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I - INTRODUCTION to the IQHE

J. Bellissard, H. Schulz-Baldes, A. van Elst, J. Math. Phys., 35, (1994), 5373-5471.
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I.1)- The Classical Hall Effect:

In the stationnary state: e n ~E +~j × ~B = 0

⇒ ~j =

(

0 σH
−σH 0

)

~E , σH =
ne

B
.

Units :
n

B
=

[

1

flux

]

,
h

e
= [flux] ⇒ ν = [1] .

where : ν =
nh

eB
= filling factor .

Hall’s formula

σH =
ν

RH

, RH =
h

e2
= 25 812.80 Ω .
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I.2)- The (Integer) Quantum Hall Effect:

→ Conditions of observation:

1. Low temperatures (≤ few Kelvins)

2. Large sample size (≥ few µm)

3. High mobility together with large enough quenched
disorder.

4. 2D fermion fluid.

→ Experiments show that:

1. Very flat plateaux at ν close to integers, namely if:

σH =
i

RH

i = 1, 2, 3, · · · quantization (Von Klitzing et al.)

2. On plateaux δσH/σH and σ///σH ≤ 10−8.
This indicates localization
(Prange, Thouless, Halperin).

3. For i ≥ 2, Coulomb interaction becomes negligible.

→ Questions:

1. Why is σH quantized ?

2. What is the rôle of localization ?
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I.3)- Earlier Works:
R.B. Laughlin, Phys. Rev. B23, 5632 (1981).

• Piercing the plane at x with a flux tube adiabatically
varying from 0 to φ0 = h/e forces 1 charge per filled
Landau level to transfer from x to ∞.

• This adiabatic change induces a unitary tranforma-
tion on the Landau Hamiltonian (gauge transforma-
tion).

• This gives the quantization of the Hall conductance.

R.E. Prange, Phys. Rev. B23, 4802 (1981).
D.J. Thouless, J. Phys. C14, 3475 (1981).
R. Joynt, R.E. Prange, Phys. Rev. B29, 3303 (1984).

• Localized states do not see the adiabatic change !

φ

B

j

(t)

E C
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D. Thouless, M. Kohmoto, M. Nightingale, M. den Nijs, Phys. Rev. Lett. 49, 405 (1982).
J.E. Avron, R. Seiler, B. Simon, Phys. Rev. Lett. 51, 51 (1983).

Harper’s model: one electron on a square lattice in a
uniform magnetic field. Magnetic translations U1, U2,
satisfy:

U1U2 = e2ıπαU2U1 , α =
φ

φ0

=
Ba2

h/e
.

Harper’s Hamiltonian:

HH = U1 + U−1
1 + U2 + U−1

2 .

a

U

U
U

U

2

1

1

2

φ
a =  

flux through unit cellφ =

lattice spacing

-1
-1
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• If α = p/q then HH is q-periodic;

• Bloch theory ⇒ wave function Ψ depends on
quasimomenta ~k = (k1, k2).

• ~k ∈ B where B ≈ T
2 is the Brillouin zone.

• Ψ defines a line bundle over B.

• Non triviality controlled by the Chern class

Ch(Ψ) =
1

π

∫ 2π

0
dk1

∫ 2π

0
dk2=m <

∂Ψ

∂k1
|
∂Ψ

∂k2
>

• Ch(Ψ) ∈ Z and is homotopy invariant.

k

Brillouin zone

k

Ψ
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• Assume Fermi level EF lies in a gap.

• Assume N bands E1(~k) < · · · < EN(~k) < EF <

EN + 1(~k) below Fermi level.

• Set PF =
∑

i≤N |Ψi >< Ψi| (Fermi projection).

• Set Ch(PF) =
∑

i≤N Ch(Ψi).

• The following holds true:

Ch(PF ) = 2ıπ

∫

T2

d2~k

4π2
Tr
(

PF (~k) [∂1PF (~k), ∂2PF (~k)]
)

• Then Hall conductance is given by the Chern-Kubo
formula

σH =
e2

h
Ch(PF)

• ⇒ Hall conductivity is quantized from topological
origin.



UCLA May 6 2005 10

I.4)- Difficulties with Earlier Works

1. If the magnetic flux is irrational
⇒ no Bloch theory !

2. Disorder destroys also periodicity
⇒ no Bloch theory !

3. Robustness against small disorder suggested from
the Kubo-Chern formula,
(see H. Kunz, Commun. Math. Phys. 112, 121 (1987). ).
But a general proof is needed.

4. How does one understand localization in this con-
text ?

→ Proposal

1)- J. Bellissard, in Lecture Notes in Phys., n◦
153, Springer Verlag, Berlin, Heidelberg, New York, (1982).

2)- J. Bellissard, in Lecture Notes in Physics 257, Springer-Verlag, Berlin, Heidelberg, New York, (1986).

Use C∗-algebras and their
Non Commutative Geometry !
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II - The NON COMMUTATIVE

BRILLOUIN ZONE

J. Bellissard, in From Number Theory to Physics, Springer-Verlag, Berlin, (1992).
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II.1)- The Hull of Aperiodic Media
II.1.1- A typical Hamiltonian

The Schrödinger Hamiltonian for an electron submitted
to atomic forces is given by (ignoring interactions):

H =
1

2m

(

~P − q ~A( . )
)2

+

K
∑

r=1

∑

y∈Lr

vr( .− y) .

acting on H = L2(Rd) .

• d : physical space dimension

• r = 1, . . . ,K labels the atomic species,

• Lr : set of positions of atoms of type r,

• vr : effective potential for valence electrons near an
atom of type r,

•m and q : mass and charge of the carrier,

• ~P = −ı~~∇ : momentum operator,

• ~A : magnetic vector potential.
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II.1.2- Magnetic translations

• In d = 2, uniform magnetic field B = ∂1A2 − ∂2A1.

• Magnetic translations

U (~a) = e
ı
~

∮ ~a
0
d~s
(

~P−q ~A(~s )
)

• Weyl’s commutations relations

U (~a) U (~b) = eı
q
~
B~a×~b U (~b) U (~a)

• Translation invariance of the kinetic part.

U (~a)
(

~P − q ~A( . )
)2

U (~a)−1 =
(

~P − q ~A( . )
)2

• Translation of the potential

U (~a) V ( . ) U (~a)−1 = V ( . − ~a)
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II.1.3- The Hull

• The set {Ha = U (a)HU (a)−1; a ∈ R
2} of trans-

lated of H , is endowed with the strong-resolvent
topology.

• Let Ω be its closure and ω(0) be the representative
of H .

Definition 1 The operator H is homogeneous if Ω
is compact.

• (Ω,R2) becomes a dynamical system, the Hull of H.
It is topologically transitive (one dense orbit). The
action is denoted by ω 7→ τaω (a ∈ R

2).

• If the potential V is continuous, there is a continu-
ous function v̂ on Ω such that if ω ∈ Ω the corres-
ponding operatorHω is a Schrödinger operator with
potential Vω(x) = v̂(τ−xω).

• Covariance U (a)HωU (a)−1 = Hτaω

• The observable algebra AH is the C∗-algebra gener-
ated by bounded functions of the Ha’s. It is related
to the twisted crossed product C∗(Ω o R

2, B).
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II.2)- The C∗-algebra C∗(Ω o R2, B)
II.2.1- Definition

Endow A0 = Cc(Ω × R
2) with (here A,A′ ∈ A0):

1. Product

A · A′(ω, ~x) =

∫

~y∈R2
d2~yA(ω, ~y)A′(τ−~yω, ~x− ~y)e

ıqB
2~
~x∧~x

2. Involution

A∗(ω, ~x) = A(τ−~xω,−~x)

3. A faithfull family of representations in H = L2(R2)

πω(A)ψ(~x) =

∫

R2
d2~yA(τ−~xω, ~y − ~x)e

ıqB
2~
~y∧~xψ(~y) .

if A ∈ A0, ψ ∈ H.

4. C∗-norm
‖A‖ = sup

ω∈Ω
‖πω(A)‖ .

Definition 2 The C∗-algebra A = C∗(ΩoR
2, B) is

the completion of A0 under this norm.
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II.2.2- Tight-Binding Representation

J. Bellissard, in Lecture Notes in Physics 257, Springer-Verlag, Berlin, Heidelberg, New York, (1986).

1. If L is the original set of atomic positions, let Σ be
the closure of the set {τ−~xω(0) ∈ Ω; ~x ∈ L}.
Σ is a transversal.

2. Replace Ω × R
2 by Γ = {(ω, ~x) ∈ Ω × R

2 ; ω ∈
Σ , τ−~xω ∈ Σ }. Γ is a groupoid.

3. Replace integral over R
2 by discrete sum over ~x.

4. Replace A0 by Cc(Γ), the space of continuous func-
tion with compact support on Γ. Then proceed as
before to get C∗(Γ, B).

5. C∗(Γ, B) is unital.

6. One can restrict the original Hamiltonian H to a
spectral bounded interval (in practice near the Fermi
level), so as to get an effective Hamiltonian Heff in
C∗(Γ, B). Thus Heff is bounded.
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II.2.3- Calculus

• Let P be an R
2-invariant ergodic probability

measure on Ω. Then set (for A ∈ A0)):

T (A) =

∫

Ω
dPA(ω, 0) = < 0|πω(A)0 >

dis.

Then T extends as a positive trace on A.

• T is a trace per unit volume, thanks to Birkhoff’s
theorem:

T (A) = lim
Λ↑R2

1

|Λ|
Tr(πω(A) �Λ) a.e. ω

• A commuting set of ∗-derivations is given by

∂iA(ω, ~x) = ıxiA(ω, ~x)

defined on A0. It satisfies πω(∂iA) = −ı[Xi, πω(A)]

where ~X = (X1, X2) are the coordinates of the po-
sition operator.
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II.2.4- Properties of A

Theorem 1 Let L be a periodic lattice in R
2. If H

is L-invariant, A is isomorphic to C(B)⊗K, where
B is the Brillouin zone and K is the C∗-algebra of
compact operators.

A is the non commutative analog of the space of contin-
uous functions on the Brillouin zone : it will be called
the Non Commutative Brillouin zone.

Theorem 2 Let H be a homogeneous Schrödinger
operator with hull Ω. Then for any z ∈ C\σ(H)
there is an element R(z) ∈ A (which is C∞), such
that

πω(R(z)) = (z1 −Hω)−1

for all ω ∈ Ω.

Moreover, the spectrum of R(z) is given by

σ(R(z)) = {(z − ζ)−1; ζ ∈ Σ}, Σ = ∪ω∈Ωσ(Hω)
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II.2.5- IDoS and Shubin’s formula

• Let P be an invariant ergodic probability on Ω. Let

N (E) = lim
Λ↑R2

1

|Λ|
# {eigenvalues of Hω �Λ≤ E}

It is the Integrated Density of states or IDoS.

• The limit above exists P-almost surely and

N (E) = T (χ(H ≤ E)) (Shubin, 1976)

χ(H ≤ E) is the eigenprojector of H in L∞(A).

• N is non decreasing, non negative and constant on
gaps. N (E) = 0 for E < inf Σ. For E → ∞
N (E) ∼ N0(E) where N0 is the IDoS of the free
case (namely V = 0).

• dN/dE = ndos defines a Stieljes measure called the
Density of States or DOS.
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- An example of IDoS -
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II.2.6- States

We consider states on A of the form

A ∈ A → T {ρA} ,

with ρ ≥ 0 and T {ρ} = n if n is the charge carrier
density. Then

ρ ∈ L1(A, T )

The Fermi-Dirac state:

describes equilibrium of a fermion gas of independent
particles at inverse temperature β = 1/kBT and chem-
ical potential µ:

ρβ, µ =
1

1 + eβ(H−µ)

µ is fixed by the normalization condition

T {ρβ, µ} = n .
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II.3)- To Summarize

1. The C∗-algebra A = C∗(Ω o R
2, B) is a Non Com-

mutative analog of the space of continuous functions
over the Brillouin zone B if the lattice of atoms is
no longer periodic, or if there is a magnetic field.

2. A groupoid Γ associated to the discrete set of atomic
positions, gives rise to tight-binding models.

3. Calculus on A is available and generalizes the usual
calculus on B.

4. Textbook formulæ valid for perfect crystals can be
easily generalized using this calculus. If PF is the
zero temperature limit of the Fermi-Dirac state,
constrained by T (PF) = n, the expression

Ch(PF) = 2ıπT (PF [∂1PF , ∂2PF ] )

is valid at least if EF = µ �T = 0 belongs to a gap of
the energy spectrum.

.



UCLA May 6 2005 23

III - The FOUR TRACE WAY

J. Bellissard, H. Schulz-Baldes, A. van Elst, J. Math. Phys., 35, (1994), 5373-5471.
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III.1)- The Kubo Formula
III.1.1- Background

• The (non dissipative) current is

~J = q
d ~X

dt
=
ıq

~
[H, ~X ] =

q

~

~∇H

• The thermal average of A ∈ A

< A >β, µ = T (Aρβ, µ)

• The Liouville operator acts on A

LH =
ı

~
[H, . ]

• A dissipative evolution requires an operator C act-
ing on A such that exp{−tC} : A 7→ A is a com-
pletely positive contraction semigroup. C has the
dimension of [time]−1. The (dissipative) evolution,
with a uniform electric field, is given by the Master
Equation:

dA

dt
= LH(A) +

q

~

~E .~∇A− C(A)
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III.1.2- Linear Response Theory

• The thermal averaged current satifies:

~j =< q
d ~X

dt
>β, µ = σ~E +O(~E 2)

• The 2 × 2 matrix σ is the conductivity tensor. It
is given by Kubo’s formula

σij =
q2

~
T

(

∂jρβ, µ
1

~C − ~LH
(∂iH)

)

• C usually depends on T so that as T ↓ 0, C ↓ 0.

• We have limT ↓ 0 ρβ, µ = PF .
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Theorem 3 Let assume

1. The Fermi level EF is not a discontinuity point
of the DOS of H.

2. limT ↓ 0C = 0.

3. PF is Sobolev differentiable: T
{

(~∇PF)2

}

<∞.

Then, as T ↓ 0, the conductivity tensor converges
to

σij =
q2

h
2ıπ T

(

PF [∂iPF , ∂jPF ]
)

.

In particular the direct conductivity vanishes and

σ12 = σH =
q2

h
Ch(PF)
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III.2)- The Four Traces

• On every Hilbert space H, the usual trace is de-
noted by Tr.

• In A we have the trace per unit volume T , associ-
ated to a translation invariant probability measure
P on the Hull.

III.2.1- Dixmier’s Traces
J. Dixmier, C.R.A.S., 1107 (1966).

• On a Hilbert space H, Lp(H) denotes the Schat-
ten ideal of those compact operator on H such that
Tr(|T |p) <∞.

• Given T a compact operator on H, let µ0 ≥ · · · ≥
µn ≥ . . . ≥ 0 be its singular values (eigenvalues of
|T |) labelled in decreasing order. Set

‖T‖p+ =

(

lim sup
n ∈ N

1

lnN

N − 1
∑

n = 0

µpn

)1/p

• The set of {T ; ‖T‖p+ <∞} is denoted by Lp+(H).
This a Mačaev ideal.
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Theorem 4 Set Lp−(H) = {T compact; ‖T‖p+ = 0}.

1. Lp−(H) and Lp+(H) are two-sided ideals in L(H).

2. For p < p′ ∈ [0,∞),

Lp(H) ⊂ Lp−(H) ⊂ Lp+(H) ⊂ Lp′(H)

3. ‖T‖p+ is a seminorm making Lp+(H)/Lp−(H) a
Banach space.

• Given a euclidean invariant mean M on R, one can
define a linear form LimM on `∞(N) such that
(i) LimM(a0, a1, a2, · · ·) = LimM(a1, a2, a3, · · ·),
(ii) LimM(a0, a1, a2, · · ·) = LimM(a0, a0, a1, a1, · · ·),
(iii) if a ∈ `∞(N) converges, LimM(a) = limn→ ∞ an.

• The Dixmier trace associated to M is given by

TrDix(T ) = LimM

(

1

lnN

N − 1
∑

n = 0

µn

)

.

if T ∈ L1+(H) is positive.

• TrDix can be extended as a positive continuous linear
form on L1+(H) vanishing on L1−(H) such that

TrDix(UTU
−1) = TrDix(T ), TrDix(ST ) = TrDix(TS)

for U ∈ L(H) unitary and S, T ∈ L1+(H) .
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III.2.2- Graded Trace and Fredholm Module
M. Atiyah, K-Theory, (Benjamin, New York, 1967).
A. Connes, Publ. IHES, 62, 257 (1986).

• Set Ĥ = H ⊗ C
2 with H = L2(R2). The grading

operator G is

G =

(

+1 0
0 −1

)

• T ∈ L(Ĥ) has degree 0 if GT − TG = 0
T ∈ L(Ĥ) has degree 1 if GT + TG = 0.

• The graded commutator is given by

[T, T ′]S = TT ′ − (−)d
◦T.d◦T ′

T ′T

• A degree 1 operator F is defined by

F =

(

0 u
u∗ 0

)

where u = X/|X| and X = X1+ ıX2 is the position
operator. Then F = F ∗ , F 2 = 1.

• A differential d with d2 = 0 is given by

dT = [F , T ]S
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• The Leibniz rule becomes

d(TT ′) = dT T ′ + (−)d
◦TT dT ′

• A graded trace is defined as

TrS(T ) =
1

2
Tr(GFdT )

if dT ∈ L1(Ĥ).

• TrS is linear and satisfies

dT , dT ′ ∈ L1(Ĥ),⇒ TrS([T, T
′]S) = 0

• Note:

1. TrS is not positive in general.

2. u = X/|X| coincides precisely with the singular
gauge transformation corresponding to piercing
the plane adiabatically with one flux quantum.
J.E. Avron, R. Seiler, B. Simon, Commun. Math. Phys., 159, 399 (1994).
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III.3)- Connes Formulæ

III.3.1- First Connes Formula

• Let A = C∗(ΩoR
2, B) acts on Ĥ by π̂ω = πω⊗ id

through degree 0 elements.

• First Connes Formula : for A ∈ A0 and
P-almost all ω’s:

T
(

|~∇A|2
)

=
1

π
TrDix (|dπ̂ω(A)|2)

• Let S be the Non Commutative Sobolev space
namely the Hilbert space generated by A ∈ A0 such
that T (|A|2 + |~∇A|2) <∞. Then

A ∈ S ⇒ dπ̂ω(A) ∈ L2+(Ĥ)

• Also dπ̂ω(A) is compact for any A ∈ A.
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III.3.2- A Cyclic 2-cocycle

• For A0 , A1 , A2 ∈ A0, a cyclic 2-cocycle is defined
by

T2 (A0, A1, A2) = 2ıπ̂T (A0∂1A1∂2A2 − A0∂2A1∂1A2)

This trilinear form extends by continuity to S.

• T2 is cyclic

T2 (A0, A1, A2) = T2 (A2, A0, A1)

• T2 is Hochschild closed

0 = (bT2) (A0, A1, A2, A3) ≡

T2 (A0A1, A2, A3) − T2 (A0, A1A2, A3)

+T2 (A0, A1, A2A3) − T2 (A3A0, A1, A2)

• Second Connes Formula : for Ai ∈ A0:

T2 (A0, A1, A2) =

∫

Ω

dPTrS (π̂ω(A0)dπ̂ω(A1)dπ̂ω(A2))
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III.4)- Quantization of Hall conductivity
Recall that at T = 0, the Hall conductivity becomes

σH =
e2

~
Ch(PF)

III.4.1- Fredholm Index

• Fact 1 : let P be a projection on H and P̂ =
P ⊗ 12. If dP̂ ∈ L3(H) then PuP is Fredholm on
PH and

TrS

(

P̂ dP̂ dP̂
)

= Ind (PuP �PH) ∈ Z

• Fact 2 : dP̂ ∈ L3(H) ⇐⇒ (uPu∗−P ) ∈ L3(H)
and

Ind (PuP �PH) = Tr ((uPu∗ − P )2n+ 1) ∀n ≥ 1

• Thus Ind(PuP �PH) measures the increase of the
dimension of PH after applying u.
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III.4.2- Ch(PF ) is an integer

• Assume : PF ∈ S.
Then dπ̂ω(PF) ∈ L2+(H) ⊂ L3(H) (1st Connes
formula).

• By the 2nd Connes formula we get

Ch(PF ) =

∫

Ω

dPTrS (π̂ω(PF )dπ̂ω(PF )dπ̂ω(PF ))

The r.h.s. is the disordered average of

n(ω) = Ind(πω(PF)uπω(PF) �πω(PF )H) ∈ Z

• By covariance one gets

n(τ~xω) = n(ω) P-almost all ω and ~x ∈ R
2

• Since P is invariant ergodic, n(ω) is almost surely
constant so that

PF ∈ S ⇒ Ch(PF) ∈ Z

and Ch(PF) measures the number of states cre-
ated if one applies u namely the Laughlin singular
gauge transformation ! This is indeed the number
of charges sent at ∞.



UCLA May 6 2005 35

III.4.3- Existence of Plateaux

• The Fermi level EF is defined as the limit as T ↓ 0
of the chemical potential µ, constrained to

T (ρβ, µ) = n

where n is the charge carrier density.

• Experimentally one can change EF either by chang-
ing the magnetic field B or by changing n.
Both ways are used in practice.

• Remark that P ∈ S 7→ Ch(P ) ∈ Z is continuous
thanks to Connes formulæ.

• Since PF = χ(H ≤ EF), if we assume that the map
EF ∈ (E−, E+) 7→ PF ∈ S is continuous (for the
Sobolev norm), then Ch(PF) stay constant for EF

in the interval (E−, E+) !
This is the mechanism through which plateaux
occur in the Hall conductivity.

• In the next section we will see that the condition
PF ∈ S is a consequence of the existence of local-
ized states around the Fermi level.
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IV - LOCALIZATION and TRANSPORT

J. Bellissard, H. Schulz-Baldes, A. van Elst, J. Math. Phys., 35, (1994), 5373-5471.
J. Bellissard, H. Schulz-Baldes, Rev. Math. Phys., 10, 1-46 (1998).
J. Bellissard, H. Schulz-Baldes, J. Stat. Phys., 91, (1998), 991-1026.

J. Bellissard, D. Spehner, work in progress.
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IV.1)- Localization Theory
IV.1.1- Definitions

• The DOS of H = H∗ affiliated to A, was defined as
the Stieljies-Lebesgue measure

dN (E) = dT (PE)

with PE = χ(H ≤ E).
For ∆ ⊂ R borelian, we set P∆ = χ(H ∈ ∆).

• The non dissipative current is given by ~J = q/~~∇H .

• The current-current correlation is the measure m
defined on R × R by:
∫

R × R

m(dE, dE ′)f(E)g(E ′) = T
(

f(H) ~∇H g(H) ~∇H
)

for f, g continuous functions with compact support
on R. In physicists notations (ignoring q/~)

m(dE, dE′)“=”| < E| ~J |E′ > |2

• IfHω is the representative of H associated to ω ∈ Ω
we set

~Xω(t) = eı
t
~
Hω ~Xe−ı

t
~
Hω
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IV.1.2- Localization Length

• Given ∆ ⊂ R borelian, the average localization
length `(∆) of states with energy within ∆ is de-
fined through the following steps

1. Project the initial state |~x > on ∆: πω(P∆)|~x >.

2. Measure the distance it goes during time t by
applying ( ~Xω(t) − ~X)πω(P∆)|~x >

3. Square it to get the quantum average,
average over time
average over disorder to get

L∆(t)2 =
1

t

∫ t

0

ds

s

∫

Ω

dP < ~x|πω(P∆)( ~Xω(t) − ~X)2πω(P∆)|~x >

4. Then
`(∆) = lim sup

t→ ∞

L∆(t)

• Fact :

L∆(t)2 =
1

t

∫

t

0

ds

s
T
(

|~∇e−ı
t
~
H|2P∆

)

Thus the localization length is algebraic and inde-
pendent of the representation of the Hamiltonian !
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IV.1.3- Localization: Results

Assume `(∆) <∞:

1. The spectrum of Hω in ∆ is pure point almost
surely w.r.t. ω: all states in ∆ are localized.

2. There is an N -measurable function ` on ∆ such that
for any ∆′ ⊂ ∆ borelian,

`(∆′) =

∫

∆′
dN (E)`(E)2

`(E) is the localization length at energy E

3. One has

`(∆′) =

∫

Ω

dP

∫

R2
d2~x |~x|2

∑

E ∈ σpp(Hω) ∩ ∆′

∣

∣< 0|P{E}, ω|~x >
∣

∣

2

where P{E}, ω is the eigenprojection of Hω on the
energy E.

4. One also gets:

`(∆′) = 2

∫

∆′×R

m(dE, dE′)

|E − E′|2

5. If [E0, E1] ⊂ ∆

‖PE1
− PE0

‖S ≤

∫ E1

E0

(1 + `2)dN
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IV.1.4- Existence of Plateaux

• From the previous results PF ∈ S as long as EF

belongs to a region of localized states. Thus local-
ization ⇒ existence of plateaux for the Hall con-
ductivity.

• From previous results by Fröhlich & Spencer, Aizenman

& Molčanov, the localization length is finite at high
disorder for the Anderson model.

• More recent results by Combes & Hislop, W.M. Wang,
the same is true for the Landau Hamiltonian with
a random potential, at least O(B−∞)-away from
the Landau levels.
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IV.2)- Why are Hall Plateaux so Flat ?

The theorems concerning the Hall conductance quan-
tization requires the following conditions

• The sample has infinite area in space.

• The electric field is vanishingly small.

• The temperature vanishes.

• The collision operator C vanishes at zero tempera-
ture.

Questions : Can one estimate the error when we are
away from these conditions ?

1. Can one estimate the error when we are away from
these conditions ?

2. If Yes, can one explain the accuracy of the plateaux ?
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Results :

• It is possible to show that the accuracy of plateaux
is limited only by the dissipation mechanisms in
practice.
The size of the sample, the electric field, the tem-
perature can be arranged so that they do not con-
tribute.

• An estimate of the dissipation based upon the RTA
gives the following estimate

δσH
σH

≤ const · ν
e

h

`2

µc

where ν is the filling factor, ` is the localization
length (typically of the order of 100Å) and µc is the
mobility of the sample.
Putting realistic numbers in it leads to

δσH
σH

≤ 10−4

far from 10−8 that are observed !

• The origin of this discrepancy is due to Mott’s vari-
able range hopping.
D. Polyakov, B. Shklovskii, Phys. Rev., B48, 11167, (1993).


