The THEORY of APERIODIC SOLIDS

Jean BELLISSARD 1 2

Georgia Institute of Technology & Institut Universitaire de France

Lectures delivered at UCLA, Math Department May 3-6 2005

Collaborations:

- D. SPEHNER (Grenoble, France)
- H. SCHULZ-BALDES (Erlangen, Germany)
- A. van ELST

 $^{^1{\}rm Georgia}$ Institute of Technology, School of Mathematics, Atlanta GA 30332-0160 $^2{\rm e}{\rm -mail:}$ jeanbel@math.gatech.edu

Lecture III

The INTEGER QUANTUM HALL EFFECT

I - INTRODUCTION to the IQHE

J. BELLISSARD, H. SCHULZ-BALDES, A. VAN ELST, J. Math. Phys., 35, (1994), 5373-5471.

B = magnetic field
j = current density
E = Hall electric field
n = charge carrier density

I.1)- The Classical HALL Effect:

In the stationnary state: $e n \vec{\mathcal{E}} + \vec{j} \times \vec{B} = 0$ $\Rightarrow \quad \vec{j} = \begin{pmatrix} 0 & \sigma_H \\ -\sigma_H & 0 \end{pmatrix} \vec{\mathcal{E}}, \quad \sigma_H = \frac{ne}{B}.$

Units :
$$\frac{n}{B} = \begin{bmatrix} \frac{1}{\text{flux}} \end{bmatrix}$$
, $\frac{h}{e} = [\text{flux}] \Rightarrow \nu = [1]$
where : $\nu = \frac{nh}{eB} = -\frac{filling\ factor}{filling\ factor}$.

HALL's formula

$$\sigma_H = \frac{\nu}{R_H}$$
, $R_H = \frac{h}{e^2} = 25 \ 812.80 \ \Omega$.

I.2)- The (Integer) Quantum HALL Effect:

- \rightarrow Conditions of observation:
- 1. Low temperatures (\leq few Kelvins)
- 2. Large sample size ($\geq \text{few } \mu m$)
- 3. High mobility together with large enough quenched disorder.
- 4. 2D fermion fluid.
- \rightarrow Experiments show that:
- 1. Very flat plateaux at ν close to integers, namely if: $\sigma_H = \frac{i}{R_H}$ $i = 1, 2, 3, \cdots$ quantization (Von Klitzing et al.)
- 2. On plateaux $\delta \sigma_H / \sigma_H$ and $\sigma_{//} / \sigma_H \leq 10^{-8}$. This indicates *localization*

(Prange, Thouless, Halperin).

- 3. For $i \geq 2$, Coulomb interaction becomes negligible.
- \rightarrow Questions:
- 1. Why is σ_H quantized ?
- 2. What is the rôle of localization ?

I.3)- Earlier Works:

R.B. LAUGHLIN, *Phys. Rev.* **B23**, 5632 (1981).

- Piercing the plane at x with a flux tube adiabatically varying from 0 to $\phi_0 = h/e$ forces 1 charge per filled Landau level to transfer from x to ∞ .
- This adiabatic change induces a unitary tranformation on the Landau Hamiltonian (gauge transformation).
- This gives the quantization of the Hall conductance.

R.E. PRANGE, *Phys. Rev.* B23, 4802 (1981).
D.J. THOULESS, *J. Phys.* C14, 3475 (1981).
R. JOYNT, R.E. PRANGE, *Phys. Rev.* B29, 3303 (1984).

• Localized states do not see the adiabatic change !

D. THOULESS, M. KOHMOTO, M. NIGHTINGALE, M. DEN NIJS, *Phys. Rev. Lett.* **49**, 405 (1982). J.E. AVRON, R. SEILER, B. SIMON, *Phys. Rev. Lett.* **51**, 51 (1983).

Harper's model: one electron on a square lattice in a uniform magnetic field. Magnetic translations U_1 , U_2 , satisfy:

$$U_1 U_2 = e^{2i\pi\alpha} U_2 U_1 , \qquad \alpha = \frac{\phi}{\phi_0} = \frac{Ba^2}{h/e} .$$

Harper's Hamiltonian:

$$H_H = U_1 + U_1^{-1} + U_2 + U_2^{-1} .$$

a = lattice spacing

$$\phi$$
 = flux through unit cell

0

- If $\alpha = p/q$ then H_H is q-periodic;
- Bloch theory \Rightarrow wave function Ψ depends on quasimomenta $\vec{k} = (k_1, k_2)$.
- $\vec{k} \in \mathbb{B}$ where $\mathbb{B} \approx \mathbb{T}^2$ is the Brillouin zone.
- Ψ defines a *line bundle* over \mathbb{B} .
- Non triviality controlled by the *Chern class*

$$\mathbf{Ch}(\Psi) = \frac{1}{\pi} \int_0^{2\pi} dk_1 \int_0^{2\pi} dk_2 \Im m < \frac{\partial \Psi}{\partial k_1} |\frac{\partial \Psi}{\partial k_2} >$$

• $\mathbf{Ch}(\Psi) \in \mathbb{Z}$ and is homotopy invariant.

- Assume *Fermi level* E_F lies in a gap.
- Assume N bands $E_1(\vec{k}) < \cdots < E_N(\vec{k}) < E_F < E_{N+1}(\vec{k})$ below Fermi level.
- Set $P_F = \sum_{i \leq N} |\Psi_i| > \langle \Psi_i|$ (Fermi projection).

• Set
$$\mathbf{Ch}(P_F) = \sum_{i \leq N} \mathbf{Ch}(\Psi_i).$$

• The following holds true:

$$\mathbf{Ch}(P_F) = 2\imath \pi \int_{\mathbb{T}^2} \frac{d^2 \vec{k}}{4\pi^2} \operatorname{Tr}\left(P_F(\vec{k}) \left[\partial_1 P_F(\vec{k}), \partial_2 P_F(\vec{k})\right]\right)$$

• Then Hall conductance is given by the *Chern-Kubo* formula

$$\sigma_{\scriptscriptstyle H}\,=\,rac{e^2}{h}\,\,{f Ch}(P_{\scriptscriptstyle F})$$

• \Rightarrow Hall conductivity is *quantized* from *topological* origin.

I.4)- Difficulties with Earlier Works

- 1. If the magnetic flux is *irrational* \Rightarrow no Bloch theory !
- 2. Disorder destroys also periodicity \Rightarrow no Bloch theory !
- Robustness against small disorder *suggested* from the Kubo-Chern formula, (see H. Kunz, *Commun. Math. Phys.* 112, 121 (1987).).
 But a general proof is needed.
- 4. How does one understand *localization* in this context ?

$\rightarrow Proposal$

- 1)- J. BELLISSARD, in Lecture Notes in Phys., n°153, Springer Verlag, Berlin, Heidelberg, New York, (1982).
- 2)- J. BELLISSARD, in Lecture Notes in Physics 257, Springer-Verlag, Berlin, Heidelberg, New York, (1986).

Use C^* -algebras and their Non Commutative Geometry !

II - The NON COMMUTATIVE BRILLOUIN ZONE

J. BELLISSARD, in From Number Theory to Physics, Springer-Verlag, Berlin, (1992).

II.1)- The Hull of Aperiodic Media

II.1.1- A TYPICAL HAMILTONIAN

The Schrödinger Hamiltonian for an electron submitted to atomic forces is given by (ignoring interactions):

$$H = \frac{1}{2m} \left(\vec{P} - q\vec{A}(.) \right)^2 + \sum_{r=1}^{K} \sum_{y \in L_r} v_r(.-y) .$$

acting on $\mathcal{H} = L^2(\mathbb{R}^d)$.

- d : physical space dimension
- $r = 1, \ldots, K$ labels the atomic species,
- L_r : set of positions of atoms of type r,
- v_r : effective potential for valence electrons near an atom of type r,
- \bullet *m* and *q* : mass and charge of the carrier,
- $\vec{P} = -i\hbar \vec{\nabla}$: momentum operator,
- \vec{A} : magnetic vector potential.

II.1.2- MAGNETIC TRANSLATIONS

- In d = 2, uniform magnetic field $B = \partial_1 A_2 \partial_2 A_1$.
- Magnetic translations

$$U(\vec{a}) = e^{\frac{i}{\hbar} \oint_0^{\vec{a}} d\vec{s} \left(\vec{P} - q\vec{A}(\vec{s})\right)}$$

- Weyl's commutations relations $U(\vec{a}) U(\vec{b}) = e^{i\frac{q}{\hbar}B\vec{a}\times\vec{b}} U(\vec{b}) U(\vec{a})$
- Translation invariance of the kinetic part. $U(\vec{a}) \ \left(\vec{P} - q\vec{A}(.)\right)^2 \ U(\vec{a})^{-1} = \ \left(\vec{P} - q\vec{A}(.)\right)^2$
- Translation of the potential $U(\vec{a}) V(.) U(\vec{a})^{-1} = V(. - \vec{a})$

II.1.3- THE HULL

- The set $\{H_a = U(a)HU(a)^{-1}; a \in \mathbb{R}^2\}$ of translated of H, is endowed with the strong-resolvent topology.
- Let Ω be its closure and $\omega^{(0)}$ be the representative of H.

Definition 1 The operator H is homogeneous if Ω is compact.

- (Ω, \mathbb{R}^2) becomes a dynamical system, *the Hull* of H. It is topologically transitive (one dense orbit). The action is denoted by $\omega \mapsto \tau^a \omega$ $(a \in \mathbb{R}^2)$.
- If the potential V is continuous, there is a continuous function \hat{v} on Ω such that if $\omega \in \Omega$ the corresponding operator H_{ω} is a Schrödinger operator with potential $V_{\omega}(x) = \hat{v}(\tau^{-x}\omega)$.
- Covariance $U(a)H_{\omega}U(a)^{-1} = H_{\tau}a_{\omega}$
- The observable algebra \mathcal{A}_H is the C^* -algebra generated by bounded functions of the H_a 's. It is related to the *twisted crossed product* $C^*(\Omega \rtimes \mathbb{R}^2, B)$.

II.2)- THE C*-ALGEBRA $C^*(\Omega \rtimes \mathbb{R}^2, B)$ II.2.1- DEFINITION Endow $\mathcal{A}_0 = \mathcal{C}_c(\Omega \times \mathbb{R}^2)$ with (here $A, A' \in \mathcal{A}_0$):

1. Product

$$A \cdot A'(\omega, \vec{x}) = \int_{\vec{y} \in \mathbb{R}^2} d^2 \vec{y} A(\omega, \vec{y}) A'(\tau^{-\vec{y}}\omega, \vec{x} - \vec{y}) e^{\frac{iqB}{2\hbar} \vec{x} \wedge \vec{x}}$$

2. Involution

$$A^*(\omega, \vec{x}) = \overline{A(\tau^{-\vec{x}}\omega, -\vec{x})}$$

3. A faithfull family of representations in $\mathcal{H} = L^2(\mathbb{R}^2)$ $\pi_{\omega}(A)\psi(\vec{x}) = \int_{\mathbb{R}^2} d^2 \vec{y} A(\tau^{-\vec{x}}\omega, \vec{y} - \vec{x}) e^{\frac{iqB}{2\hbar}\vec{y}\wedge\vec{x}}\psi(\vec{y})$. if $A \in \mathcal{A}_0, \ \psi \in \mathcal{H}$.

4. C^* -norm

 $||A|| = \sup_{\omega \in \Omega} ||\pi_{\omega}(A)|| .$

Definition 2 The C^{*}-algebra $\mathcal{A} = C^*(\Omega \rtimes \mathbb{R}^2, B)$ is the completion of \mathcal{A}_0 under this norm.

II.2.2- TIGHT-BINDING REPRESENTATION

- J. BELLISSARD, in Lecture Notes in Physics 257, Springer-Verlag, Berlin, Heidelberg, New York, (1986).
- 1. If \mathcal{L} is the original set of atomic positions, let Σ be the closure of the set $\{\tau^{-\vec{x}}\omega^{(0)} \in \Omega; \vec{x} \in \mathcal{L}\}$. Σ is a *transversal*.
- 2. Replace $\Omega \times \mathbb{R}^2$ by $\Gamma = \{(\omega, \vec{x}) \in \Omega \times \mathbb{R}^2; \omega \in \Sigma, \tau^{-\vec{x}} \omega \in \Sigma \}$. Γ is a *groupoid*.
- 3. Replace integral over \mathbb{R}^2 by discrete sum over \vec{x} .
- 4. Replace \mathcal{A}_0 by $\mathcal{C}_c(\Gamma)$, the space of continuous function with compact support on Γ . Then proceed as before to get $C^*(\Gamma, B)$.
- 5. $C^*(\Gamma, B)$ is unital.
- 6. One can restrict the original Hamiltonian H to a spectral bounded interval (in practice near the Fermi level), so as to get an *effective Hamiltonian* H_{eff} in $C^*(\Gamma, B)$. Thus H_{eff} is bounded.

II.2.3- CALCULUS

• Let \mathbf{P} be an \mathbb{R}^2 -invariant ergodic probability measure on Ω . Then set (for $A \in \mathcal{A}_0$)):

$$\mathcal{T}(A) = \int_{\Omega} d\mathbf{P}A(\omega, 0) = \overline{\langle 0|\pi_{\omega}(A)0\rangle}^{dis.}$$

Then \mathcal{T} extends as a *positive trace* on \mathcal{A} .

• \mathcal{T} is a *trace per unit volume*, thanks to Birkhoff's theorem:

$$\mathcal{T}(A) = \lim_{\Lambda \uparrow \mathbb{R}^2} \frac{1}{|\Lambda|} \operatorname{Tr}(\pi_{\omega}(A) \restriction_{\Lambda}) \quad \text{a.e. } \omega$$

• A commuting set of *-derivations is given by

$$\partial_i A(\omega, \vec{x}) = \imath x_i A(\omega, \vec{x})$$

defined on \mathcal{A}_0 . It satisfies $\pi_{\omega}(\partial_i A) = -i[X_i, \pi_{\omega}(A)]$ where $\vec{X} = (X_1, X_2)$ are the coordinates of the position operator.

II.2.4- Properties of \mathcal{A}

Theorem 1 Let \mathcal{L} be a periodic lattice in \mathbb{R}^2 . If H is \mathcal{L} -invariant, \mathcal{A} is isomorphic to $\mathcal{C}(\mathbb{B}) \otimes \mathcal{K}$, where \mathbb{B} is the Brillouin zone and \mathcal{K} is the C^{*}-algebra of compact operators.

 \mathcal{A} is the non commutative analog of the space of continuous functions on the Brillouin zone : it will be called *the Non Commutative Brillouin zone*.

Theorem 2 Let H be a homogeneous Schrödinger operator with hull Ω . Then for any $z \in \mathbb{C} \setminus \sigma(H)$ there is an element $R(z) \in \mathcal{A}$ (which is C^{∞}), such that

$$\pi_{\omega}(R(z)) = (z\mathbf{1} - H_{\omega})^{-1}$$

for all $\omega \in \Omega$.

Moreover, the spectrum of R(z) is given by

$$\sigma(R(z)) = \{(z - \zeta)^{-1}; \zeta \in \Sigma\}, \ \Sigma = \bigcup_{\omega \in \Omega} \sigma(H_{\omega})$$

II.2.5- IDOS AND SHUBIN'S FORMULA

• Let \mathbf{P} be an invariant ergodic probability on Ω . Let

$$\mathcal{N}(E) = \lim_{\Lambda \uparrow \mathbb{R}^2} \frac{1}{|\Lambda|} \# \{ \text{eigenvalues of } H_{\omega} \upharpoonright_{\Lambda} \leq E \}$$

It is the *Integrated Density of states* or *IDoS*.

 \bullet The limit above exists ${\bf P}\text{-almost}$ surely and

 $\mathcal{N}(E) = \mathcal{T}(\chi(H \le E))$ (Shubin, 1976)

 $\chi(H \leq E)$ is the eigenprojector of H in $\mathcal{L}^{\infty}(\mathcal{A})$.

- \mathcal{N} is non decreasing, non negative and constant on gaps. $\mathcal{N}(E) = 0$ for $E < \inf \Sigma$. For $E \to \infty$ $\mathcal{N}(E) \sim \mathcal{N}_0(E)$ where \mathcal{N}_0 is the IDoS of the free case (namely V = 0).
- $d\mathcal{N}/dE = n_{\text{DOS}}$ defines a Stieljes measure called the *Density of States* or *DOS*.

- An example of IDoS -

II.2.6- States

We consider states on \mathcal{A} of the form

 $A \in \mathcal{A} \to \mathcal{T}\{\rho A\} ,$

with $\rho \geq 0$ and $\mathcal{T}\{\rho\} = n$ if n is the charge carrier density. Then

 $\rho \in L^1(\mathcal{A}, \mathcal{T})$

THE *Fermi-Dirac* STATE:

describes equilibrium of a fermion gas of independent particles at inverse temperature $\beta = 1/k_{\rm B}T$ and chemical potential μ :

$$ho_{eta,\mu} \;=\; rac{1}{\mathbf{1}+e^{eta(H-\mu)}}$$

 μ is fixed by the normalization condition

$$\mathcal{T}\{
ho_{eta,\,\mu}\}=n$$
 .

II.3)- To Summarize

- 1. The C^* -algebra $\mathcal{A} = C^*(\Omega \rtimes \mathbb{R}^2, B)$ is a Non Commutative analog of the space of continuous functions over the Brillouin zone \mathbb{B} if the lattice of atoms is no longer periodic, or if there is a magnetic field.
- 2. A groupoid Γ associated to the discrete set of atomic positions, gives rise to tight-binding models.
- 3. Calculus on \mathcal{A} is available and generalizes the usual calculus on \mathbb{B} .
- 4. Textbook formulæ valid for perfect crystals can be easily generalized using this calculus. If P_F is the zero temperature limit of the *Fermi-Dirac* state, constrained by $\mathcal{T}(P_F) = n$, the expression

$\mathbf{Ch}(P_F) = 2i\pi \mathcal{T} \left(P_F \left[\partial_1 P_F, \partial_2 P_F \right] \right)$

is valid at least if $E_F = \mu \upharpoonright_{T=0}$ belongs to a gap of the energy spectrum.

III - The FOUR TRACE WAY

J. Bellissard, H. Schulz-Baldes, A. van Elst, J. Math. Phys., 35, (1994), 5373-5471.

III.1)- The Kubo Formula III.1.1- Background

• The (non dissipative) current is $\vec{J} = q \frac{d\vec{X}}{dt} = \frac{\imath q}{\hbar} [H, \vec{X}] = \frac{q}{\hbar} \vec{\nabla} H$

- The *thermal average* of $A \in \mathcal{A}$ $\langle A \rangle_{\beta,\mu} = \mathcal{T} (A \rho_{\beta,\mu})$
- The *Liouville operator* acts on \mathcal{A} $\mathcal{L}_{H} = \frac{\imath}{\hbar} [H, .]$
- A dissipative evolution requires an operator C acting on A such that exp{-tC} : A → A is a completely positive contraction semigroup. C has the dimension of [time]⁻¹. The (dissipative) evolution, with a uniform electric field, is given by the Master Equation:

$$\frac{dA}{dt} = \mathcal{L}_H(A) + \frac{q}{\hbar} \vec{\mathcal{E}} \cdot \vec{\nabla} A - C(A)$$

III.1.2- LINEAR RESPONSE THEORY

• The thermal averaged current satifies:

$$\vec{j} = < q \frac{d\vec{X}}{dt} >_{\beta,\mu} = \sigma \vec{\mathcal{E}} + O(\vec{\mathcal{E}}^2)$$

• The 2×2 matrix σ is the *conductivity tensor*. It is given by *Kubo's formula*

$$\sigma_{ij} = \frac{q^2}{\hbar} \mathcal{T} \left(\partial_j \rho_{\beta,\mu} \frac{1}{\hbar C - \hbar \mathcal{L}_H} (\partial_i H) \right)$$

- C usually depends on T so that as $T \downarrow 0, C \downarrow 0$.
- We have $\lim_{T \downarrow 0} \rho_{\beta,\mu} = P_F$.

Theorem 3 Let assume

- 1. The Fermi level E_F is not a discontinuity point of the DOS of H.
- $2. \lim_{T \downarrow 0} C = 0.$

3. P_F is Sobolev differentiable: $\mathcal{T}\left\{(\vec{\nabla}P_F)^2\right\} < \infty$.

Then, as $T \downarrow 0$, the conductivity tensor converges to

$$\sigma_{ij} = rac{q^2}{h} 2 \imath \pi \ \mathcal{T} \left(P_F \left[\partial_i P_F \,, \, \partial_j P_F \right]
ight) \,.$$

In particular the direct conductivity vanishes and

$$\sigma_{12}=\sigma_{H}\,=\,rac{q^{2}}{h}{f C}{f h}(P_{F})$$

III.2)- The Four Traces

- On every Hilbert space \mathcal{H} , the usual trace is denoted by Tr.
- In \mathcal{A} we have the *trace per unit volume* \mathcal{T} , associated to a translation invariant probability measure \mathbf{P} on the Hull.

III.2.1- DIXMIER'S TRACES

J. DIXMIER, C.R.A.S., 1107 (1966).

- On a Hilbert space \mathcal{H} , $\mathcal{L}^{p}(\mathcal{H})$ denotes the *Schatten ideal* of those compact operator on \mathcal{H} such that $\operatorname{Tr}(|T|^{p}) < \infty$.
- Given T a compact operator on \mathcal{H} , let $\mu_0 \geq \cdots \geq \mu_n \geq \ldots \geq 0$ be its singular values (eigenvalues of |T|) labelled in decreasing order. Set

$$||T||_{p+} = \left(\limsup_{n \in \mathbb{N}} \frac{1}{\ln N} \sum_{n=0}^{N-1} \mu_n^p\right)^{1/p}$$

• The set of $\{T; \|T\|_{p+} < \infty\}$ is denoted by $\mathcal{L}^{p+}(\mathcal{H})$. This a *Mačaev ideal*. **Theorem 4** Set $\mathcal{L}^{p-}(\mathcal{H}) = \{T \text{compact}; ||T||_{p+} = 0\}.$ 1. $\mathcal{L}^{p-}(\mathcal{H})$ and $\mathcal{L}^{p+}(\mathcal{H})$ are two-sided ideals in $\mathcal{L}(\mathcal{H}).$ 2. For $p < p' \in [0, \infty),$ $\mathcal{L}^{p}(\mathcal{H}) \subset \mathcal{L}^{p-}(\mathcal{H}) \subset \mathcal{L}^{p+}(\mathcal{H}) \subset \mathcal{L}^{p'}(\mathcal{H})$

3. $||T||_{p+}$ is a seminorm making $\mathcal{L}^{p+}(\mathcal{H})/\mathcal{L}^{p-}(\mathcal{H})$ a Banach space.

- Given a euclidean invariant mean M on \mathbb{R} , one can define a linear form Lim_M on $\ell^{\infty}(\mathbb{N})$ such that (i) $\operatorname{Lim}_M(a_0, a_1, a_2, \cdots) = \operatorname{Lim}_M(a_1, a_2, a_3, \cdots),$ (ii) $\operatorname{Lim}_M(a_0, a_1, a_2, \cdots) = \operatorname{Lim}_M(a_0, a_0, a_1, a_1, \cdots),$ (iii) if $a \in \ell^{\infty}(\mathbb{N})$ converges, $\operatorname{Lim}_M(a) = \operatorname{lim}_{n \to \infty} a_n$.
- The *Dixmier trace* associated to M is given by

$$\operatorname{Tr}_{\operatorname{Dix}}(T) = \operatorname{Lim}_M \left(\frac{1}{\ln N} \sum_{n=0}^{N-1} \mu_n \right)$$

if $T \in \mathcal{L}^{1+}(\mathcal{H})$ is positive.

• $\operatorname{Tr}_{\operatorname{Dix}}$ can be extended as a positive continuous linear form on $\mathcal{L}^{1+}(\mathcal{H})$ vanishing on $\mathcal{L}^{1-}(\mathcal{H})$ such that $\operatorname{Tr}_{\operatorname{Dix}}(UTU^{-1}) = \operatorname{Tr}_{\operatorname{Dix}}(T), \quad \operatorname{Tr}_{\operatorname{Dix}}(ST) = \operatorname{Tr}_{\operatorname{Dix}}(TS)$ for $U \in \mathcal{L}(\mathcal{H})$ unitary and $S, T \in \mathcal{L}^{1+}(\mathcal{H})$.

III.2.2- GRADED TRACE AND FREDHOLM MODULE M. Atiyah, *K-Theory*, (Benjamin, New York, 1967). A. Connes, *Publ. IHES*, **62**, 257 (1986).

• Set $\hat{\mathcal{H}} = \mathcal{H} \otimes \mathbb{C}^2$ with $\mathcal{H} = L^2(\mathbb{R}^2)$. The grading operator G is

$$G = \begin{pmatrix} +\mathbf{1} & 0 \\ 0 & -\mathbf{1} \end{pmatrix}$$

- $T \in \mathcal{L}(\hat{\mathcal{H}})$ has *degree* 0 if GT TG = 0 $T \in \mathcal{L}(\hat{\mathcal{H}})$ has *degree* 1 if GT + TG = 0.
- The graded commutator is given by $[T, T']_S = TT' - (-)^{d^{\circ}T.d^{\circ}T'}T'T$
- A degree 1 operator F is defined by

$$F = \left(\begin{array}{cc} 0 & u \\ u^* & 0 \end{array}\right)$$

where u = X/|X| and $X = X_1 + iX_2$ is the position operator. Then $F = F^*$, $F^2 = \mathbf{1}$.

• A *differential* d with $d^2 = 0$ is given by

$$dT = [F, T]_S$$

• The *Leibniz rule* becomes $d(TT') = dT T' + (-)^{d^{\circ}T} T dT'$

• A *graded trace* is defined as

$$\operatorname{Tr}_{S}(T) = \frac{1}{2}\operatorname{Tr}(GFdT)$$

if $dT \in \mathcal{L}^1(\hat{\mathcal{H}})$.

• Tr_S is *linear* and satisfies $dT, dT' \in \mathcal{L}^1(\hat{\mathcal{H}}), \Rightarrow \operatorname{Tr}_S([T, T']_S) = 0$

• Note:

- 1. Tr_{S} is not positive in general.
- 2. u = X/|X| coincides precisely with the singular gauge transformation corresponding to piercing the plane adiabatically with one flux quantum.
 - J.E. AVRON, R. SEILER, B. SIMON, Commun. Math. Phys., 159, 399 (1994).

III.3)- CONNES Formulæ

III.3.1- FIRST CONNES FORMULA

- Let $\mathcal{A} = C^*(\Omega \rtimes \mathbb{R}^2, B)$ acts on $\hat{\mathcal{H}}$ by $\hat{\pi}_{\omega} = \pi_{\omega} \otimes \mathrm{id}$ through degree 0 elements.
- FIRST CONNES FORMULA : for $A \in \mathcal{A}_0$ and P-almost all ω 's:

$$\mathcal{T}\left(ert ec{
abla} A ert^2
ight) \,=\, rac{1}{\pi} \, ext{Tr}_{ ext{Dix}} \left(ert d \hat{\pi}_{\omega}(A) ert^2
ight)$$

• Let S be the *Non Commutative Sobolev space* namely the Hilbert space generated by $A \in \mathcal{A}_0$ such that $\mathcal{T}(|A|^2 + |\vec{\nabla}A|^2) < \infty$. Then

 $A \in \mathcal{S} \Rightarrow d\hat{\pi}_{\omega}(A) \in \mathcal{L}^{2+}(\hat{\mathcal{H}})$

• Also $d\hat{\pi}_{\omega}(A)$ is compact for any $A \in \mathcal{A}$.

III.3.2- A Cyclic 2-cocycle

• For A_0 , A_1 , $A_2 \in \mathcal{A}_0$, a *cyclic 2-cocycle* is defined by

 $\mathcal{T}_{2}(A_{0}, A_{1}, A_{2}) = 2i\hat{\pi}\mathcal{T}(A_{0}\partial_{1}A_{1}\partial_{2}A_{2} - A_{0}\partial_{2}A_{1}\partial_{1}A_{2})$

This trilinear form extends by continuity to \mathcal{S} .

• \mathcal{T}_2 is *cyclic*

$$\mathcal{T}_2\left(A_0,A_1,A_2
ight) \ = \ \mathcal{T}_2\left(A_2,A_0,A_1
ight)$$

• \mathcal{T}_2 is Hochschild closed

$$0 = (b\mathcal{T}_{2}) (A_{0}, A_{1}, A_{2}, A_{3}) \equiv \\\mathcal{T}_{2} (A_{0}A_{1}, A_{2}, A_{3}) - \mathcal{T}_{2} (A_{0}, A_{1}A_{2}, A_{3}) \\ + \mathcal{T}_{2} (A_{0}, A_{1}, A_{2}A_{3}) - \mathcal{T}_{2} (A_{3}A_{0}, A_{1}, A_{2})$$

• Second Connes Formula : for $A_i \in \mathcal{A}_0$:

$$\mathcal{T}_{2}(A_{0}, A_{1}, A_{2}) = \int_{\Omega} d\mathbf{P} \operatorname{Tr}_{S}\left(\hat{\pi}_{\omega}(A_{0})d\hat{\pi}_{\omega}(A_{1})d\hat{\pi}_{\omega}(A_{2})\right)$$

III.4)- Quantization of Hall conductivity Recall that at T = 0, the Hall conductivity becomes $\sigma_H = \frac{e^2}{\hbar} \mathbf{Ch}(P_F)$

III.4.1- FREDHOLM INDEX

• FACT 1 : let P be a projection on \mathcal{H} and $\hat{P} = P \otimes \mathbf{1}_2$. If $d\hat{P} \in \mathcal{L}^3(\mathcal{H})$ then PuP is *Fredholm* on \mathcal{PH} and

$$\operatorname{Tr}_{S}\left(\hat{P}d\hat{P}d\hat{P}\right) = \operatorname{Ind}\left(PuP \upharpoonright_{P\mathcal{H}}\right) \in \mathbb{Z}$$

• FACT 2 : $d\hat{P} \in \mathcal{L}^3(\mathcal{H}) \iff (uPu^* - P) \in \mathcal{L}^3(\mathcal{H})$ and

 $\operatorname{Ind}\left(PuP\upharpoonright_{P\mathcal{H}}\right) = \operatorname{Tr}\left(\left(uPu^* - P\right)^{2n+1}\right) \quad \forall n \ge 1$

• Thus $\operatorname{Ind}(PuP \upharpoonright_{P\mathcal{H}})$ measures the increase of the dimension of $P\mathcal{H}$ after applying u.

III.4.2- $\mathbf{Ch}(P_F)$ is an integer

- ASSUME : $P_F \in \mathcal{S}$. Then $d\hat{\pi}_{\omega}(P_F) \in \mathcal{L}^{2+}(\mathcal{H}) \subset \mathcal{L}^3(\mathcal{H})$ (1st Connes formula).
- By the 2nd Connes formula we get

 $\mathbf{Ch}(P_F) = \int_{\Omega} d\mathbf{P} \operatorname{Tr}_S \left(\hat{\pi}_{\omega}(P_F) d\hat{\pi}_{\omega}(P_F) d\hat{\pi}_{\omega}(P_F) \right)$ The r.h.s. is the disordered average of $n(\omega) = \operatorname{Ind}(\pi_{\omega}(P_F) u \pi_{\omega}(P_F) \upharpoonright_{\pi_{\omega}(P_F)\mathcal{H}}) \in \mathbb{Z}$

- By *covariance* one gets $n(\tau^{\vec{x}}\omega) = n(\omega)$ **P**-almost all ω and $\vec{x} \in \mathbb{R}^2$
- Since **P** is *invariant ergodic*, $n(\omega)$ is almost surely constant so that

 $P_F \in \mathcal{S} \Rightarrow \mathbf{Ch}(P_F) \in \mathbb{Z}$

and $\mathbf{Ch}(P_F)$ measures the number of states created if one applies u namely the *Laughlin singular* gauge transformation ! This is indeed the number of charges sent at ∞ .

III.4.3- EXISTENCE OF PLATEAUX

• The Fermi level E_F is defined as the limit as $T \downarrow 0$ of the chemical potential μ , constrained to

$$\mathcal{T}(
ho_{eta,\mu})=n$$

where n is the charge carrier density.

- Experimentally one can change E_F either by changing the magnetic field B or by changing n. Both ways are used in practice.
- Remark that $P \in \mathcal{S} \mapsto \mathbf{Ch}(P) \in \mathbb{Z}$ is continuous thanks to Connes formulæ.
- Since $P_F = \chi(H \leq E_F)$, if we assume that the map $E_F \in (E_-, E_+) \mapsto P_F \in \mathcal{S}$ is continuous (for the Sobolev norm), then $\mathbf{Ch}(P_F)$ stay constant for E_F in the interval (E_-, E_+) !

This is the mechanism through which plateaux occur in the Hall conductivity.

• In the next section we will see that the condition $P_F \in S$ is a consequence of the *existence of local-ized states around the Fermi level*.

IV - LOCALIZATION and TRANSPORT

J. BELLISSARD, H. SCHULZ-BALDES, A. VAN ELST, J. Math. Phys., 35, (1994), 5373-5471.
 J. BELLISSARD, H. SCHULZ-BALDES, Rev. Math. Phys., 10, 1-46 (1998).
 J. BELLISSARD, H. SCHULZ-BALDES, J. Stat. Phys., 91, (1998), 991-1026.
 J. BELLISSARD, D. SPEHNER, work in progress.

IV.1)- Localization Theory IV.1.1- DEFINITIONS

• The DOS of $H = H^*$ affiliated to \mathcal{A} , was defined as the Stieljies-Lebesgue measure

$$d\mathcal{N}(E) = d\mathcal{T}(P_E)$$

with $P_E = \chi(H \leq E)$. For $\Delta \subset \mathbb{R}$ borelian, we set $P_\Delta = \chi(H \in \Delta)$.

- The non dissipative current is given by $\vec{J} = q/\hbar \vec{\nabla} H$.
- The *current-current correlation* is the measure m defined on $\mathbb{R} \times \mathbb{R}$ by:

 $\int_{\mathbb{R} \times \mathbb{R}} m(dE, dE') f(E) g(E') = \mathcal{T} \left(f(H) \,\vec{\nabla} H \, g(H) \,\vec{\nabla} H \right)$ for f, g continuous functions with compact support on \mathbb{R} . In physicists notations (ignoring q/\hbar) m(dE, dE') "=" $| < E |\vec{J}| E' > |^2$

• If H_{ω} is the representative of H associated to $\omega \in \Omega$ we set

$$\vec{X}_{\omega}(t) = e^{i\frac{t}{\hbar}H_{\omega}}\vec{X}e^{-i\frac{t}{\hbar}H_{\omega}}$$

IV.1.2- LOCALIZATION LENGTH

- Given Δ ⊂ ℝ borelian, the average localization length ℓ(Δ) of states with energy within Δ is defined through the following steps
 - 1. Project the initial state $|\vec{x}\rangle$ on Δ : $\pi_{\omega}(P_{\Delta})|\vec{x}\rangle$.
 - 2. Measure the distance it goes during time t by applying $(\vec{X}_{\omega}(t) \vec{X})\pi_{\omega}(P_{\Delta})|\vec{x} >$
 - 3. Square it to get the quantum average, average over time average over disorder to get

$$L_{\Delta}(t)^{2} = \frac{1}{t} \int_{0}^{t} \frac{ds}{s} \int_{\Omega} d\mathbf{P} < \vec{x} |\pi_{\omega}(P_{\Delta})(\vec{X}_{\omega}(t) - \vec{X})^{2} \pi_{\omega}(P_{\Delta}) |\vec{x} >$$

4. Then

$$\ell(\Delta) = \limsup_{t \to \infty} L_{\Delta}(t)$$

• FACT :

$$L_{\Delta}(t)^2 = rac{1}{t} \int_0^t rac{ds}{s} \mathcal{T}\left(|ec{
abla} e^{-\imath rac{t}{\hbar}H}|^2 P_{\Delta}
ight)$$

Thus the localization length is *algebraic* and independent of the representation of the Hamiltonian !

IV.1.3- LOCALIZATION: RESULTS

Assume $\ell(\Delta) < \infty$:

- 1. The *spectrum* of H_{ω} in Δ is *pure point* almost surely w.r.t. ω : all states in Δ are localized.
- 2. There is an \mathcal{N} -measurable function ℓ on Δ such that for any $\Delta' \subset \Delta$ borelian,

$$\ell(\Delta') = \int_{\Delta'} d\mathcal{N}(E)\ell(E)^2$$

 $\ell(E)$ is the *localization length at energy* E 3. One has

$$\ell(\Delta') = \int_{\Omega} d\mathbf{P} \int_{\mathbb{R}^2} d^2 \vec{x} \, |\vec{x}|^2 \sum_{E \in \sigma_{pp}(H_{\omega}) \cap \Delta'} \left| < 0 |P_{\{E\},\,\omega} |\vec{x} > \right|^2$$

where $P_{\{E\},\omega}$ is the eigenprojection of H_{ω} on the energy E.

4. One also gets:

$$\ell(\Delta') = 2 \int_{\Delta' \times \mathbb{R}} \frac{m(dE, dE')}{|E - E'|^2}$$

5. If $[E_0, E_1] \subset \Delta$

$$\|P_{E_1} - P_{E_0}\|_{\mathcal{S}} \le \int_{E_0}^{E_1} (1 + \ell^2) d\mathcal{N}$$

IV.1.4- EXISTENCE OF PLATEAUX

- From the previous results $P_F \in S$ as long as E_F belongs to a region of localized states. Thus *localization* \Rightarrow *existence of plateaux* for the Hall conductivity.
- From previous results by FRÖHLICH & SPENCER, AIZENMAN & MOLČANOV, the localization length is finite at high disorder for the *Anderson model*.
- More recent results by COMBES & HISLOP, W.M. WANG, the same is true for the *Landau Hamiltonian with a random potential*, at least $O(B^{-\infty})$ -away from the Landau levels.

IV.2)- Why are Hall Plateaux so Flat?

The theorems concerning the Hall conductance quantization requires the following conditions

- The sample has infinite area in space.
- The electric field is vanishingly small.
- The temperature vanishes.
- \bullet The collision operator C vanishes at zero temperature.

QUESTIONS : Can one estimate the error when we are away from these conditions ?

- 1. Can one estimate the error when we are away from these conditions ?
- 2. If Yes, can one explain the accuracy of the plateaux ?

RESULTS :

• It is possible to show that the accuracy of plateaux is limited only by the *dissipation mechanisms* in practice.

The size of the sample, the electric field, the temperature can be arranged so that they do not contribute.

• An estimate of the dissipation based upon the RTA gives the following estimate

$$\frac{\delta \sigma_{\scriptscriptstyle H}}{\sigma_{\scriptscriptstyle H}} \le const \cdot \nu \frac{e}{h} \frac{\ell^2}{\mu_c}$$

where ν is the filling factor, ℓ is the *localization length* (typically of the order of 100Å) and μ_c is the *mobility* of the sample.

Putting realistic numbers in it leads to

$$\frac{\delta \sigma_H}{\sigma_H} \le 10^{-4}$$

far from 10^{-8} that are observed !

• The origin of this discrepancy is due to *Mott's variable range hopping*.

D. POLYAKOV, B. SHKLOVSKII, Phys. Rev., B48, 11167, (1993).