The INTEGER QUANTUM

HALL EFFECT

Jean BELLISSARD
Georgia Institute of Technology, Atlanta
School of Mathematics \& School of Physics
e-mail: jeanbel@math.gatech.edu

Georgia

```
Tech
Tech
```


Contributors

D. Spehner, Institut Fourier, Grenoble, France
H. Schulz-Baldes, Dep. of Math., Friedrich-Alexander Universität, Erlangen-Nürnberg, Germany
A. van Elst

Main References

J. Bellissard, H. Schulz-Baldes, A. van Elst, "The Non Commutative Geometry of the Quantum Hall Effect" J. Math. Phys., 35, (1994), 5373-5471
A. Connes, Noncommutative Geometry, Acad. Press, (1994)
J. E. Avron, R. Seiler, B. Simon, Phys. Rev. Lett., 65, (1990), 2185-2188.
J. E. Avron, R. Selier, B. Simon, Comm. Math. Phys., 159, (1994), 399-422.
H. Schulz-Baldes, J. Bellissard, Rev. Math. Phys., 10, (1998), 1-46.
H. Schulz-Baldes, J. Bellissard, J. Stat. Phys., 91, (1998), 991-1026.

Content

1. Introduction to the QHE
2. Disorder and Magnetic Field
3. The Four Traces Way
4. Connes Formulae

J. Bellissard, H. Schulz-Baldes, A. van Elst, J. Math. Phys., 35, (1994), 5373-5471

The Classical Hall Effect

In the stationnary state:

$$
\begin{gathered}
e n \overrightarrow{\mathcal{E}}+\vec{j} \times \vec{B}=0 \\
\Rightarrow \quad \vec{j}=\left(\begin{array}{cc}
0 & \sigma_{H} \\
-\sigma_{H} & 0
\end{array}\right) \overrightarrow{\mathcal{E}} \\
\sigma_{H}=\frac{n e}{B}
\end{gathered}
$$

Units : $\frac{n}{B}=\left[\frac{1}{\text { flux }}\right], \frac{h}{e}=[$ flux $] \Rightarrow v=\frac{n h}{e B}=[1]=($ filling factor $)$

This gives the Hall formula

$$
\sigma_{H}=\frac{v}{R_{H}} \quad R_{H}=\frac{h}{e^{2}}=25,812.80 \Omega
$$

The Integer Quantum Hall Effect

Two examples of Hall bars used in experiments

The Integer Quantum Hall Effect

J. P. Eisenstein, H. L. Stormer, Science, (1990), 248, 1461

The Integer Quantum Hall Effect

- Conditions of Observations
- Low temperature (\leq few Kelvins)
- Large sample size (\geq few μm)
- High mobility \& large quenched disorder
- Two-dimensional Fermion fluid
- Experiment show that
- Very flat plateaux at $v \sim 1,2,3,4$ with $\sigma_{H}=\ell / R_{H}, \ell=1,2,3,4$
- Plateaux thickness $\delta \sigma_{H} / \sigma_{H} \leq 10^{-8}-10^{-10}$
- Very small direct conductivity on plateaux \Rightarrow localization
- For $\ell \geq 2$ electron-electron interaction is negligible

The Integer Quantum Hall Effect

- Why is σ_{H} quantized ?
- What is the role of the localization?

Earlier Works: Laughlin's argument

R. B. Laughlin, Phys. Rev. B, 23, (1981), 5632
R. E. Prange, Phys. Rev. B, 23, (1981), 4802
D. J. Thouless, J. Phys. C, 14, (1981), 3475
R. Joynt, R. E. Prange, Phys. Rev. B, 29, (1984), 3303

- Piercing the plane at x with a flux tube adiabatically varying from 0 to $\phi_{0}=h / e$ forces one charge per filled Landau level to transfer from $x \rightarrow \infty$
- This adiabatic change induces a unitary transformation u on the Landau Hamiltonian (gauge transformation)
- This gives the quantization of the Hall conductance
- Localized states do not participate to this transport

Earlier Works: TKN

- Use the Harper model on a square lattice, nearest neighbor hoping terms, uniform magnetic field B perpendicular to the lattice
- Translation operators U_{1}, U_{2}

Earlier Works: TKN_{2}

- Commutation rules (Rotation Algebra)

$$
U_{1} U_{2}=e^{2 \imath \pi \alpha} U_{2} U_{1} \quad \alpha=\frac{\phi}{\phi_{0}} \quad \phi=B a^{2} \quad \phi_{0}=\frac{h}{e}
$$

- Kinetic Energy (Hamiltonian)

$$
H=t\left(U_{1}+U_{2}+U_{1}^{-1}+U_{2}^{-1}\right)
$$

- Landau gauge $\psi(m, n)=e^{2 \imath \pi m k} \varphi(n)$.

Hence $H \psi=E \psi$ means

$$
\varphi(n+1)+\varphi(n-1)+2 \cos 2 \pi(n \alpha-k) \varphi(n)=\frac{E}{t} \varphi(n)
$$

Earlier Works: TKN

- Choose $\alpha=p / q$ to make $H q$-periodic. Use Bloch theory with quasimomentum $\vec{k}=\left(k_{1}, k_{2}\right) \in \mathbb{B} \approx \mathbb{T}^{2}$
- At H is a $q \times q$-matrix valued smooth function of \vec{k}
- At \vec{k} fixed, any eigenstate $\Psi_{\vec{k}}$ of $H_{\vec{k}^{\prime}}$ defines a line bundle over B
- Its non triviality is controlled by the Chern number

$$
\mathbf{C h}(\Psi)=\frac{1}{\pi} \int_{0}^{2 \pi} \int_{0}^{2 \pi} \mathfrak{J} m\left\langle\left.\frac{\partial \Psi}{\partial k_{1}} \right\rvert\, \frac{\partial \Psi}{\partial k_{2}}\right\rangle d k_{1} d k_{2}
$$

- $\operatorname{Ch}(\Psi) \in \mathbb{Z}$ and is homotopy invariant under deformation of H

Earlier Works: TKN_{2}

- If $P: \vec{k} \in \mathbb{B} \mapsto P(\vec{k})$ is a projection valued smooth map then (example: $P=|\Psi\rangle\langle\Psi|$)

$$
\mathbf{C h}(P)=\frac{1}{2 \imath \pi} \int_{0}^{2 \pi} \int_{0}^{2 \pi} \operatorname{Tr}\left(P(\vec{k})\left[\frac{\partial P}{\partial k_{1}}, \frac{\partial P}{\partial k_{2}}\right]\right) d k_{1} d k_{2} \in \mathbb{Z}
$$

- If P, Q are two orthogonal projections, $P Q=Q P=0$, then

$$
\mathbf{C h}(P \oplus Q)=\mathbf{C h}(P)+\mathbf{C h}(Q)
$$

Earlier Works: TKN

- If the Fermi level E_{F} belongs to an energy gap, let P_{F} be the Fermi projection (namely the eigenprojection onto states with energy $E \leq E_{\mathrm{F}}$)
- Then the following Chinese-Japanese relation holds

$$
\sigma_{H}=\frac{e^{2}}{h} \operatorname{Ch}\left(P_{F}\right) \quad \text { (Chern-Kubo formula) }
$$

- This formula explains the quantization of the Hall conductance for rational magnetic fields!

It does NOT explain the appearance of plateaux !

II - Disorder and Magnetic Field

Noncommutativity of the Brillouin Zone

- If $\alpha=\phi / \phi_{0} \notin \mathbb{Q}$, the Bloch theory fails !
- Adding a random potential adds up to the failure of Bloch theory!
- Disordered potential: $V_{\omega}(x)=W \omega_{x}, x \in \mathbb{Z}^{2}$ with
- W is the disorder strength
$-\omega=\left(\omega_{x}\right)_{x \in \mathbb{Z}^{2}}$ and the ω_{x} 's are i.i.d.'s with uniform distribution on $[-1 / 2,+1 / 2]$
$-\omega \in \Omega=\prod_{x \in \mathbb{Z}^{2}}[-1 / 2,+1 / 2]$ is compact (Tychonoo Theorem) and \mathbb{Z}^{2} acts by shift.
- The groupoid is now $\Omega \rtimes \mathbb{Z}^{2}$ The observable algebra is again $\mathcal{A}=C(\Omega) \rtimes_{B} \mathbb{Z}^{d}$.

Landau Levels

Landau Levels

Density of States

NO gap!

Noncommutativity of the Brillouin Zone

- The Chern-Kubo formula becomes

$$
\sigma_{H}=-2 \imath \pi \frac{e^{2}}{h} \mathcal{T}_{\mathbb{P}}\left(P_{F}\left[\partial_{1} P_{F}, \partial_{2} P_{F}\right]\right)=\frac{e^{2}}{h} \operatorname{Ch}\left(P_{F}\right)
$$

- Questions:
- How does one prove that $\mathbf{C h}\left(P_{F}\right) \in \mathbb{Z}$?
- How does one define $\operatorname{Ch}\left(P_{F}\right)$ if the Fermi level does NOT belong to a gap!

III - The Four Traces Way

J. Bellissard, H. Schulz-Baldes, A. van Elst, J. Math. Phys., 35, (1994), 5373-5471

Trace and Trace per Unit Volume

- For a trace class operator T acting on a separable Hilbert space

$$
\operatorname{Tr}(T)=\sum_{n=1}^{\infty}\left\langle e_{n} \mid T e_{n}\right\rangle \quad\left(e_{n}\right)_{n \in \mathbb{N}} \text { orthonormal basis }
$$

- If Γ is a locally compact groupoid, with unit space Ξ equipped with an invariant probability measure \mathbb{P}

$$
\mathcal{T}_{\mathbb{P}}(A)=\int_{\Xi} A(\xi, 0) d \mathbb{P}(\xi) \quad A \in \mathcal{C}_{C}(\Gamma)
$$

Graded Trace

- Spinors: here $\Gamma^{\xi} \subset \mathbb{R}^{2}$! If $\mathcal{H}_{\xi}=L^{2}\left(\Gamma^{\xi}\right)$ set $\widehat{\mathcal{H}}_{\xi}=\mathcal{H}_{\xi} \otimes \mathbb{C}^{2}$
- Grading:

$$
G=\mathbf{1}_{\mathcal{H}_{\xi}} \otimes\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right] \quad G^{*}=G=G^{-1}
$$

- An operator $T \in \mathcal{B}\left(\widehat{\mathcal{H}}_{\xi}\right)$ has degree $\operatorname{deg}(T)$ whenever

$$
G T-(-1)^{\operatorname{deg}(T)} T G=0
$$

- Any operator $T \in \mathcal{B}\left(\widehat{\mathcal{H}}_{\xi}\right)$ can be uniquely decomposed into $T=T_{0}+T_{1}$ with $\operatorname{deg}\left(T_{i}\right)=i$

Graded Trace

- Graded Commutator:

$$
\left[T, T^{\prime}\right]_{S}=T T^{\prime}-(-1)^{\operatorname{deg}(T) \operatorname{deg}\left(T^{\prime}\right)} T^{\prime} T
$$

- Dirac Operator: if $X=X_{1}+i X_{2}$ is the position operator

$$
D=\left[\begin{array}{cc}
0 & X \\
X^{*} & 0
\end{array}\right] \quad F=\frac{D}{|D|} \Rightarrow F=F^{*}=F^{-1}, \operatorname{deg}(F)=1
$$

- Graded Trace:

$$
\operatorname{Tr}_{S}(T)=\frac{1}{2} \operatorname{Tr}\left(G F[F, T]_{S}\right)
$$

Graded Trace

- Differential:

$$
d T=[F, T]_{S}
$$

- Leibniz rule:

$$
d\left(T T^{\prime}\right)=d T T^{\prime}+(-1)^{\operatorname{deg}(T)} T d T^{\prime}
$$

- Tr_{S} is linear and satisfies, for $d T, d T^{\prime}$ trace class operator

$$
\operatorname{Tr}_{S}\left(T T^{\prime}\right)=(-1)^{\operatorname{deg}(T) \operatorname{deg}\left(T^{\prime}\right)} \operatorname{Tr}_{S}\left(T^{\prime} T\right) \quad \text { (graded trace) }
$$

Graded Trace

- Representation of $C^{*}(\Gamma)$

$$
\widehat{\pi}_{\xi}(A)=\left[\begin{array}{cc}
\pi_{\xi}(A) & 0 \\
0 & \pi_{\xi}(A)
\end{array}\right] \quad A \in \mathcal{A}_{0}, \operatorname{deg}\left(\widehat{\pi}_{\xi}(A)\right)=0
$$

- Laughlin argument: It is worth noticing that $u=X /|X|$ is a unitary operator on \mathcal{H}_{ξ} representing the gauge transformation corresponding to an adiabatic change of a pointwise flux at the origin, from 0 to ϕ_{0}.

The Dixmier Trace
 J. Dixmier, C. R. Acad. Sci. Paris Sér. A-B, 262, (1966), A1107-A1108

- If \mathcal{H} is a Hilbert space $L^{p}(\mathcal{H})$ denotes the Schatten ideal of compact operators with $\operatorname{Tr}\left(|T|^{p}\right)<\infty$
- If T is compact, let $\mu_{1} \geq \cdots \geq \mu_{n} \geq 0$ be its singular values (eigenvalues of $|T|$) labelled in nonincreasing order. Then

$$
\|T\|_{p_{+}}=\left(\limsup _{N \in \mathbb{N}} \frac{1}{\ln (N+1)} \sum_{n=1}^{N} \mu^{p}\right)^{1 / p}
$$

- Mačaev ideal: $L^{p+}(\mathcal{H})$ is the set of T compact with $\|T\|_{p_{+}}<\infty$

The Dixmier Trace

Theorem Let $L^{p-}(\mathcal{H})=\left\{\right.$ T compact $\left.;\|T\|_{p_{+}}=0\right\}$. Then

1. $L^{p \pm}(\mathcal{H})$ are two-sided ideals in $\mathcal{B}(\mathcal{H})$
2. If $0 \leq p<p^{\prime}<\infty$

$$
L^{p}(\mathcal{H}) \subset L^{p-}(\mathcal{H}) \subset L^{p+}(\mathcal{H}) \subset L^{p^{\prime}}(\mathcal{H})
$$

3. $\|\cdot\|_{p+}$ is a seminorm making $L^{p+}(\mathcal{H}) / L^{p-}(\mathcal{H})$ a Banach space

The Dixmier Trace

- Abstract nonsense: using the theory of amenable groups, Dixmier proves the existence of a linear form $\Upsilon: \ell^{\infty}(\mathbb{N}) \rightarrow \mathbb{R}$ such that
$-\Upsilon\left(a_{1}, a_{2}, a_{3} \cdots\right)=\Upsilon\left(a_{2}, a_{3}, a_{4}, \cdots\right)$
$-\Upsilon\left(a_{1}, a_{2}, a_{3} \cdots\right)=\Upsilon\left(a_{1}, a_{1}, a_{2}, a_{2}, \cdots\right)$
- Is $a \in \ell^{\infty}(\mathbb{N})$ converges, then $\Upsilon(a)=\lim _{n \rightarrow \infty}\left(a_{n}\right)$
- Dixmier Trace: given such Υ, then

$$
\operatorname{Tr}_{\Upsilon}(T)=\Upsilon\left(\frac{1}{\ln (N+1)} \sum_{n=1}^{N} \mu\right) \quad T \in L^{1+}(\mathcal{H}), T \geq 0
$$

The Dixmier Trace

- Then Dixmier proves that $\operatorname{Tr}_{\Upsilon}$ extends as a positive linear map on $L^{p+}(\mathcal{H})$ vanishing on $L^{p-}(\mathcal{H})$ and such that

$$
\operatorname{Tr}_{\Upsilon}\left(U T U^{-1}\right)=\operatorname{Tr}_{\Upsilon}(T) \quad \operatorname{Tr}_{\Upsilon}(S T)=\operatorname{Tr}_{\Upsilon}(T S)
$$

if U is unitary and $S, T \in L^{p+}(\mathcal{H})$

IV - Connes Formulae

A. Connes, Noncommutative Geometry, Acad. Press, (1994)

First Connes Formula

- If $A \in C^{*}(\Gamma)$ then for \mathbb{P}-almost all ξ^{\prime} s and all Υ

$$
\mathcal{T}_{\mathbb{P}}\left(|\vec{\nabla} A|^{2}\right) \stackrel{\text { def }}{=} \mathcal{T}_{\mathbb{P}}\left(\left|\partial_{1} A\right|^{2}+\left|\partial_{2} A\right|^{2}\right)=\frac{1}{\pi} \operatorname{Tr}_{\Upsilon}\left(|d \pi \xi(A)|^{2}\right)
$$

- If \mathcal{S} denotes the Sobolev space generated by $A \in \mathcal{A}_{0}$ such that $\mathcal{T}_{\mathbb{P}}\left(|A|^{2}+|\vec{\nabla} A|^{2}\right)<\infty$ then

$$
A \in \mathcal{S} \Rightarrow d \pi_{\xi}(A) \in L^{2+}(\mathcal{H})
$$

Second Connes Formula

- A cyclic 2-cocycle: for $A_{0}, A_{1}, A_{2} \in \mathcal{S}$

$$
\mathcal{T}_{2}\left(A_{0}, A_{1}, A_{2}\right)=2 \imath \pi \mathcal{T}_{\mathbb{P}}\left(A_{0}\left(\partial_{1} A_{1} \partial_{2} A_{2}-\partial_{2} A_{1} \partial_{1} A_{2}\right)\right)
$$

- Cyclicity:

$$
\mathcal{T}_{2}\left(A_{0}, A_{1}, A_{2}\right)=\mathcal{T}_{2}\left(A_{2}, A_{0}, A_{1}\right)
$$

- \mathcal{T}_{2} is Hochschild-closed:

$$
\begin{aligned}
\left(b \mathcal{T}_{2}\right)\left(A_{0}, A_{1}, A_{2}, A_{3}\right) & =\mathcal{T}_{2}\left(A_{0} A_{1}, A_{2}, A_{3}\right)-\mathcal{T}_{2}\left(A_{0}, A_{1} A_{2}, A_{3}\right) \\
& +\mathcal{T}_{2}\left(A_{0}, A_{1}, A_{2} A_{3}\right)-\mathcal{T}_{2}\left(A_{3} A_{0}, A_{1}, A_{2}\right) \\
& =0
\end{aligned}
$$

Second Connes Formula

- for $A_{0}, A_{1}, A_{2} \in \mathcal{S}$

$$
\mathcal{T}_{2}\left(A_{0}, A_{1}, A_{2}\right)=\int_{\Xi} \operatorname{Tr}_{S}\left(\widehat{\pi}_{\xi}\left(A_{0}\right) d \widehat{\pi}_{\xi}\left(A_{1}\right) d \widehat{\pi}_{\xi}\left(A_{2}\right)\right) d \mathbb{P}(\xi)
$$

$$
\operatorname{Tr}_{S}\left(\widehat{\pi}_{\xi}\left(A_{0}\right) d \widehat{\pi}_{\xi}\left(A_{1}\right) d \widehat{\pi}_{\xi}\left(A_{2}\right)\right)=\frac{1}{2} \operatorname{Tr}\left(G d \widehat{\pi}_{\xi}\left(A_{0}\right) d \widehat{\pi}_{\xi}\left(A_{1}\right) d \widehat{\pi}_{\xi}\left(A_{2}\right)\right)
$$

- $A_{i} \in \mathcal{S} \Rightarrow d \widehat{\pi}_{\xi}(A) \in L^{2+}(\mathcal{H}) \subset L^{3}(\mathcal{H})$ so that the r.h.s is well defined

Fredholm Index

- Integrality: (Connes) If P is a projection on \mathcal{H}_{ξ} then set $\widehat{P}=P \otimes \mathbf{1}_{2}$. If $\widehat{d P} \in L^{3}(\mathcal{H})$ then $P u P$ is Fredholm and

$$
\operatorname{Tr}_{S}(\widehat{P} d \widehat{P} d \widehat{P})=\operatorname{Ind}(P u P) \in \mathbb{Z}
$$

- Fedosov formula: $d \widehat{P} \in L^{3}(\mathcal{H}) \Leftrightarrow(P u P-P) \in L^{3}(\mathcal{H})$ and

$$
\operatorname{Ind}(P u P)=\operatorname{Tr}\left((P u P-P)^{2 n+1}\right) \quad \forall n \geq 1
$$

- Hence $\operatorname{Ind}(P u P)$ measure the change of dimension of P under the Laughlin gauge transformation, namely the number of charges sent to infinity (Avron, Seiler, Simon)

Quantization of the Cherm Number

- If $P_{F} \in \mathcal{S}$, then $d \widehat{\pi}_{\xi}\left(P_{F}\right) \in L^{2+}\left(\mathcal{H}_{\xi}\right) \subset L^{3}\left(\mathcal{H}_{\xi}\right)(1$ st Connes formula)
- Then (2nd Connes formula)

$$
\operatorname{Ch}\left(P_{F}\right)=\int_{\Xi} \operatorname{Tr}_{S}\left(\widehat{\pi}_{\xi}\left(P_{F}\right) d \widehat{\pi}_{\xi}\left(P_{F}\right) \widehat{\pi}_{\xi}\left(P_{F}\right)\right) d \mathbb{P}(\xi)=\int_{\Xi} n(\xi) d \mathbb{P}(\xi)
$$

- Since it is a Fredholm index $n(\xi) \in \mathbb{Z}$. By covariance it is translation invariant. Since $P_{F} \in \mathcal{S}$ it follows that $n(\xi)$ is measurable in ξ. Since \mathbb{P} is ergodic, then $n(\xi)$ is almost surely constant. Hence

$$
P_{F} \in \mathcal{S} \Rightarrow \mathbf{C h}\left(P_{F}\right) \in \mathbb{Z}
$$

which measures the number of charges sent to infinity.

Localization

The condition $P_{F} \in \mathcal{S}$ is implied by the condition that the Fermi level E_{F} lies in a region of localized states
Thanks for listening!

