
RECONNECTION COHOMOLOGY OF COMPACT METRIZABLE SPACES

JEAN BELLISSARD

Abstract. Given a compact metrizable space X a Cantorizarion is a continuous surjective
map from the Cantor set onto X. If such a Cantorization is non degenerate, it gives rise to
the concept of reconnection cohomology. Such a cohomology is defined and is shown to be
isomorphic to the Čech cohomology of X.
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1. Cantorization and Reconnection Cohomology

The purpose of these notes is to show that the topology of a compact space, in particular its
Čech cohomology, can be reconstructed from breaking the space apart to make it a Cantor set
(Cantorization) and reconnecting the pieces together. This will be done by using a new cochain
complex called the reconnection cohomology. The main motivation comes from the description
of the Hull of a uniformly discrete set that have not necessarily finite local complexity. Such
sets actually are relevant in describing various materials like liquids and glasses. As it turns
out, an original idea by T. Egami permits to represent such sets as graph by defining properly
and mathematically the notion of chemical bond between points. This graph ia a skeleton of
the configuration of the solid and it has finite local complexity just by construction. In turns,
the Egami graph leads to a Cantorization of the tiling space from which the Čech cohomology
can be computed, in principle.

1.1. Cantorization.

Definition 1. A Cantor set is a metrizable compact, totally disconnected space without isolated
point.

By totally disconnected, it is meant that there the topology is generated by a family of closed
open sets. Such sets will be called clopen in what follows. A typical example of Cantor set is
provided by the set Ξ = {0, 1}N of sequences (εn)n∈N of zero’s and one’s, namely εn ∈ {0, 1}.
The topology is the product topology, so that, given a finite word w = (w1, · · · , wn) ∈ {0, 1}n
the set Ξ(w) = {ε ∈ Ξ ; εj = wj , 1 ≤ j ≤ n} is both closed and open. In addition the Ξ(w)’s
make up a basis for the topology of Ξ. As it turns out

Theorem 1 (Brouwer [3]). Any Cantor set is homeomorphic to {0, 1}N.

Definition 2. Let X be a metrizable compact space. A Cantorization of X is a continuous
surjective map φ : C → X where C is a Cantor set. It is non degenerate whenever for any pair
of disjoint compact open sets P,Q in C, the set φ(P ) \ φ(Q) is nonempty.

The simplest example of such Cantorization is provided by the representation of numbers in
the interval X = [0, 1] by dyadic decomposition. Namely for 0 ≤ x ≤ 1 there is a sequence
ε = (εn)n∈N ∈ Ξ = {0, 1}N such that

x =
∞∑
n=1

εn
2n

= φ(ε) .

If x = k/2l for some l ∈ N and 0 ≤ k ≤ 2l, then it admits two such representations. Otherwise
this representation is unique. Moreover φ is continuous as it is easy to show. Hence φ : Ξ→ [0, 1]

is a Cantorization. In much the same way, the map φ : Ξ → S1 given by ψ(ε) = e2ıπφ(ε) is a
Cantorisation of the unit circle. Both Cantorizations are non degenerate.

A general method to built a Cantorization proceeds from the notion of Borel partition out of a
finite open cover. Let X be a compact space and let O be a finite open cover. The σ-algebra
of O, denoted by σ(O) is the family of all subsets of X obtained from the elements of O by
intersection, union and complementation. In particular, since O is finite, all element of σ(O) are
Borel sets in X and σ(O) is also finite. Moreover σ(O) is ordered by inclusion and admits X as
a maximal element and ∅ as the minimal one if there are two non intersecting open sets in O. In
addition any decreasing sequence of sets in σ(O) admits its intersection as a minimum element.
Therefore, thanks to the Zorn Lemma, the set of non empty elements of σ(O) admits minimal
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elements, which will be called atoms. Such atoms make up a partition, denoted by P(O) of X
by Borel sets.

Lemma 1. Let O be a finite open cover of X. If A ⊂ O, let BA =
⋂
U∈A U ∩

⋂
V ∈Ac V c where

V c denotes the complement of V is X, and Ac the complement of A in O. Let then R(O) be the
set of A ⊂ O for which BA 6= ∅. Then the map A ∈ R(O) 7→ BA ∈ σ(O) is a bijection onto the
atoms of σ(O).

Proof: Clearly BA belongs to σ(O). In addition if A,B are two distinct subsets of O, there
is W ∈ B that is not in A, therefore BB ⊂ W while BA ⊂ W c, so that BA ∩ BB = ∅. If now
x ∈ X, let A be the set of open sets in O containing x. If V /∈ A it follows that x /∈ V . Hence
x ∈ BA. Therefore the union

⋃
A⊂OBA = X. It follows that this family is a partition. For each

open set U ∈ O either U ∈ A, in which case BA ⊂ U or U /∈ A the BA ⊂ U c. If R(U) denotes
the set of A ⊂ O containing U , it follows that U =

⋃
A∈R(U)BA. From then it follows that each

nonempty BA is minimal. 2

The main problem in this construction is that the Borel partition P(O) might contain atoms
with empty interior. This is the motivation for the following definition

Definition 3. A finite open cover of the metrizable compact space X is full whenever any
elements U ∈ O is the interior of its closure.

Proposition 1. (i) Given any finite open cover O of the metrizable compact space X, the family
O′ obtained by replacing each U ∈ O by the interior of its closure is a full finite open cover of
X.
(ii) If O is a full finite open cover of X, then each atom of its Borel partition P(O) has a
nonempty interior.

Proof: (i) Let O be a finite open cover. For each U ∈ O let U ′ be the interior of U . Then
U ⊂ U ′ and the set O′ = {U ′ ; U ∈ O} is a full finite cover.

(ii) Let now O be full and let B be an atom of the partition P(O). By definition B is not
empty. Thanks to the Lemma 1, it follows that there is A ⊂ O such that B = BA. Let U be the
intersection of the open sets in A. Let V1, · · · , Vn be the elements of Ac. Then U \ V1 has a non
empty interior. For if not, then U \ V1 would be contained in the frontier of V so that U ⊂ V1.
Since V1 coincides with the interior of V1 it follows that U ⊂ V1. This implies U \V1 = ∅ so that
B = ∅, a contradiction. Let then U1 be the interior of U \ V1. The same argument works for U1

versus V2. This defines, inductively a decreasing family of nonempty open sets U1, · · · , Un, so
that Un is finally the interior of B. 2

To build a Cantorization, it is necessary to get refinements of the Borel partition. This can be
done through the notion of refining sequence.

Definition 4. A resolving sequence (On)n∈N is a sequence of full finite open covers for which,
given any open set O ⊂ X and any x ∈ O, there is an N ∈ N such that for each n ≥ N there is
x ∈ Un ∈ On with Un ⊂ O.

In particular a resolving sequence separates the points of X. For if x 6= y, there are open
neighborhood Ox , Oy of x and y respectively, such that Ox ∩ Oy = ∅. Therefore for n large

enough there are Un, Vn ∈ On such that x ∈ Un ⊂ Ox and y ∈ Vn ⊂ Oy, so that Un ∩ Vn = ∅.
Given an resolving sequence (On)n∈N, let Pn be the partition generated by the open cover⋃n
j=1 Oj . By convention P0 = {X}. It follows immediately that each element in Pn is parti-

tioned by elements in Pn+1. This allows to defined a rooted tree graph T as follows: (i) elements
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of Pn are the vertices at generation n, (ii) so that {X} is the only vertex at generation 0 and is
called the root, (iii) an edge of generation n+ 1 is a pair (B,B′) where B ∈ Pn , B

′ ∈ Pn+1 and
B′ ⊂ B (by construction B′ 6= ∅). In such a case if B is called the father of B′ while B′ is called
a child of B. Then a descendent of B is an atom B” ∈ Pm, for m ≥ n+ 1 such that B” ⊂ B.

Definition 5 (see [6, 8]). The tree T will be called the Michon tree of the resolving sequence
(On)n∈N.

The boundary ∂T of the previous tree is the set of infinite paths starting at the root. A path
can be seen as an infinite sequence γ = (Bn)n∈N0 such that Bn ∈ Pn and Bn+1 is a child of Bn,
namely Bn+1 ⊂ Bn. Such a path is said to pass through Bn. The set ∂T can be endowed with a
topology that makes it completely discontinuous [8].

Theorem 2 (Existence of non degenerate Cantorization). Let X be a metrizable compact space.
Let (On)n∈N be a resolving sequence and let T be the corresponding Michon tree. Then
(i) T is Cantorian, namely each vertex has only a finite number of children and has at least one
descendent who has more than one child; in particular the boundary of this tree is a Cantor set
[8];
(ii) there is a continuous surjective map φ : ∂T → X,
(iii) the previous Cantorization is non degenerate

Proof: (i) Since each open cover is finite, each Borel partition Pn is finite as well. Hence
each vertex has only a finite number of children. Let then Bn ∈ Pn be a vertex of the tree. By
construction Bn is a Borel set with nonempty interior (see Proposition 1). Let then x 6= y be
two interior points of Bn. Then, since the sequence is resolving, it follows that there is N ≥ n
such that for each m ≥ N there are open sets Um and Vm in Om such that x ∈ Um, y ∈ Vm and
Um ∩ V m = ∅. In particular that x and y belong to different atoms of the Borel partition Pm.
Thanks to [8], ∂T is a Cantor set.

(ii) Let γ ∈ ∂T be a path represented by the decreasing family (Bn)n∈N of Borel sets with
Bn ∈ Pn. Thus Kn = Bn is a nonempty compact subset of X and Kn+1 ⊂ Kn. By the finite
intersection property, K(γ) =

⋂
n∈NKn is not empty either. Since the sequence is resolving, this

set is actually reduced to one point (use the same argument as in (i) above). Let this point be
denoted by φ(γ). This map is onto. For if x ∈ X, then for each n there is a unique Bn(x) ∈ Pn

such that x ∈ Bn(x). The sequence γ = (Bn(x))n∈N defines an element of ∂T such that φ(γ) = x.
This map is also continuous. For indeed, given x ∈ X and O an open neighborhood of x, there
is n ∈ N and Un ∈ On such that x ∈ Un ⊂ O. Hence, there is Bn ∈ Pn such that x ∈ Bn ⊂ O.
Let [Bn] be the set of all path γ ∈ ∂T passing through Bn. As shown in [8], this is a compact
open subset of ∂T (actually such sets make up a basis for the topology of T). In addition, by
construction φ(γ) ∈ O for γ ∈ [Bn], proving the claim.

(iii) It remains to prove that this Cantorization is non degenerate. Thanks to [1], Proposition 6,
any compact open set P ⊂ ∂T is a finite union of disjoint vertices of T. Namely there is an n ∈ N
and a finite family {B(1)

P , · · · , B(l)
P } of disjoint atoms in Pn such that this compact open set is

the union of the [B
(j)
P ]’s. If Q is another compact open set, disjoint of P , let {B(1)

Q , · · · , B(l)
Q } be

the corresponding vertices. There is no loss of generality in assuming that the generation n is
the same for both P and Q. By construction φ(P ) and φ(Q) are both closed in X. Clearly φ(P )

contains the union of the B
(j)
P ’s while φ(Q) contains the union of the B

(j)
Q ’s. Since this two sets

are disjoint, by construction, the conclusion follows. 2
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1.2. Reconnection Cohomology. In this subsection, let X be a metrizable compact space,
let C be a Cantor set and let φ : C → X be a Cantorization. First, as a reminder

Definition 6 (see [4]). A set S is called directed if there is a relation α < β between elements
of S satisfying
(i) for all element α ∈ S, then α < α
(ii) if, in S, there are three elements α, β, γ such that α < β and β < γ, then α < γ,
(iii) for all α, β in S there is γ such that γ < α and γ < β.

A subset T ⊂ S is cofinal if for any α ∈ S there is β ∈ T such that β < α.

Next the notion of c-partition is defined by

Definition 7. A c-partition P is a finite collection of subsets of C such that
(i) each P ∈ P is closed and open in C
(ii) any two distinct elements of P are disjoint
(iii) the union of elements of P is C.

A c-partition Q is called a refinement of P whenever for each Q ∈ Q there is an element P ∈ P,
denoted by P = π(Q) such that Q ⊂ P . Clearly such P is unique since two elements of P are
disjoint. In particular, this defines a map π : Q → P, called the restriction map. Moreover if
Q(P ) denotes the set of elements of Q contained in P , then it is a c-partition of P itself. Let
Q � P denote the relation Q is a refinement of P. This is an order relation on the set of c-
partitions. In addition, given any pair P,Q of c-partitions, there is a unique c-partition, denoted
by P ∧ Q, such that R � P,Q if and only if R � P ∧ Q. Actually P ∧ Q is the c-partition the
elements of which are sets of the form P ∩Q for some P ∈ P and some Q ∈ Q. It follows that
the set P(C) = P of c-partitions of C is a directed set.

By an elementary k-chain in P, it is meant a finite family (P0, P1, · · · , Pk) ∈ Pk+1 such that
φ(P0)∩φ(P1)∩· · ·∩φ(Pk) 6= ∅. Let then Ck(P) be the free abelian group generated by elementary
k-chains submitted to the following identification: if σ is a permutation of {0, 1, · · · , k} then

(Pσ(0), Pσ(1), · · · , Pσ(k)) = (−)σ (P0, P1, · · · , Pk) ,

where (−)σ denotes the signature of the permutation σ. Then a boundary operation ∂k = ∂ :
Ck(P)→ Ck−1(P) is the group homomorphism defined on the generators by

∂(P0, P1, · · · , Pk) =
k∑
j=0

(−1)j (P0, P1, · · · ,
j
∨, · · · , Pk) ,

where the sign
j
∨ means that the set Pj is removed. This leads to a chain complex C∗(P) defined

by

C∗(P) = · · ·
∂k+1→ Ck(P)

∂k→ Ck−1(P)
∂k−1→ · · · ∂1→ , C0(P)→ 0 ∂k ◦ ∂k+1 = 0 .

Given Q � P, the restriction map π induces a map πk : Ck(Q) → Ck(P) through the following
relation

πk(Q0, Q1, · · · , Qk) = (P0, P1, · · · , Pk) , Pj = π(Qj) .
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For indeed, if (Q0, Q1, · · · , Qk) is an elementary k-chain for Q, then ∅ 6= φ(Q0) ∩ φ(Q1) ∩ · · · ∩
φ(Qk) ⊂ φ(P0)∩ φ(P1)∩ · · · ∩ φ(Pk), showing that the r.h.s is indeed an elementary k-chain for
P. In addition, it is immediate to show that

πk−1 ◦ ∂k = ∂k ◦ πk , k ≥ 1 .

This defines a map π∗ : C∗(Q) → C∗(P) of chain complex. In particular, if Hk(P) denotes the
homology group for P, namely

Hk(P) = Ker{∂k}/Im{∂k+1} ,
then πk induces a group homomorphism π̂k : Hk(Q)→ Hk(P).

In a similar way, let Ck(P) = Hom{Ck(P),Z} be the dual group. Elements of Ck(P) are called
cochains. Then it can be organized into a cochain complex through using the differential d
defined by dkf = f ◦ ∂k+1, whenever f ∈ Ck(P). Then

C∗(P) = 0→ C0(P)
d0→ · · · dk−1→ Ck(P)

dk→ Ck+1(P)
dk+1→ · · · dk+1 ◦ dk = 0 .

By duality, the restriction map is defined by π∗ : C∗(P)→ C∗(Q) and again

πk+1 ◦ dk = dk ◦ πk , k ≥ 0 .

In much the same way, the restriction map defines a map in cohomology

Hk(P) = Ker{dk}/Im{dk−1} , π̂k : Hk(P)→ Hk(Q) .

Since the set P(C) is directed, it follows that the direct limit of the groups H∗ exists. This leads
to the following definition

Definition 8. Let X be a metrizable compact space and let φ : C → X be a Cantorization. The
reconnection cohomology associated with it is defined by the abelian groups

Hk(C,X, φ) = lim
→P

(Hk(P), π̂k)

1.3. Reconnection and Čech Cohomologies. The main result of this section is provided by
the following

Theorem 3. Let X be a metrizable compact space. If φ : C → X is a non degenerate Cantor-
ization then the reconnection and the Čech cohomology groups are isomorphic.

The proof of this theorem requires several technical steps that are described in this subsection.
The first step is a reminder about the Čech cohomology. A more complete description can be
found in [4, 5, 2].

An open cover U is a family of open subsets of X the union of which equals X. A subcover is
a family V ⊂ U of opens sets in U covering X. Since X is compact, all open cover contains a
finite subcover. A refinement of U is a cover V such that each open set V ∈ V is contained in
at least one open set U ∈ U. The relation V is a refinement of U will be denoted by V � U.
With this relation, the set of finite covers is a directed set. For indeed, clearly U � U, if W � V

and V � U implies W � U. Moreover, given two open covers U and V, the open cover U ∧ V is
defined by {U ∩ V ; U ∈ U , V ∈ V}. In particular, since both U and V are finite, so is U∧V. It
satisfies U ∧ V � U, U ∧ V � V.
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Let U be the set of finite subcovers of X. Given such a cover U ∈ U, an elementary k-
chain in U is a family (U0, U1, · · · , Uk) of open sets in U such that U0 ∩ U1 ∩ · · · ∩ Uk 6= ∅.
Then let Ck(U) be the free group generated by elementary k-chains submitted to the condition
(Uσ(0), Uσ(1), · · · , Uσ(k)) = (−)σ(U0, U1, · · · , Uk). Elements of Ck(U) are called k-chains. Like in
the case of c-partitions, a boundary operator ∂ = ∂k : Ck(U)→ Ck−1(U) is defined by

∂k(U0, U1, · · · , Uk) =
k∑
j=0

(−1)k (U0, U1, · · · ,
j
∨, · · · , Uk) .

This leads again to a chain complex

C∗(U) = · · · ∂k+1→ Ck(U)
∂k→ Ck−1(U)

∂k−1→ · · · ∂1→ , C0(U)→ 0 ∂k ◦ ∂k+1 = 0 .

The very same argument as in Section 1.2 leads to (i) if V � U and if π : V→ U is a restriction
map, then it induces a group homomorphism πk : Ck(V)→ Ck(U) (ii) πk−1 ◦ ∂k = ∂k ◦ πk, (iii)
this leads to a morphism of chain complex π∗ : C∗(V)→ C∗(U).

Similarly, by duality, the group of k-cochains Ck(U) = Hom{Ck(U),Z} and the differential
dk : Ck(U)→ Ck+1(U) defined by dkf = f ◦ ∂k leads to the cochain complex

C∗(U) = 0→ C0(U)
d0→ · · · dk−1→ Ck(U)

dk→ Ck+1(U)
dk+1→ · · · dk+1 ◦ dk = 0 .

Similarly, given V � U, any restriction map π leads to group homomorphisms πk : Ck(U) →
Ck(V), then to a morphism π∗ : C∗(U)→ C∗(V)) of cochain complex. In particular

(1) dk ◦ πk = πk+1 ◦ dk .
In turn, this implies that the cohomology groups Hk(U) = Ker{dk}/Im{dk−1} and the group
homomorphisms π̂k : Hk(U)→ Hk(V) are well defined. The following result is essential

Proposition 2 (see [4]). The homomorphism π̂k : Hk(U)→ Hk(V) is independent of the choice
of the restriction map.

Since the set U of (finite) open covers is directed by the relation of refinement, the following
definition makes sense

Definition 9. The Čech cohomology group Ȟk(X) is defined as the direct limit

Ȟk(X) = lim
→U

(Hk(U), πk)

Since X is metrizable, let d be a metric on X defining its topology. Then, if A ⊂ X is a subset
and if δ > 0, then Aδ will denote the following neighborhood of A

Aδ = {x ∈ X ; dist(x,A) < δ · diam(A)}
In particular if 0 < δ1 < δ2 this gives Aδ1 ⊂ Aδ1 ⊂ Aδ2 . Consequently, thanks to the finite

intersection property,
⋂
δ A

δ =
⋂
δ A

δ = A.

Starting from a c-partition P of C, let φ(P)δ denote the open cover {φ(P )δ ; P ∈ P}. This is a
cover because

⋃
P∈P φ(P ) = X and because φ(P ) ⊂ φ(P )δ. The next result will be crucial for

the proof



8 JEAN BELLISSARD

Lemma 2. Given any c-partition P of the Cantor set, there is δ0 > 0, depending of both P and
of φ, such that for 0 < δ < δ0 the set of elementary chains for both P and φ(P)δ are in bijection.

Proof: (i) If C = (P0, P1, · · · , Pk) is an elementary k-chain for P, then clearly φk(C) =
(φ(P0)

δ, φ(P1)
δ, · · · , φ(Pk)

δ) is also an elementary k-chain for φ(P)δ. If C,C ′ are two distinct
such k-chains in P, then there is at least one index j such that Pj 6= P ′j . Since both Pj , P

′
j

belong to P it follows that they do not intersect. Since φ is non degenerate, φ(P ′j) \ φ(Pj) 6= ∅.
Therefore there is y ∈ φ(P ′j) \ φ(Pj), so that dist(y, φ(Pj)) > 0. Hence there is δ1 > 0 such that

φ(P ′j) \ φ(Pj)
δ 6= ∅ for 0 < δ < δ1. In particular φ(P ′j)

δ 6= φ(Pj)
δ. Since P is finite, the set of

elementary chain is also finite and therefore, it is possible to choose δ1 uniformly with respect
to the elementary chain. Therefore φk(C) 6= φk(C

′). Hence, if δ > 0 is small enough, φk is
one-to-one on the set of elementary chains.

(ii) Let (P0, P1, . . . , Pk) be a family of k-distinct elements in P such that for any δ > 0 the
intersection φ(P0)

δ ∩ φ(P1)
δ ∩ · · · ∩ φ(Pk)

δ is nonempty. The intersection over δ > 0 coincides
with the closed set φ(P0) ∩ φ(P1) ∩ · · · ∩ φ(Pk) and, thanks to the finite intersection property,
is nonempty. Conversely, if the family (φ(P0), φ(P1), . . . , φ(Pk)) has empty intersection, there is
δ2 > 0 such that for 0 < δ < δ2, φ(P0)

δ ∩ φ(P1)
δ ∩ · · · ∩ φ(Pk)

δ = ∅. Again, because P is finite,
it is possible to choose δ2 uniformly for all finite family in P. Consequently, if δ0 = min{δ1, δ2}
the statement follows. 2

By using the same type of machinery it can be shown that the maps φk defines an isomorphism
of chain complex, then by duality a similar result holds for the cochain complex, so that

Corollary 1. If P is a c-partition and if δ is small enough, then Hk(P) and Hk(φ(P)δ) are
isomorphic.

Lemma 3. Given any finite open cover U in X, there is a c-partition P and some δ > 0, such
that φ(P)δ is a refinement of U. In other words, the family of open covers of the form φ(P)δ is
cofinal in the set U of finite open covers.

Proof: (i) let φ−1(U) = {φ−1(U) ; U ∈ U}. Since φ is continuous, each φ−1(U) is open in C.
Moreover if c ∈ C there is U ∈ U such that φ(c) ∈ U , or, equivalently, c ∈ φ−1(U). It follows
that φ−1(U) is an open cover of C.

(ii) Let now O be an open cover in C. Then there is a c-partition refining O. For indeed given
any O ∈ O and any c ∈ O, there is a clopen set Pc containing c and contained in O. The family
(Pc)c∈C is an open cover. Since C is compact, it has a finite subcover O1 made of clopen sets.
In particular this subcover is a refinement of O. Let now σ(O1) be the σ-algebra generated by
O1: it is finite by construction. Since each generator is a clopen set, it follows that all elements
of this σ-algebra are clopen as well. The subset of minimal elements will be called P and it is
clear that it is a c-partition refining O1 thus O.

(iii) If U is a finite open cover of X, the previous construction shows the existence of a c-partition
P refining φ−1(U). In particular for each P ∈ P there is U ∈ U such that φ(P ) ⊂ U . Therefore
there is δP > 0 such that φ(P )δ ⊂ U for 0 < δ < δP . Taking the minimum δP = min{δP ; P ∈ P}
it follows that φ(P)δ � U for 0 < δ < δP. 2

Proof of Theorem 3 : The Corollary 1, shows that for each c-partition P, there is δP > 0 such
that for 0 < δ < δP the two cohomology groups Hk(P) and Hk(φ(P)δ) are isomorphic. Moreover
it is clear that if Q � P, then φ(Q)δ � φ(P)δ as well. Therefore, taking the direct limit it gives
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Hk(C,X, φ) ' lim→PH
k(φ(P)δ). Thanks to Lemma 3, this direct limit coincides with the Čech

cohomology group Ȟk(X). 2
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