The INTEGER QUANTUM

HALL EFFECT

Jean BELLISSARD

Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics e-mail: jeanbel@math.gatech.edu

Sponsoring

This material is based upon work supported by the National Science Foundation Grant No. DMS-1160962

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Contributors

D. SPEHNER, Institut Fourier, Grenoble, France

H. SCHULZ-BALDES, Dep. of Math., Friedrich-Alexander Universität, Erlangen-Nürnberg, Germany

A. van Elst

Main References

J. BELLISSARD, H. SCHULZ-BALDES, A. VAN ELST, "The Non Commutative Geometry of the Quantum Hall Effect" *J. Math. Phys.*, **35**, (1994), 5373-5471

A. CONNES, Noncommutative Geometry, Acad. Press, (1994)

J. E. Avron, R. Seiler, B. Simon, *Phys. Rev. Lett.*, 65, (1990), 2185-2188.

J. E. Avron, R. Seiler, B. Simon, Comm. Math. Phys., 159, (1994), 399-422.

H. Schulz-Baldes, J. Bellissard, Rev. Math. Phys., 10, (1998), 1-46.

H. Schulz-Baldes, J. Bellissard, J. Stat. Phys., 91, (1998), 991-1026.

Content

- 1. Introduction to the QHE
- 2. Disorder and Magnetic Field
- 3. The Four Traces Way
- 4. Connes Formulae

I - INTRODUCTION to the IQHE

J. Bellissard, H. Schulz-Baldes, A. van Elst, J. Math. Phys., 35, (1994), 5373-5471

The Classical Hall Effect

In the stationnary state: $e n \vec{\mathcal{E}} + \vec{j} \times \vec{B} = 0$

$$\Rightarrow \quad \vec{j} = \begin{pmatrix} 0 & \sigma_H \\ -\sigma_H & 0 \end{pmatrix} \vec{\mathcal{E}}$$
$$\sigma_H = \frac{ne}{B}$$

Units :
$$\frac{n}{B} = \left[\frac{1}{\text{flux}}\right]$$
, $\frac{h}{e} = [\text{flux}] \Rightarrow \nu = \frac{nh}{eB} = [1] = \text{(filling factor)}$

This gives the *Hall formula*

$$\sigma_H = \frac{\nu}{R_H}$$
 $R_H = \frac{h}{e^2} = 25,812.80 \ \Omega$

Two examples of Hall bars used in experiments

(Gossard, 2000)

J. P. EISENSTEIN, H. L. STORMER, Science, (1990), 248, 1461

- Conditions of Observations
 - Low temperature (\leq few Kelvins)
 - Large sample size (\geq few μm)
 - High mobility & large quenched disorder
 - Two-dimensional Fermion fluid
- Experiment show that
 - Very flat plateaux at $\nu \sim 1, 2, 3, 4$ with $\sigma_H = \ell/R_H$, $\ell = 1, 2, 3, 4$
 - Plateaux thickness $\delta \sigma_H / \sigma_H \le 10^{-8} 10^{-10}$
 - Very small direct conductivity on plateaux \Rightarrow *localization*
 - For $\ell \geq 2$ electron-electron *interaction* is *negligible*

- Why is σ_H quantized ?
- What is the role of the localization ?

Earlier Works: Laughlin's argument

R. B. Laughlin, *Phys. Rev. B*, 23, (1981), 5632
R. E. Prange, *Phys. Rev. B*, 23, (1981), 4802
D. J. Thouless, *J. Phys. C*, 14, (1981), 3475
R. Joynt, R. E. Prange, *Phys. Rev. B*, 29, (1984), 3303

- Piercing the plane at *x* with a flux tube adiabatically varying from 0 to $\phi_0 = h/e$ forces one charge per filled Landau level to transfer from $x \to \infty$
- This adiabatic change induces a unitary transformation *u* on the Landau Hamiltonian (gauge transformation)
- This gives the quantization of the Hall conductance
- Localized states do not participate to this transport

- Use the Harper model on a *square lattice*, nearest neighbor hoping terms, *uniform magnetic field B* perpendicular to the lattice
- Translation operators U_1, U_2

- **a** = lattice spacing
- ϕ = flux through unit cell

• Commutation rules (*Rotation Algebra*)

$$U_1 U_2 = e^{2i\pi\alpha} U_2 U_1$$
 $\alpha = \frac{\phi}{\phi_0}$ $\phi = Ba^2 \quad \phi_0 = \frac{h}{e}$

• Kinetic Energy (*Hamiltonian*)

$$H = t \left(U_1 + U_2 + U_1^{-1} + U_2^{-1} \right)$$

• Landau gauge $\psi(m, n) = e^{2i\pi mk}\varphi(n)$. Hence $H\psi = E\psi$ means

$$\varphi(n+1) + \varphi(n-1) + 2\cos 2\pi(n\alpha - k)\varphi(n) = \frac{E}{t}\varphi(n)$$

- Choose $\alpha = p/q$ to make H q-periodic. Use *Bloch theory* with quasimomentum $\vec{k} = (k_1, k_2) \in \mathbb{B} \approx \mathbb{T}^2$
- At *H* is a $q \times q$ -matrix valued smooth function of \vec{k}
- At \vec{k} fixed, any eigenstate $\Psi_{\vec{k}}$ of $H_{\vec{k}}$, defines a *line bundle* over **B**
- Its non triviality is controlled by the *Chern number*

$$\mathbf{Ch}(\Psi) = \frac{1}{\pi} \int_0^{2\pi} \int_0^{2\pi} \Im m \left\langle \frac{\partial \Psi}{\partial k_1} | \frac{\partial \Psi}{\partial k_2} \right\rangle dk_1 dk_2$$

• $Ch(\Psi) \in \mathbb{Z}$ and is *homotopy invariant* under deformation of *H*

• If $P : \vec{k} \in \mathbb{B} \mapsto P(\vec{k})$ is a *projection* valued smooth map then *(example: P = |\Psi\rangle\langle\Psi|)*

$$\mathbf{Ch}(P) = \frac{1}{2i\pi} \int_0^{2\pi} \int_0^{2\pi} \operatorname{Tr}\left(P(\vec{k}) \left[\frac{\partial P}{\partial k_1}, \frac{\partial P}{\partial k_2}\right]\right) dk_1 dk_2 \in \mathbb{Z}$$

• If P, Q are two orthogonal projections, PQ = QP = 0, then

 $Ch(P \oplus Q) = Ch(P) + Ch(Q)$

- If the *Fermi level* E_F belongs to an energy gap, let P_F be the *Fermi* projection (namely the eigenprojection onto states with energy $E \leq E_F$)
- Then the following *Chinese-Japanese* relation holds

 $\sigma_H = \frac{e^2}{h} \operatorname{Ch}(P_F) \qquad \text{(Chern-Kubo formula)}$

• This formula *explains the quantization* of the Hall conductance *for rational magnetic fields* !

It does NOT explain the appearance of plateaux !

II - Disorder and Magnetic Field

Noncommutativity of the Brillouin Zone

- If $\alpha = \phi/\phi_0 \notin \mathbb{Q}$, the Bloch theory *fails* !
- Adding a *random potential* adds up to the *failure* of Bloch theory !
- **Disordered potential:** $V_{\omega}(x) = W \omega_x$, $x \in \mathbb{Z}^2$ with
 - W is the disorder strength
 - $-\omega = (\omega_x)_{x \in \mathbb{Z}^2}$ and the ω_x 's are *i.i.d.*'s with *uniform distribution* on [-1/2, +1/2]
 - $-\omega \in \Omega = \prod_{x \in \mathbb{Z}^2} [-1/2, +1/2]$ is compact (*Tychonov Theorem*) and \mathbb{Z}^2 acts by *shift*.
- The groupoid is now $\Omega \rtimes \mathbb{Z}^2$ The observable algebra is again $\mathcal{A} = C(\Omega) \rtimes_B \mathbb{Z}^d$.

Landau Levels

Landau Levels

Noncommutativity of the Brillouin Zone

• The Chern-Kubo formula becomes

$$\sigma_{H} = -2\iota \pi \frac{e^{2}}{h} \mathcal{T}_{\mathbb{P}} (P_{F} [\partial_{1} P_{F}, \partial_{2} P_{F}]) = \frac{e^{2}}{h} \mathbf{Ch}(P_{F})$$

- Questions:
 - How does one prove that $Ch(P_F) \in \mathbb{Z}$?
 - How does one define $Ch(P_F)$ if the Fermi level *does NOT belong* to a gap !

III - The Four Traces Way

J. Bellissard, H. Schulz-Baldes, A. van Elst, J. Math. Phys., 35, (1994), 5373-5471

Trace and Trace per Unit Volume

• For a *trace class* operator *T* acting on a separable Hilbert space

$$\operatorname{Tr}(T) = \sum_{n=1}^{\infty} \langle e_n | Te_n \rangle$$
 $(e_n)_{n \in \mathbb{N}}$ orthonormal basis

• If Γ is a locally compact *groupoid*, with unit space Ξ equipped with an invariant *probability* measure \mathbb{P}

$$\mathcal{T}_{\mathbb{P}}(A) = \int_{\Xi} A(\xi, 0) \, d\mathbb{P}(\xi) \qquad A \in \mathcal{C}_{\mathcal{C}}(\Gamma)$$

- **Spinors:** here $\Gamma^{\xi} \subset \mathbb{R}^2$! If $\mathcal{H}_{\xi} = L^2(\Gamma^{\xi})$ set $\widehat{\mathcal{H}}_{\xi} = \mathcal{H}_{\xi} \otimes \mathbb{C}^2$
- Grading:

$$G = \mathbf{1}_{\mathcal{H}_{\xi}} \otimes \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad \qquad G^* = G = G^{-1}$$

• An operator $T \in \mathcal{B}(\mathcal{H}_{\xi})$ has *degree* deg(*T*) whenever

$$GT - (-1)^{\deg(T)} TG = 0$$

• Any operator $T \in \mathcal{B}(\widehat{\mathcal{H}}_{\xi})$ can be uniquely decomposed into $T = T_0 + T_1$ with $\deg(T_i) = i$

• Graded Commutator:

$$[T, T']_S = TT' - (-1)^{\deg(T) \deg(T')} T'T$$

• **Dirac Operator:** if $X = X_1 + \imath X_2$ is the *position* operator

$$D = \begin{bmatrix} 0 & X \\ X^* & 0 \end{bmatrix} \qquad F = \frac{D}{|D|} \implies F = F^* = F^{-1}, \operatorname{deg}(F) = 1$$

• Graded Trace:

$$\operatorname{Tr}_{S}(T) = \frac{1}{2} \operatorname{Tr} \left(GF \ [F, T]_{S} \right)$$

• Differential:

 $dT = [F, T]_S$

• Leibniz rule:

$$d(TT') = dT T' + (-1)^{\deg(T)} T dT'$$

• Tr_S is *linear* and satisfies, for dT, dT' trace class operator

 $\operatorname{Tr}_{S}(TT') = (-1)^{\operatorname{deg}(T) \operatorname{deg}(T')} \operatorname{Tr}_{S}(T'T) \qquad \text{(graded trace)}$

• **Representation of** *C*^{*}(Γ)

$$\widehat{\pi}_{\xi}(A) = \begin{bmatrix} \pi_{\xi}(A) & 0 \\ 0 & \pi_{\xi}(A) \end{bmatrix}$$

$$A \in \mathcal{A}_0$$
, $\deg(\widehat{\pi}_{\xi}(A)) = 0$

• Laughlin argument: It is worth noticing that u = X/|X| is a unitary operator on \mathcal{H}_{ξ} representing the *gauge transformation* corresponding to an *adiabatic change* of a pointwise flux at the origin, from 0 to ϕ_0 .

J. DIXMIER, C. R. Acad. Sci. Paris Sér. A-B, 262, (1966), A1107-A1108

- If \mathcal{H} is a Hilbert space $L^p(\mathcal{H})$ denotes the *Schatten ideal* of compact operators with $\text{Tr}(|T|^p) < \infty$
- If *T* is compact, let $\mu_1 \ge \cdots \ge \mu_n \ge 0$ be its singular values (eigenvalues of |T|) labelled in nonincreasing order. Then

$$||T||_{p+} = \left(\limsup_{N \in \mathbb{N}} \frac{1}{\ln(N+1)} \sum_{n=1}^{N} \mu^{p}\right)^{1/p}$$

• **Mačaev ideal:** $L^{p+}(\mathcal{H})$ is the set of *T* compact with $||T||_{p+} < \infty$

Theorem Let $L^{p-}(\mathcal{H}) = \{T \text{ compact} ; ||T||_{p+} = 0\}$. Then

1. $L^{p\pm}(\mathcal{H})$ are two-sided ideals in $\mathcal{B}(\mathcal{H})$

2. If $0 \le p < p' < \infty$

$$L^{p}(\mathcal{H}) \subset L^{p-}(\mathcal{H}) \subset L^{p+}(\mathcal{H}) \subset L^{p'}(\mathcal{H})$$

3. $\|\cdot\|_{p+}$ is a seminorm making $L^{p+}(\mathcal{H})/L^{p-}(\mathcal{H})$ a Banach space

- **Abstract nonsense:** using the theory of amenable groups, Dixmier proves the existence of a *linear form* $\Upsilon : \ell^{\infty}(\mathbb{N}) \to \mathbb{R}$ such that
 - $-\Upsilon(a_1,a_2,a_3\cdots)=\Upsilon(a_2,a_3,a_4,\cdots)$
 - $-\Upsilon(a_1, a_2, a_3 \cdots) = \Upsilon(a_1, a_1, a_2, a_2, \cdots)$
 - Is $a \in \ell^{\infty}(\mathbb{N})$ converges, then $\Upsilon(a) = \lim_{n \to \infty} (a_n)$
- **Dixmier Trace:** given such Υ , then

$$\operatorname{Tr}_{\Upsilon}(T) = \Upsilon\left(\frac{1}{\ln(N+1)}\sum_{n=1}^{N}\mu\right)$$

 $T \in L^{1+}(\mathcal{H}), T \geq 0$

• Then Dixmier proves that $\operatorname{Tr}_{\Upsilon}$ extends as a *positive linear map* on $L^{p+}(\mathcal{H})$ vanishing on $L^{p-}(\mathcal{H})$ and such that

 $\operatorname{Tr}_{\Upsilon}(UTU^{-1}) = \operatorname{Tr}_{\Upsilon}(T)$ $\operatorname{Tr}_{\Upsilon}(ST) = \operatorname{Tr}_{\Upsilon}(TS)$

if *U* is unitary and $S, T \in L^{p+}(\mathcal{H})$

IV - Connes Formulae

A. CONNES, Noncommutative Geometry, Acad. Press, (1994)

First Connes Formula

• If $A \in C^*(\Gamma)$ then for \mathbb{P} -almost all ξ 's and all Υ

$$\mathcal{T}_{\mathbb{P}}\left(|\vec{\nabla}A|^2\right) \stackrel{def}{=} \mathcal{T}_{\mathbb{P}}(|\partial_1 A|^2 + |\partial_2 A|^2) = \frac{1}{\pi}\operatorname{Tr}_{\Upsilon}\left(|d\pi_{\xi}(A)|^2\right)$$

• If *S* denotes the *Sobolev space* generated by $A \in \mathcal{A}_0$ such that $\mathcal{T}_{\mathbb{P}}(|A|^2 + |\vec{\nabla}A|^2) < \infty$ then

$$A \in \mathcal{S} \implies d\pi_{\xi}(A) \in L^{2+}(\mathcal{H})$$

Second Connes Formula

• A cyclic 2-cocycle: for $A_0, A_1, A_2 \in S$

 $\mathcal{T}_2(A_0, A_1, A_2) = 2\iota\pi \,\mathcal{T}_{\mathbb{P}}\left(A_0\left(\partial_1 A_1 \partial_2 A_2 - \partial_2 A_1 \partial_1 A_2\right)\right)$

• Cyclicity:

$$\mathcal{T}_2(A_0, A_1, A_2) = \mathcal{T}_2(A_2, A_0, A_1)$$

• \mathcal{T}_2 is Hochschild-closed:

 $(b\mathcal{T}_2)(A_0, A_1, A_2, A_3) = \mathcal{T}_2(A_0A_1, A_2, A_3) - \mathcal{T}_2(A_0, A_1A_2, A_3)$ $+ \mathcal{T}_2(A_0, A_1, A_2A_3) - \mathcal{T}_2(A_3A_0, A_1, A_2)$ = 0

Second Connes Formula

• for $A_0, A_1, A_2 \in \mathcal{S}$

$$\mathcal{T}_2(A_0, A_1, A_2) = \int_{\Xi} \operatorname{Tr}_S(\widehat{\pi}_{\xi}(A_0) \, d\widehat{\pi}_{\xi}(A_1) \, d\widehat{\pi}_{\xi}(A_2)) \, d\mathbb{P}(\xi)$$

 $\operatorname{Tr}_{S}(\widehat{\pi}_{\xi}(A_{0}) \, d\widehat{\pi}_{\xi}(A_{1}) \, d\widehat{\pi}_{\xi}(A_{2})) = \frac{1}{2} \operatorname{Tr}(G \, d\widehat{\pi}_{\xi}(A_{0}) \, d\widehat{\pi}_{\xi}(A_{1}) \, d\widehat{\pi}_{\xi}(A_{2}))$

• $A_i \in S \Rightarrow d\widehat{\pi}_{\xi}(A) \in L^{2+}(\mathcal{H}) \subset L^3(\mathcal{H})$ so that the *r.h.s* is well defined

Fredholm Index

• **Integrality:** (*Connes*) If *P* is a projection on \mathcal{H}_{ξ} then set $\widehat{P} = P \otimes \mathbf{1}_2$. If $d\widehat{P} \in L^3(\mathcal{H})$ then *PuP* is *Fredholm* and

 $\operatorname{Tr}_{S}(\widehat{P} \ d\widehat{P} \ d\widehat{P}) = \operatorname{Ind}(PuP) \in \mathbb{Z}$

• **Fedosov formula:** $d\widehat{P} \in L^3(\mathcal{H}) \Leftrightarrow (PuP - P) \in L^3(\mathcal{H})$ and

 $Ind(PuP) = Tr((PuP - P)^{2n+1}) \qquad \forall n \ge 1$

• Hence Ind(*PuP*) measure the *change of dimension* of *P* under the Laughlin gauge transformation, namely the *number of charges* sent to infinity (*Avron, Seiler, Simon*)

Quantization of the Chern Number

- If $P_F \in S$, then $d\widehat{\pi}_{\xi}(P_F) \in L^{2+}(\mathcal{H}_{\xi}) \subset L^3(\mathcal{H}_{\xi})$ (1st Connes formula)
- Then (2nd Connes formula)

 $\mathbf{Ch}(P_F) = \int_{\Xi} \operatorname{Tr}_S(\widehat{\pi}_{\xi}(P_F) \, d\widehat{\pi}_{\xi}(P_F) \, \widehat{\pi}_{\xi}(P_F)) \, d\mathbb{P}(\xi) = \int_{\Xi} n(\xi) \, d\mathbb{P}(\xi)$

• Since it is a Fredholm index $n(\xi) \in \mathbb{Z}$. By covariance it is *translation invariant*. Since $P_F \in S$ it follows that $n(\xi)$ is *measurable* in ξ . Since \mathbb{P} is *ergodic*, then $n(\xi)$ is almost surely constant. Hence

 $P_F \in \mathcal{S} \Rightarrow \mathbf{Ch}(P_F) \in \mathbb{Z}$

which measures the *number of charges* sent to infinity.

Localization

The condition $P_F \in S$ is implied by the condition that the Fermi level E_F lies in a region of *localized states*

Thanks for listening !