta GA 30332-0160
 ${ }^{2} \mathrm{e}$-mail: jeanbel@math.gatech.edu

