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I - INTRODUCTION to the IQHE

J. Bellissard, H. Schulz-Baldes, A. van Elst, J. Math. Phys., 35, (1994), 5373-5471



The Classical Hall Effect
In the stationnary state:

e n ~E + ~j × ~B = 0

⇒ ~j =

(
0 σH

−σH 0

)
~E

σH =
ne
B

Units :
n
B

=
[ 1
flux

]
,

h
e

= [flux]⇒ ν = nh
eB = [1] = (filling factor)

This gives the Hall formula

σH =
ν

RH
RH =

h
e2 = 25,812.80 Ω



The Integer Quantum Hall Effect

Two examples of Hall bars used in experiments
(Gossard, 2000)



The Integer Quantum Hall Effect

J. P. Eisenstein, H. L. Stormer, Science, (1990), 248, 1461



The Integer Quantum Hall Effect

• Conditions of Observations

– Low temperature (≤ few Kelvins)
– Large sample size (≥ few µm)
– High mobility & large quenched disorder
– Two-dimensional Fermion fluid

• Experiment show that

– Very flat plateaux at ν ∼ 1, 2, 3, 4 with σH = `/RH , ` = 1, 2, 3, 4
– Plateaux thickness δσH/σH ≤ 10−8

− 10−10

– Very small direct conductivity on plateaux⇒ localization
– For ` ≥ 2 electron-electron interaction is negligible



The Integer Quantum Hall Effect

•Why is σH quantized ?

•What is the role of the localization ?



Earlier Works: Laughlin’s argument
R. B. Laughlin, Phys. Rev. B, 23, (1981), 5632
R. E. Prange, Phys. Rev. B, 23, (1981), 4802
D. J. Thouless, J. Phys. C, 14, (1981), 3475
R. Joynt, R. E. Prange, Phys. Rev. B, 29, (1984), 3303

• Piercing the plane at x with a flux tube adiabatically
varying from 0 to φ0 = h/e forces one charge per filled
Landau level to transfer from x→∞

• This adiabatic change induces a unitary transforma-
tion u on the Landau Hamiltonian (gauge transfor-
mation)

• This gives the quantization of the Hall conductance

• Localized states do not participate to this transport



Earlier Works: TKN2

• Use the Harper model on a square lattice, nearest neighbor hop-
ing terms, uniform magnetic field B perpendicular to the lattice

• Translation operators U1,U2



Earlier Works: TKN2

• Commutation rules (Rotation Algebra)

U1 U2 = e2ıπαU2 U1 α =
φ

φ0
φ = Ba2 φ0 =

h
e

• Kinetic Energy (Hamiltonian)

H = t
(
U1 + U2 + U−1

1 + U−1
2

)
• Landau gauge ψ(m,n) = e2ıπmkϕ(n).

Hence Hψ = Eψ means

ϕ(n + 1) + ϕ(n − 1) + 2 cos 2π(nα − k)ϕ(n) =
E
t
ϕ(n)



Earlier Works: TKN2

• Choose α = p/q to make H q-periodic. Use Bloch theory with
quasimomentum ~k = (k1, k2) ∈ B ≈ T2

• At H is a q × q-matrix valued smooth function of ~k

• At~k fixed, any eigenstate Ψ~k
of H~k, defines a line bundle over B

• Its non triviality is controlled by the Chern number

Ch(Ψ) =
1
π

∫ 2π

0

∫ 2π

0
=m 〈

∂Ψ
∂k1
|
∂Ψ
∂k2
〉 dk1dk2

• Ch(Ψ) ∈ Z and is homotopy invariant under deformation of H



Earlier Works: TKN2

• If P : ~k ∈ B 7→ P(~k) is a projection valued smooth map then
(example: P = |Ψ〉〈Ψ|)

Ch(P) =
1

2ıπ

∫ 2π

0

∫ 2π

0
Tr

(
P(~k)

[
∂P
∂k1

,
∂P
∂k2

])
dk1dk2 ∈ Z

• If P,Q are two orthogonal projections, PQ = QP = 0, then

Ch(P ⊕Q) = Ch(P) + Ch(Q)



Earlier Works: TKN2

• If the Fermi level EF belongs to an energy gap, let PF be the Fermi
projection (namely the eigenprojection onto states with energy E ≤ EF)

• Then the following Chinese-Japanese relation holds

σH =
e2

h
Ch(PF) (Chern-Kubo formula)

• This formula explains the quantization of the Hall conductance
for rational magnetic fields !

It does NOT explain the appearance of plateaux !



II - Disorder and Magnetic Field



Noncommutativity of the Brillouin Zone

• If α = φ/φ0 < Q, the Bloch theory fails !

• Adding a random potential adds up to the failure of Bloch theory !

•Disordered potential: Vω(x) = W ωx , x ∈ Z2 with

– W is the disorder strength
– ω = (ωx)x∈Z2 and the ωx’s are i.i.d.’s with uniform distribution

on [−1/2,+1/2]
– ω ∈ Ω =

∏
x∈Z2[−1/2,+1/2] is compact (Tychonov Theorem) and Z2

acts by shift.

• The groupoid is now Ω o Z2

The observable algebra is againA = C(Ω) oBZ
d.



Landau Levels



Landau Levels

Landau levels
E` = `α

` = 1, 2, · · ·



Density of States

∫
R

f (E) g(E) dE = TP( f (H))

(for f ∈ Cc(R))

NO gap !



Noncommutativity of the Brillouin Zone

• The Chern-Kubo formula becomes

σH = −2ıπ
e2

h
TP (PF

[
∂1PF , ∂2PF

]
) =

e2

h
Ch(PF)

•Questions:

– How does one prove that Ch(PF) ∈ Z ?
– How does one define Ch(PF) if the Fermi level does NOT

belong to a gap !



III - The Four Traces Way

J. Bellissard, H. Schulz-Baldes, A. van Elst, J. Math. Phys., 35, (1994), 5373-5471



Trace and Trace per Unit Volume

• For a trace class operator T acting on a separable Hilbert space

Tr(T) =

∞∑
n=1

〈en|Ten〉 (en)n∈N orthonormal basis

• If Γ is a locally compact groupoid, with unit space Ξ equipped
with an invariant probability measure P

TP(A) =

∫
Ξ

A(ξ, 0) dP(ξ) A ∈ Cc(Γ)



Graded Trace

• Spinors: here Γξ ⊂ R2 ! IfHξ = L2(Γξ) set Ĥξ = Hξ ⊗ C
2

•Grading:

G = 1Hξ ⊗
[

1 0
0 −1

]
G∗ = G = G−1

• An operator T ∈ B(Ĥξ) has degree deg(T) whenever

GT − (−1)deg(T) TG = 0

• Any operator T ∈ B(Ĥξ) can be uniquely decomposed into
T = T0 + T1 with deg(Ti) = i



Graded Trace

•Graded Commutator:[
T , T′

]
S = TT′ − (−1)deg(T) deg(T′) T′T

•Dirac Operator: if X = X1 + ıX2 is the position operator

D =

[
0 X

X∗ 0

]
F =

D
|D|
⇒ F = F∗ = F−1 , deg(F) = 1

•Graded Trace:

TrS(T) =
1
2

Tr
(
GF [F,T]S

)



Graded Trace

•Differential:
dT = [F , T]S

• Leibniz rule:

d(TT′) = dT T′ + (−1)deg(T) T dT′

• TrS is linear and satisfies, for dT, dT′ trace class operator

TrS(TT′) = (−1)deg(T) deg(T′) TrS(T′T) (graded trace)



Graded Trace

• Representation of C∗(Γ)

π̂ξ(A) =

[
πξ(A) 0

0 πξ(A)

]
A ∈ A0 , deg(π̂ξ(A)) = 0

• Laughlin argument: It is worth noticing that u = X/|X| is a
unitary operator on Hξ representing the gauge transformation
corresponding to an adiabatic change of a pointwise flux at the
origin, from 0 to φ0.



The Dixmier Trace
J. Dixmier, C. R. Acad. Sci. Paris Sér. A-B, 262, (1966), A1107-A1108

• IfH is a Hilbert space Lp(H) denotes the Schatten ideal of com-
pact operators with Tr(|T|p) < ∞

• If T is compact, let µ1 ≥ · · · ≥ µn ≥ 0 be its singular values
(eigenvalues of |T|) labelled in nonincreasing order. Then

‖T‖p+ =

lim sup
N∈N

1
ln (N + 1)

N∑
n=1

µp


1/p

•Mačaev ideal: Lp+(H) is the set of T compact with ‖T‖p+ < ∞



The Dixmier Trace

Theorem Let Lp−(H) = {T compact ; ‖T‖p+ = 0}. Then

1. Lp±(H) are two-sided ideals in B(H)

2. If 0 ≤ p < p′ < ∞

Lp(H) ⊂ Lp−(H) ⊂ Lp+(H) ⊂ Lp′(H)

3. ‖ · ‖p+ is a seminorm making Lp+(H)/Lp−(H) a Banach space



The Dixmier Trace

• Abstract nonsense: using the theory of amenable groups,
Dixmier proves the existence of a linear form Υ : `∞(N) → R
such that

– Υ(a1, a2, a3 · · ·) = Υ(a2, a3, a4, · · ·)
– Υ(a1, a2, a3 · · ·) = Υ(a1, a1, a2, a2, · · ·)
– Is a ∈ `∞(N) converges, then Υ(a) = limn→∞(an)

•Dixmier Trace: given such Υ, then

TrΥ(T) = Υ

 1
ln (N + 1)

N∑
n=1

µ

 T ∈ L1+(H) , T ≥ 0



The Dixmier Trace

• Then Dixmier proves that TrΥ extends as a positive linear map on
Lp+(H) vanishing on Lp−(H) and such that

TrΥ(UTU−1) = TrΥ(T) TrΥ(ST) = TrΥ(TS)

if U is unitary and S,T ∈ Lp+(H)



IV - Connes Formulae
A. Connes, Noncommutative Geometry, Acad. Press, (1994)



First Connes Formula

• If A ∈ C∗(Γ) then for P-almost all ξ’s and all Υ

TP

(
|~∇A|2

) de f
= TP(|∂1A|2 + |∂2A|2) =

1
π

TrΥ

(
|dπξ(A)|2

)
• If S denotes the Sobolev space generated by A ∈ A0 such that
TP(|A|2 + |~∇A|2) < ∞ then

A ∈ S ⇒ dπξ(A) ∈ L2+(H)



Second Connes Formula

• A cyclic 2-cocycle: for A0,A1,A2 ∈ S

T2(A0,A1,A2) = 2ıπ TP (A0 (∂1A1∂2A2 − ∂2A1∂1A2))

• Cyclicity:
T2(A0,A1,A2) = T2(A2,A0,A1)

• T2 is Hochschild-closed:

(bT2)(A0,A1,A2,A3) = T2(A0A1,A2,A3) − T2(A0,A1A2,A3)
+ T2(A0,A1,A2A3) − T2(A3A0,A1,A2)
= 0



Second Connes Formula

• for A0,A1,A2 ∈ S

T2(A0,A1,A2) =

∫
Ξ

TrS(π̂ξ(A0) dπ̂ξ(A1) dπ̂ξ(A2)) dP(ξ)

•

TrS(π̂ξ(A0) dπ̂ξ(A1) dπ̂ξ(A2)) =
1
2

Tr(G dπ̂ξ(A0) dπ̂ξ(A1) dπ̂ξ(A2))

• Ai ∈ S ⇒ dπ̂ξ(A) ∈ L2+(H) ⊂ L3(H) so that the r.h.s is well
defined



Fredholm Index

• Integrality: (Connes) If P is a projection onHξ then set P̂ = P ⊗ 12.
If dP̂ ∈ L3(H) then PuP is Fredholm and

TrS(P̂ dP̂ dP̂) = Ind(PuP) ∈ Z

• Fedosov formula: dP̂ ∈ L3(H)⇔ (PuP − P) ∈ L3(H) and

Ind(PuP) = Tr((PuP − P)2n+1) ∀n ≥ 1

•Hence Ind(PuP) measure the change of dimension of P under the
Laughlin gauge transformation, namely the number of charges
sent to infinity (Avron, Seiler, Simon)



Quantization of the Chern Number

• If PF ∈ S, then dπ̂ξ(PF) ∈ L2+(Hξ) ⊂ L3(Hξ) (1st Connes formula)

• Then (2nd Connes formula)

Ch(PF) =

∫
Ξ

TrS(π̂ξ(PF) dπ̂ξ(PF) π̂ξ(PF)) dP(ξ) =

∫
Ξ

n(ξ) dP(ξ)

• Since it is a Fredholm index n(ξ) ∈ Z . By covariance it is trans-
lation invariant. Since PF ∈ S it follows that n(ξ) is measurable in
ξ. Since P is ergodic, then n(ξ) is almost surely constant. Hence

PF ∈ S ⇒ Ch(PF) ∈ Z

which measures the number of charges sent to infinity.



Localization
The condition PF ∈ S is implied by the condition that the Fermi
level EF lies in a region of localized states

Thanks for listening !


