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I - Tilings, Tilings,...
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- Building the chair tiling -
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- The chair tiling -
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- The Penrose tiling -
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- The octagonal tiling -
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- Octagonal tiling: inflation rules -
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Quasicrystals
No translation symmetry, but icosahedral symmetry. Ex.:

1. Al62.5Cu25Fe12.5;

2. Al70Pd22Mn8;

3. Al70Pd22Re8;
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- The icosahedral quasicrystal AlPdMn -
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- The icosahedral quasicrystal HoMgZn-
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II - The Hull as a Dynamical System
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Point Sets
A subset L ⊂ Rd may be:
1. Discrete.

2. Uniformly discrete: ∃r > 0 s.t. each ball of radius r contains at most one point
of L.

3. Relatively dense: ∃R > 0 s.t. each ball of radius R contains at least one points
of L.

4. A Delone set: L is uniformly discrete and relatively dense.

5. Finite Local Complexity (FLC): L −L is discrete and closed.

6. Meyer set: L and L −L are Delone.



Research Horizon November 11th, 2009 14

Point Sets and Tilings
Given a tiling with finitely many tiles (modulo translations), a De-
lone set is obtained by defining a point in the interior of each
(translation equivalence class of) tile.

Conversely, given a Delone set, a tiling is built through the Voronoi
cells

V(x) = {a ∈ Rd ; |a − x| < |a − y| ,∀yL \ {x}}

1. V(x) is an open convex polyhedron containing B(x; r) and contained into B(x; R).

2. Two Voronoi cells touch face-to-face.

3. If L is FLC, then the Voronoi tiling has finitely many tiles modulo transla-
tions.
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- Building a Voronoi cell-
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- A Delone set and its Voronoi Tiling-



Research Horizon November 11th, 2009 17

The Hull
M(Rd) is the set of Radon measures on Rd namely the dual space
toCc(Rd) (continuous functions with compact support), endowed
with the weak∗ topology. For L a uniformly discrete point set in
Rd:

ν := νL =
∑
y∈L

δ(x − y) ∈M(Rd) .

Definition 1 Given L a uniformly discrete subset of Rd, the Hull of L
is the closure inM(Rd) of the Rd-orbit of νL.

Proposition 1 The Hull is a compact space.
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Properties of the Hull
If L ⊂ Rd is r-uniformly discrete with Hull Ω then using com-
pactness
1. each point ω ∈ Ω is an r-uniformly discrete point measure with support Lω.

2. if L is (r,R)-Delone, so are all Lω’s.

3. if, in addition, L is FLC, so are all the Lω’s.
Moreover then L −L = Lω − Lω ∀ω ∈ Ω.

Definition 2 The transversal of the Hull Ω of a uniformly discrete set
is the set of ω ∈ Ω such that 0 ∈ Lω.

Theorem 1 If L is FLC, then its transversal is completely discontinu-
ous.
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Local Isomorphism Classes and Tiling Space

A patch is a finite subset of L of the form

p = (L − x) ∩ B(0, r1) x ∈ L , r1 ≥ 0

Given L a repetitive, FLC, Delone set let W be its set of finite
patches: it is called the the L-dictionary.

A Delone set (or a Tiling) L′ is locally isomorphic to L if it has the
same dictionary. The Tiling Space ofL is the set of Local Isomorphism
Classes of L.

Theorem 2 The Tiling Space of L coincides with its Hull.
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Minimality

L is repetitive if for any finite patch p there is R > 0 such that each
ball of radius R contains an ε-approximant of a translated of p.

Theorem 3 Rd acts minimaly on Ω if and only if L is repetitive.
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Examples

1. Crystals : Ω = Rd/T ' Td with the quotient action of Rd

on itself. (Here T is the translation group leaving the lattice
invariant. T is isomorphic to ZD.)
The transversal is a finite set (number of point per unit cell).

2. Impurities in Si : let L be the lattices sites for Si atoms (it is a
Bravais lattice). Let A be a finite set (alphabet) indexing the
types of impurities.
The transversal is X = AZd with Zd-action given by shifts.
The Hull Ω is the mapping torus of X.
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- The Hull of a Periodic Lattice -
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Quasicrystals
Use the cut-and-project construction:

Rd
' E‖

π‖
←− Rn π⊥

−→ E⊥ ' R
n−d

L
π‖
←− L̃

π⊥
−→W ,

Here

1. L̃ is a lattice in Rn,

2. the window W is a compact polytope.

3.L is the quasilattice in E‖ defined as

L = {π‖(m) ∈ E‖ ; m ∈ L̃ , π⊥(m) ∈W}
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- The transversal of the Octagonal Tiling is completely
disconnected -
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III - The Gap Labeling Theorem

J. B, R. B, J.-. G, Commun. Math. Phys., 261, (2006), 1-41.
J. K, I. P, Michigan Math. J., 51, (2003), 537-546.

M. B, H. O-O, C. R. Math. Acad. Sci. Paris, 334, (2002), 667-670.
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Schrödinger’s Operator
Ignoring electrons-electrons interactions, the one-electron Hamil-
tonian is given by

Hω = −
~2

2m
∆ +

∑
y∈Lω

v(· − y)

Its integrated density of states (IDS) is defined by

N(E) = lim
Λ↑Rd

1
|Λ|

#
{
eigenvalues of Hω �Λ≤ E

}
For anyRd-invariant probability measureP onΩ the limit exists a.e.
and is independent of ω. It defines a nondecreasing function of E
constant on the spectral gaps of Hω. It is asymptotic at large E’s
to the IDS of the free Hamiltonian.
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- An example of IDS -
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Gap Labels

Theorem 4 The value of the IDS on gaps is a linear combination of the
occurrence probabilities of finite patches with integer coefficients.

The proof goes through the group of K-theory of the hull. The result is model independent.

The abstract result goes back to 1982 (J.B). In 1D, proved in 1993 (JB). Recent proof in any dimension

for aperiodic, repetitive, aperiodic tilings by K-P, B & O-O, JB-

B-G in 2001.
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IV - Branched Oriented Flat
Riemannian Manifolds
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The Fibonacci Tiling
Starting from two tiles inR as intervals a of lenght 1 and interval b
of length σ = (

√
5−1)/2, the tiling is built by using the substitution

a 7→ ab b 7→ a

After several iterations this gives

abaab·aba·abaab·abaab·aba·abaab·aba·abaab·abaab·aba·abaab·abaab·aba

abaababa · abaab · abaababa · abaababa · abaab · abaababa · abaab · abaababa
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- Constructing the Fibonacci tiling -
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- Collared tiles in the Fibonacci tiling -
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- The Anderson-Putnam complex for the Fibonacci tiling -
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- The substitution map -
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The Hull as an Inverse Limit
In general the following theorem holds

Theorem 5 Given an aperiodic, repetitive, FLC Delone set L ⊂ Rd,
there is a countable family (Xn)n∈N of CW-complexes and maps fn+1 :
Xn+1 7→ Xn that are local homeomorphisms such that the Hull ofL can
be seen as the inverse limit

Ω = lim
←

(Xn, fn)

In addition, the structure of the Xn’s allows to see them as flat oriented
branched Riemannian manifolds so that D fn = 1. The action of Rd can
be recovered form the local action by constant vector fields.
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V - Cohomology and K-Theory
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Čech Cohomology of the Hull
LetU be an open covering of the Hull. If U ∈ U, F (U) is the space
of integer valued locally constant function on U.

For n ∈N, the n-chains are the element of Cn(U), namely the free
abelian group generated by the elements of F (U0 ∩ · · · ∩Un) when
the Ui varies inU. A differential is defined by

d : Cn(U) 7→ Cn+1(U)

d f (
n+1⋂
i=0

Ui) =
n∑

j=0

(−1) j f (
⋂
i:i, j

Ui)
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This defines a complex with cohomology Ȟn(U,Z). The Čech
cohomology group of the Hull Ω is defined as

Ȟn(Ω,Z) = lim
−−→
U

Ȟn(U,Z)

with ordering given by refinement on the set of open covers.
Thanks to properties of the cohomology, if f ∗n is the map induced
by fn on the cohomology

Ȟn(Ω,Z) = lim
−−→

n

(
Ȟn(Xn,Z), f ∗n

)
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Examples
J. E. A, I. P, Ergodic Theory Dynam. Systems, 18, (1998), 509-537.
L. S, Topology of Tiling Spaces. AMS (2008)
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Examples
J. E. A, I. P, Ergodic Theory Dynam. Systems, 18, (1998), 509-537.
L. S, Topology of Tiling Spaces. AMS (2008)

• Fibonacci: dividesR into intervals a, b of length 1, σ = (
√

5−1)/2
according to the substitution rule a 7→ ab , b 7→ a. Then
H0 = Z , H1 = Z2
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Examples
J. E. A, I. P, Ergodic Theory Dynam. Systems, 18, (1998), 509-537.
L. S, Topology of Tiling Spaces. AMS (2008)

• Fibonacci: dividesR into intervals a, b of length 1, σ = (
√

5−1)/2
according to the substitution rule a 7→ ab , b 7→ a. Then
H0 = Z , H1 = Z2

• Thue-Morse: substitution a 7→ ab , b 7→ ba
H0 = Z , H1 = Z[1/2] ⊕Z
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Examples
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• Fibonacci: dividesR into intervals a, b of length 1, σ = (
√

5−1)/2
according to the substitution rule a 7→ ab , b 7→ a. Then
H0 = Z , H1 = Z2

• Thue-Morse: substitution a 7→ ab , b 7→ ba
H0 = Z , H1 = Z[1/2] ⊕Z

• Penrose 2D:
H0 = Z , H1 = Z5 , H2 = Z8
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Examples
J. E. A, I. P, Ergodic Theory Dynam. Systems, 18, (1998), 509-537.
L. S, Topology of Tiling Spaces. AMS (2008)

• Fibonacci: dividesR into intervals a, b of length 1, σ = (
√

5−1)/2
according to the substitution rule a 7→ ab , b 7→ a. Then
H0 = Z , H1 = Z2

• Thue-Morse: substitution a 7→ ab , b 7→ ba
H0 = Z , H1 = Z[1/2] ⊕Z

• Penrose 2D:
H0 = Z , H1 = Z5 , H2 = Z8

• Chair tiling:
H0 = Z , H1 = Z[1/2]⊕Z[1/2] , H2 = Z[1/4]⊕Z[1/2]⊕Z[1/2]
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Other Cohomologies

• Longitudinal Cohomology (C, M-S)

• Pattern-equivariant cohomology (K-P, S)

• PV-cohomology (S-B)

In maximal degree the Čech Homology does exists. It contains a
natural positive cone isomorphic to the set of positive Rd-invariant
measures on the Hull (B-B-G).
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Cohomology and K-theory
The main topological property of the Hull (or tiling psace) is
summarized in the following

Theorem 6 (i) The various cohomologies, Čech, longitudinal, pattern-
equivariant and PV, are isomorphic.
(ii) There is a spectral sequence converging to the K-group of the Hull
with page 2 given by the cohomology of the Hull.
(iii) In dimension d ≤ 3 the K-group coincides with the cohomology.



Research Horizon November 11th, 2009 47

Conclusion

1. Tilings can be equivalently be represented by Delone sets or point
measures.

2. The Hull allows to give tilings the structure of a dynamical system
with a transversal.

3. This dynamical system can be seen as a lamination or, equiva-
lently, as the inverse limit of Branched Oriented Flat Riemannian
Manifolds.
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4. The Čech cohomology is equivalent to the longitudinal one,
obtained by inverse limit, to the pattern-equivariant one or to
the Pimsner cohomology are equivalent Cohomology of the Hull.
The K-group of the Hull can be computed through a spectral
sequence with the cohomology in page 2.

5. In maximum degree, the Homology gives the family of invariant
measures and the Gap Labelling Theorem.


