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I - Aperiodic Materials



A List of Materials

1. Aperiodicity for Electrons

• Crystals in a Uniform Magnetic Field
• Semiconductors at very low temperature

2. Atomic Aperiodicity

• Quasicrystals
• Glasses
• Bulk Metallic Glasses



Quasicrystals

1. Stable Ternary Alloys (icosahedral symmetry)

•High Quality: AlCuFe (Al62.5Cu25Fe12.5)

• Stable Perfect: AlPdMn (Al70.Pd22Mn7.5)
AlPdRe (Al70.Pd21Re8.5)

2. Stable Binary Alloys

• Periodic Approximants: YbCd6, YbCd5.8

• Icosahedral Phase YbCd5.7



Quasicrystals

A hole in a sample of AlPdMn

A sample of HoMgZn compared
with a US one cent coin



Bulk Metallic Glasses

1. Examples (Ma, Stoica, Wang, Nat. Mat. ’08)

• ZrxCu1−x ZrxFe1−x ZrxNi1−x
• Cu46Zr47−xAl7Yx Mg60Cu30Y10

2. Properties (Hufnagel web page, John Hopkins)

•High Glass Forming Ability (GFA)
•High Strength, comparable or larger than steel
• Superior Elastic limit
•High Wear and Corrosion resistance
• Brittleness and Fatigue failure



Bulk Metallic Glasses
Applications (Liquidemetal Technology www.liquidmetal.com)

• Orthopedic implants and medical Instruments

•Material for military components

• Sport items, golf clubs, tennis rackets, ski, snowboard, ...

Pieces of Titanium-Based Structural
Metallic-Glass Composites

(Johnson’s group, Caltech, 2008)



II - Harper’s Model

P. G. Harper, Proc. Phys. Soc. A, 68, 874-878, (1955)

D. R. Hofstadter, Phys. Rev. B, 14, 2239-2249, (1976)



2D-Crystal Electrons in Magnetic Field

• Perfect square lattice, nearest neighbor hoping terms, uniform
magnetic field B perpendicular to the plane of the lattice

• Translation operators U1,U2



2D-Crystal Electrons in Magnetic Field

• Commutation rules (Rotation Algebra)

U1 U2 = e2ıπαU2 U1 α =
φ

φ0
φ = Ba2 φ0 =

h
e

• Kinetic Energy (Hamiltonian)

H = t
(
U1 + U2 + U−1

1 + U−1
2

)
• Landau gauge ψ(m,n) = e2ıπmkϕ(n).

Hence Hψ = Eψ means

ϕ(n + 1) + ϕ(n − 1) + 2 cos 2π(nα − k)ϕ(n) =
E
t
ϕ(n)





2D-Crystal Electrons in Magnetic Field

For α = p/q, the following properties hold

• The spectrum has q nonoverlapping bands, touching only at
E = 0
(Bellissard-Simon ’82,..., Avila-Jitomirskaya ’09)

• The spectral gaps are bounded below by e−Cq for some C > 0
(Helffer-Sjöstrand ’86-89, Choi-Elliot-Yui. 90)



2D-Crystal Electrons in Magnetic Field
For α < Q,
• The spectrum is a Cantor set

(Bellissard-Simon ’82,..., Avila-Jitomirskaya ’09)

• The spectrum has zero Lebesgue measure
(Avron-van Mouche-Simon, ’90, ..., Avila-Jitomirskaya ’09)

• The gap edges are Lipshitz continuous as long as they do not
close, otherwise they are Hölder with exponent 1/2
(Bellissard ’94, Avron-van Mouche-Simon, ’90, Haagerup et al.)

• The derivative of gap edges w.r.t. α is discontinuous at each
rational
(Wilkinson ’84, Rammal ’86, Bellissard-Rammal ’90)



Rotation Algebra

• The C∗-algebraAα generated by two unitaries U1,U2 such that
U1U2 = e2ıπαU2U1 is called the rotation algebra (Rieffel ’81)

• Aα has a trace defined by

T (Um
1 Un

2) = δm,0 δn,0

• Aα admits two ∗-derivations ∂1, ∂2 defined by (Connes ’82)

∂iU j = 2ıπ δi, jU j



Rotation Algebra

• Rieffel’s projection PR = − f (U2)U1 + g(U2) −U−1
1 f (U2)

T (PR) = α
1

2ıπ
T (PR

[
∂1PR, ∂2PR

]
) = 1

• If P ∈ Aα is a projection, then (Rieffel ’81, Pimsner-Voiculescu ’80, Connes ’82)

T (P) = nα − [nα] n = Ch(P) =
1

2ıπ
T (P

[
∂1P, ∂2P

]
) ∈ Z



Gap Labels

• If H = U1 + U−1
1 + U2 + U−1

2 , and if E belongs to a gap of the
spectrum of H, set

PE =
1

2ıπ

∮
γ

dz
zI −H

• Then PE ∈ Aα !! HenceT (PE) = nα−[nα] for some n ∈ Z !!
(Bellissard ’81, ’86)



Gap Labels

• The spectral projection of the Harper model between any two
gaps can be labelled by an integer, using the previous results,
(Claro-Wannier ’78)

• This integer corresponds to the quantization of the Hall con-
ductivity in such systems (Thouless-Kohmoto-den Nijs-Nightingale ’82)

Each color corresponds to the integer
gap label, for the eigenprojection

between the l.h.s and the gap.
(Avron-Osadchy-Seiler ’03)



III - C∗-algebras: an apology



Fourier Transform
Joseph Fourier, Mémoire sur la propagation de la chaleur dans les corps solides,
Nouveau Bull. Sci. Soc. Philomatique Paris, I (6), (1808), 112-116.

• “All” complex valued functions defined on the interval [0, 1]
can be written as a Fourier series

f (x) =
∑
n∈Z

f̂n e2ıπ n x f̂n ∈ C

• “All” complex valued functions defined onR can be written as
a Fourier integral

f (x) =

∫
R

f̂ (p) eı px dp



Fourier Transform

• The expansion extends to a parallelepiped P =
∏d

i=1[ai, bi] or
to Rd

f (x) =
∑
n∈Zd

f̂n e2ıπ
∑d

i=1 ni(xi−ai)/(bi−ai) f (x) =

∫
Rd

f̂ (p) eı p·x ddp

• It was used by Fourier to “solve” the heat equation in a paral-
lelepipedic box and to compute the heat transfer

∂ f
∂t

= ∆ f ⇔
∂ f̂n
∂t

= −

∑
i

4π2 n2
i

(bi − ai)2

 f̂n



An amazingly efficient tool

• The entry Fourier transform on Google produces

8, 100, 000 results !!

• Used to analyze partial differential equations

• Used to solve PDE’s by numerical computations through
(fast Fourier transform), in

– Celestial Mechanics (satellites),
– weather forecast
– Optic, gratings,
– Quantum Physics: nuclei, atoms, molecules, band calcula-

tions,...



Reconstruction Formula & Hilbert Spaces
(Second half of 19th century, Parseval, orthonormal polynomials, Hilbert)

• The Fourier coefficients f̂n can be computed from f

f̂n =

∫ 1

0
e−2ınx f (x) dx

• The sequence
(

f̂n
)
n∈Z

as an analog of the coordinates of a vector
in the complex analog of Euclidean spaces, a Hilbert space

∑
n∈Z
| f̂n|2 =

∫ 1

0
| f (x)|2 dx = ‖ f ‖2 (Parseval)



Pontryagin Duality
L.S. Pontryagin, The theory of topological commutative groups,
Ann. of Math., 35, (1934), 361-388

• If G is an abelian group, a character is a group homomorphism
χ : G→ S1

• The set G∗ of character is an abelian group for the pointwise
multiplication χη : g ∈ G 7→ χ(g)η(g) ∈ S1 and G ⊂ G∗∗

• If G is a topological group the weak∗-topology make G∗ topolog-
ical

• If G is locally compact

– so is G∗

– G = G∗∗

– G and G∗ have a Haar measure dg, dχ



Pontryagin Duality
If F : G→ C is continuous, there is a suitable normalization of the
dual Haar measure dχ such that, its Fourier transform satisfies

F̂(χ) =

∫
G
χ(g) F(g) dg ⇔ F(g) =

∫
G∗
χ(g) F̂(χ) dχ∫

G
|F(g)|2 dg =

∫
G∗
|̂F(χ)|2 dχ (Parseval)

Fourier transform : L2(G)→ L2(G∗) is unitary.

Fourier transform is (abelian) group theory !



Convolution & Product

• Dual aspect of the group law: convolution
If F,F′ : G→ C are continuous with comact support

F ∗ F′(g) =

∫
G

F(h) F′(h−1g) dh

• The Fourier transform it into the pointwise product

F̂ ∗ F′ (χ) = F̂(χ) F̂′(χ)

Fourier transform is (abelian) algebra !



C∗-Algebras
A very long story: from Gelfand et al. 1940, to the mid sixties
G. K. Pedersen, C∗-algebras and their automorphism groups, Academic Press, 1979.

A C∗-algebraA is a Banach space with a bilinear associative prod-
uct (a, b) 7→ ab and an antilinear involution a 7→ a∗ such that

‖ab‖ ≤ ‖a‖ ‖b‖ ‖a∗a‖ = ‖a‖2

The r.h.s implies that the norm is of purely algebraic origin because

1. The norm of ‖a∗a‖ coincides with the spectral radius of a∗a
(namely the minimum of |z| for z ∈ C such that (z − a∗a) is invertible inA)

2. If ρ : A → B is an injective ∗-homomorphism between C∗-
algebras, then it is isometric.



C∗-Algebras
A character is a ∗-homomorphism χ : A→ C. Then the kernel of a
character is a closed ∗-ideal.

IfA is simple, there are no characters other than 0, 1.

The set X = X(A) of characters is equipped with the weak∗-
topology: then X is locally compact (compact ifA has a unit).

Gelfand Theorem A C∗-algebraA is an abelian if and only if there is
a ∗-isomorphism G : A→ C0(X)



C∗-Algebras
Let G be a locally compact abelian group. The convolution and the
adjoint (F,F′ ∈ Cc(G) are continuous with compact support)

F ∗ F′(g) =

∫
G

F(h)F′(h−1g) dh F∗(g) = F(g−1)

Cc(G) becomes a ∗-algebra.
It has a unique C∗-norm with completion C∗(G).

Theorem If G is a locally compact abelian group C∗(G) is commutative
and its space of character is homeomorphic to G∗.
The Gelfand transform G coincides with the Fourier transform

Fourier transform is (abelian) C∗-algebras !



C∗-Algebras as Noncommutative Spaces

• A C∗-algebra can be seen as the space of continuous functions
(vanishing at infinity) on an hypothetical locally compact “non-
commutative” space X.

•Hence expressing algebraically operations like integrals, deriva-
tives, vector fields, connections, etc., leads to “noncommutative
geometry”.

• Similarly a C∗-algebra can be seen as a Fourier transform without
symmetries !



VI - The Hull



Fundamental Properties
• Pointlike Nuclei: The atomic nuclei in a solid are located on

a discrete subset of R3. These nuclei can be considered as
pointlike.

• Exclusion Principle: Due to the electron-electron repulsion,
produced by the Pauli’s exclusion principle, there is a minimum
distance between nuclei. Hence the nuclei positions make up a
uniformly discrete subset of R3.

• Condensed Media: Both in liquid and solids, big holes are
unstable, hence unlikely.

•Homogeneity: All solids considered are homogeneous, namely
their large scale physical properties are invariant by translation



Uniformly Discrete Sets

• A discrete subset L ⊂ Rd is called uniformly discrete whenever
there is r > 0 such that #{B(x; r) ∩ L} = 0, 1 for any x ∈ Rd

• Associated with L is the Radon measure

νL =
∑
y∈L

δy

• νL is characterized by two properties

– If B is any bounded Borel subset of Rd then νL(B) ∈N
– For all x ∈ Rd then νL(B(x; r)) ∈ {0, 1}

• Let UDr be the set of such measures on Rd.



UD-sets

• The space M(Rd) of Radon measures on Rd is the dual to the
space Cc(Rd) of continuous functions with compact support. It
will be endowed with the weak∗-topology. Rd acts on it and this
action is weak∗-continuous. Then twill denote this action.

• Theorem:

– A Radon measure µ belongs to UDr if and only if it has the form
νL with L being r-uniformly discrete

– UDr is invariant by the translation group Rd

• Theorem: For any r > 0, the space UDr is compact



The Hull

•Hull of µ: if µ ∈ UDr its Hull is the closure of its translation
orbit.

Hull(µ) = {taµ ; a ∈ Rd}

• It follows immediately that the Hull is compact and thatRd acts
on it by homeomorphisms. Hence

(Hull(µ),Rd, t) is a topological dynamical system

• The support of µ is denoted by Lµ



The Canonical Transversal

• If µ ∈ UDr its canonical transversal is the subset Trans(µ) defined
by those elements ξ ∈ Hull(µ) with ξ({0}) = 1

• If ξ ∈ Trans(µ) and if a ∈ Rd is small enough and nonzero
0 < |a| < r then taξ < Trans(µ)

• Trans(µ) is also compact.

• ξ ∈ Trans(µ) then its fiber is the set of points Lξ ⊂ Rd such
that a ∈ Lξ ⇒ t−aξ ∈ Trans(µ). Hence Lξ is nothing but the
support of ξ



Delone Sets

• A measure µ ∈ UDr is Delone if there is R ≥ r so that

µ(B(x; R)) ≥ 1 ∀x ∈ Rd

The space of R-Delone sets is closed, thus Hull(µ) ⊂ Delr,R

• A Delone setL has finite local complexity (FLC), if the set L − L
is discrete and closed (Lagarias ’99) where L −L =

{
y − z ; y, z ∈ L

}
Then its transversal is completely disconnected.

• L is a Meyer set whenever both L and L −L are Delone. Qua-
sicrystal are described by Meyer sets.



V - The Noncommutative Brillouin Zone



Set Up

•Ω is a compact metrizable space equipped with an action of the
translation group Rd by homeomorphism
(for example Ω = Hull(µ))

• Ξ ⊂ Ω is a closed subspace (for example Ξ = Ω, Trans(µ))

• Γξ = {x ∈ Rd ; t−xξ ∈ Ξ}. Let dy denotes either the Lebesgue or
the counting measure on Γξ.

•Magnetic field: (x, y) ∈ Rd
7→ B(x, y) ∈ R is bilinear, antisym-

metric.



Groupoids
The lack of periodicity makes homogeneity (translation invariance
at large scale) more complicate to express.

Instead of a group action, it is rather a groupoid action.



Groupoids
A groupoid can be seen as a category, with objects and morphisms
being sets.

A groupoid can be seen as a group with several units (objects) and
a partially defined product. It can be endowed with a topology, a
probability on the set of units, ...



Groupoids

Γ ⊂ Ξ ×Rd is the groupoid induced Ξ:

• Elements of Γ are pairs γ = (ξ, x) ∈ Ξ ×Rd such that t−xξ ∈ Ξ

• Γ ⊂ Ξ ×Rd is closed.

• Source, Range: r(γ) = ξ, s(γ) = t−xξ are continuous maps
s, r : Γ→ Ξ

• Product: if r(γ′) = s(γ) and γ = (ξ, x), γ′ = (ξ′, x′) = (t−xξ, x′)

γ ◦ γ′ = (ξ, x + x′)

• Inverse: γ−1 = (t−xξ,−x)



Groupoids

• In the periodic case L = Zd then Ω = Rd/Zd = Td

• If Ξ = {0} ⊂ Td then Γ ' Zd is the period group.

Γ is the remnant of the translation group !



Groupoids

•Hilbert Space: Hξ = L2(Γξ)

• Γ-Action: if γ ∈ Γ : η = t−xξ→ ξ then

U(γ) : Hη→Hξ

U(γ)ψ(y) = e−ıB(x,y) ψ(y − x) ψ ∈ Hη y ∈ Γξ



The Algebra C∗(Γ)
EndowA0 = Cc(Γ) with (here A,B ∈ A0)

• Product: (convolution over the groupoid)

A · B(ξ, x) =

∫
Γξ

A(ξ, y) B(t−yξ, x − y) eıB(x,y) dy

• Adjoint: (Like F∗(γ) = F(γ−1))

A∗(ξ, x) = A(t−xξ,−x)

• Representation: (Left regular) onHξ = L2(Γξ)

πξ(A)ψ(x) =

∫
Γξ

A(t−xξ, y − x) e−ıB(x,y) ψ(y) dy ψ ∈ Hξ



The Algebra C∗(Γ)

• Covariance: if γ : η→ ξ

U(γ)πη(A)U(γ)−1 = πξ(A)

• C∗-norm:

‖A‖ = sup
ξ∈Ξ
‖πξ(A)‖

• C∗(Γ,B) is the completion ofA0 under this norm



The Algebra C∗(Γ)

• Periodic Case: L is a discrete subgroup of Rd, such that
B = Rd/L is compact. B is called the Brillouin zone.

C∗(Γ) ' C(B) ⊗K

• In particular any A ∈ C∗(Γ) can be seen as a matrix valued
function Ai j(k), k ∈ B



Calculus

• Let P be a Γ-invariant probability on Ξ and set

TP(A) =

∫
Ξ

A(ξ, 0) P(dξ) A ∈ Cc(Γ)

• TP : A0 → C is a trace:

– TP : A0 → C is linear
– It is positive TP(A∗A) ≥ 0
– It is tracial TP(AB) = TP(BA)



Calculus

• TP is the trace per unit volume

TP(A) = lim
Λ↑Rd

1
|Λ ∩ Γξ|

Tr
(
πξ(A)χΛ

)
∀ξ P − a. s.

• In the periodic case

TP(A) =

∫
B

Tr
(
Â(k)

)
dk

Trace per unit volume = integral over Brillouin’s zone



Calculus

•Dual Rd-action:

ηk(A)(ξ, x) = eık·xA(ξ, x) ∂iA =
∂
∂ki
ηk(A) �k=0

• Then if X = (X1, · · · ,Xd) is the position operator defined by
(Xiψ)(x) = xiψ(x) for ψ ∈ Hξ, then

πξ(∂iA) = −ı[Xi, πξ(A)]

∂i is is differentiation w.r.t quasi-momentum



Thanks for listening !


