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I - Tilings, Tilings,...
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- A triangle tiling -
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- Dominos on a triangular lattice -
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- Building the chair tiling -
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- The chair tiling -



Seoul National University March20, 2014 11

- The Penrose tiling -
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- Kites and Darts -
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- Rhombi in Penrose’s tiling -
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- Inflation rules in Penrose’s tiling -
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- The Penrose tiling -
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- The octagonal tiling -
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- Octagonal tiling: inflation rules -
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- Another octagonal tiling -
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- Another octagonal tiling -
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- Building the Pinwheel Tiling -
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- The Pinwheel Tiling -
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Aperiodic Materials

1. Periodic Crystals in d-dimensions:
translation and crystal symmetries.
Translation group T ' Zd.

2. Periodic Crystals in a Uniform Magnetic Field;
magnetic oscillations, Shubnikov-de Haas, de Haas-van Alfen.
The magnetic field breaks the translation invariance to give
some quasiperiodicity.
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3. Quasicrystals: no translation symmetry, but
icosahedral symmetry. Ex.:

(a) Al62.5Cu25Fe12.5;
(b) Al70Pd22Mn8;
(c) Al70Pd22Re8;

4. Disordered Media: random atomic positions

(a) Normal metals (with defects or impurities);
(b) Alloys
(c) Doped semiconductors (Si, AsGa, . . .);
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- The icosahedral quasicrystal AlPdMn -
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- The icosahedral quasicrystal HoMgZn-
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II - The Hull as a Dynamical System
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Point Sets
A subset L ⊂ Rd may be:
1. Discrete.

2. Uniformly discrete: ∃r > 0 s.t. each ball of radius r contains at most one point
of L.

3. Relatively dense: ∃R > 0 s.t. each ball of radius R contains at least one points
of L.

4. A Delone set: L is uniformly discrete and relatively dense.

5. Finite Local Complexity (FLC): L −L is discrete and closed.

6. Meyer set: L and L −L are Delone.
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Point Sets and Point Measures
M(Rd) is the set of Radon measures on Rd namely the dual space
toCc(Rd) (continuous functions with compact support), endowed
with the weak∗ topology.

For L a uniformly discrete point set in Rd:

ν := νL =
∑
y∈L

δ(x − y) ∈M(Rd) .
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Point Sets and Tilings
Given a tiling with finitely many tiles (modulo translations), a De-
lone set is obtained by defining a point in the interior of each
(translation equivalence class of) tile.

Conversely, given a Delone set, a tiling is built through the Voronoi
cells

V(x) = {a ∈ Rd ; |a − x| < |a − y| ,∀yL \ {x}}

1. V(x) is an open convex polyhedron containing B(x; r) and contained into B(x; R).

2. Two Voronoi cells touch face-to-face.

3. If L is FLC, then the Voronoi tiling has finitely many tiles modulo transla-
tions.
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- Building a Voronoi cell-
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- A Delone set and its Voronoi Tiling-
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The Hull

A point measure is µ ∈ M(Rd) such that µ(B) ∈ N for any ball
B ⊂ Rd. Its support is
1. Discrete.

2. r-Uniformly discrete: iff ∀B ball of radius r, µ(B) ≤ 1.

3. R-Relatively dense: iff for each ball B of radius R, µ(B) ≥ 1.

Rd acts onM(Rd) by translation.
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Theorem 1 The set of r-uniformly discrete point measures is compact
and Rd-invariant.
Its subset of R-relatively dense measures is compact and Rd-invariant.

Definition 1 Given L a uniformly discrete subset of Rd, the Hull of L
is the closure inM(Rd) of the Rd-orbit of νL.

Hence the Hull is a compact metrizable space on which Rd acts by
homeomorphisms.
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Properties of the Hull
If L ⊂ Rd is r-uniformly discrete with Hull Ω then using com-
pactness
1. each point ω ∈ Ω is an r-uniformly discrete point measure with support Lω.

2. if L is (r,R)-Delone, so are all Lω’s.

3. if, in addition, L is FLC, so are all the Lω’s.
Moreover then L −L = Lω − Lω ∀ω ∈ Ω.

Definition 2 The transversal of the Hull Ω of a uniformly discrete set
is the set of ω ∈ Ω such that 0 ∈ Lω.

Theorem 2 If L is FLC, then its transversal is completely discontinu-
ous.
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Local Isomorphism Classes and Tiling Space

A patch is a finite subset of L of the form

p = (L − x) ∩ B(0, r1) x ∈ L , r1 ≥ 0

Given L a repetitive, FLC, Delone set let W be its set of finite
patches: it is called the the L-dictionary.

A Delone set (or a Tiling) L′ is locally isomorphic to L if it has the
same dictionary. The Tiling Space ofL is the set of Local Isomorphism
Classes of L.

Theorem 3 The Tiling Space of L coincides with its Hull.
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Minimality

L is repetitive if for any finite patch p there is R > 0 such that each
ball of radius R contains an ε-approximant of a translated of p.

Theorem 4 Rd acts minimaly on Ω if and only if L is repetitive.
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Examples

1. Crystals : Ω = Rd/T ' Td with the quotient action of Rd

on itself. (Here T is the translation group leaving the lattice
invariant. T is isomorphic to ZD.)
The transversal is a finite set (number of point per unit cell).

2. Impurities in Si : let L be the lattices sites for Si atoms (it is a
Bravais lattice). Let A be a finite set (alphabet) indexing the
types of impurities.
The transversal is X = AZ

d with Zd-action given by shifts.
The Hull Ω is the mapping torus of X.
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- The Hull of a Periodic Lattice -
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Quasicrystals
Use the cut-and-project construction:

Rd
' E‖

π‖
←− Rn π⊥

−→ E⊥ ' R
n−d

L
π‖
←− L̃

π⊥
−→W ,

Here

1. L̃ is a lattice in Rn,

2. the window W is a compact polytope.

3.L is the quasilattice in E‖ defined as

L = {π‖(m) ∈ E‖ ; m ∈ L̃ , π⊥(m) ∈W}
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- The transversal of the Octagonal Tiling is completely
disconnected -
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III - The Gap Labeling Theorem
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Schrödinger’s Operator
Ignoring electrons-electrons interactions, the one-electron Hamil-
tonian is given by

Hω = −
~2

2m
∆ +

∑
y∈Lω

v(· − y)

Its integrated density of states (IDS) is defined by

N(E) = lim
Λ↑Rd

1
|Λ|

#
{
eigenvalues of Hω �Λ≤ E

}
For anyRd-invariant probability measureP on Ω the limit exists a.e.
and is independent of ω. It defines a nondecreasing function of E
constant on the spectral gaps of Hω. It is asymptotic at large E’s
to the IDS of the free Hamiltonian.
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- An example of IDS -
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Phonons, Vibrational Modes
Atom vibrations in the harmonic approximation are solution of

M
d2~u(ω,x)

dt2 =
∑

y∈Lω;y,x

Kω(x, y)
(
~u(ω,x) − ~u(ω,y)

)
•M= atomic mass,

• ~u(ω,x) displacement vector of the atom located at x ∈ Lω,

• Kω(x, y) is the matrix of spring constants.

The density of vibrational modes (IDVM) is the IDS of K1/2
ω .
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Gap Labels

Theorem 5 The value of the IDS or of the IDVM on gaps is a linear
combination of the occurrence probabilities of finite patches with integer
coefficients.

The proof goes through the group of K-theory of the hull. The result is model independent.

The abstract result goes back to 1982 (J.B). In 1D, proved in 1993 (JB). Recent proof in any dimension

for aperiodic, repetitive, aperiodic tilings by Kaminker-Putnam, Benameur & Oyono-Oyono, JB-

Bendetti-Gambaudo in 2001.



Seoul National University March20, 2014 47

IV - Branched Oriented Flat
Riemannian Manifolds



Seoul National University March20, 2014 48

Laminations and Boxes
A lamination is a foliated manifold with C∞-structure along the
leaves but only finite C0-structure transversally. The Hull of a
Delone set is a lamination with Rd-orbits as leaves.

If L is a FLC, repetitive, Delone set, with Hull Ω a box is the home-
omorphic image of

φ : (ω, x) ∈ F ×U 7→ t−xω ∈ Ω

if F is a clopen subset of the transversal, U ⊂ Rd is open and t
denotes the Rd-action on Ω.
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A quasi-partition is a family (Bi)n
i=1 of boxes such that

⋃
i Bi = Ω

and Bi ∩ B j = ∅.

Theorem 6 The Hull of a FLC, repetitive, Delone set admits a finite
quasi-partition. It is always possible to choose these boxes as φ(F × U)
with U a d-rectangle.
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Branched Oriented Flat Manifolds
Flattening a box decomposition along the transverse direction
leads to a Branched Oriented Flat manifold. Such manifolds can be
built from the tiling itself as follows

Step 1:

1. X is the disjoint union of all prototiles;

2. glue prototiles T1 and T2 along a face F1 ⊂ T1 and F2 ⊂ T2 if F2
is a translated of F1 and if there are x1, x2 ∈ R

d such that xi + Ti
are tiles of T with (x1 + T1) ∩ (x2 + T2) = x1 + F1 = x2 + F2;

3. after identification of faces, X becomes a branched oriented flat
manifold (BOF) B0.
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- Branching -
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- Vertex branching for the octagonal tiling -
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Step 2:

1. Having defined the patch pn for n ≥ 0, let Ln be the subset of
L of points centered at a translated of pn. By repetitivity this is
a FLC repetitive Delone set too. Its prototiles are tiled by tiles
of L and define a finite family Pn of patches.

2. Each patch in T ∈ Pn will be collared by the patches of Pn−1
touching it from outside along its frontier. Call such a patch
modulo translation a a collared patch and Pc

n their set.

3. Proceed then as in Step 1 by replacing prototiles by collared
patches to get the BOF-manifold Bn.

4. Then choose pn+1 to be the collared patch in Pc
n containing pn.
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- A collared patch -
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Step 3:

1. Define a BOF-submersion fn : Bn+1 7→ Bn by identifying patches
of order n in Bn+1 with the prototiles of Bn. Note that D fn = 1.

2. Call Ω the projective limit of the sequence

· · ·
fn+1
→ Bn+1

fn
→ Bn

fn−1
→ · · ·

3. X1, · · ·Xd are the commuting constant vector fields on Bn gen-
erating local translations and giving rise to a Rd action t on
Ω.

Theorem 7 The dynamical system

(Ω,Rd, t) = lim
←

(Bn, fn)

obtained as inverse limit of branched oriented flat manifolds, is conjugate
to the Hull of the Delone set of the tiling T by an homemorphism.
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V - Cohomology and K-Theory
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Čech Cohomology of the Hull
LetU be an open covering of the Hull. If U ∈ U, F (U) is the space
of integer valued locally constant function on U.

For n ∈N, the n-chains are the element of Cn(U), namely the free
abelian group generated by the elements of F (U0 ∩ · · · ∩Un) when
the Ui varies inU. A differential is defined by

d : Cn(U) 7→ Cn+1(U)

d f (
n+1⋂
i=0

Ui) =

n∑
j=0

(−1) j f (
⋂
i:i, j

Ui)
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This defines a complex with cohomology Ȟn(U,Z). The Čech
cohomology group of the Hull Ω is defined as

Ȟn(Ω,Z) = lim
−−→
U

Ȟn(U,Z)

with ordering given by refinement on the set of open covers.
Thanks to properties of the cohomology, if f ∗n is the map induced
by fn on the cohomology

Ȟn(Ω,Z) = lim
−−→

n

(
Ȟn(Bn,Z), f ∗n

)
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Examples
J. E. Anderson, I. Putnam, Ergodic Theory Dynam. Systems, 18, (1998), 509-537.
L. Sadun, Topology of Tiling Spaces. AMS (2008)
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Examples
J. E. Anderson, I. Putnam, Ergodic Theory Dynam. Systems, 18, (1998), 509-537.
L. Sadun, Topology of Tiling Spaces. AMS (2008)

• Fibonacci: dividesR into intervals a, b of length 1, σ = (
√

5−1)/2
according to the substitution rule a 7→ ab , b 7→ a. Then
H0 = Z , H1 = Z2
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- The Anderson-Putnam complex for the Fibonacci tiling -
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Examples
J. E. Anderson, I. Putnam, Ergodic Theory Dynam. Systems, 18, (1998), 509-537.
L. Sadun, Topology of Tiling Spaces. AMS (2008)

• Fibonacci: dividesR into intervals a, b of length 1, σ = (
√

5−1)/2
according to the substitution rule a 7→ ab , b 7→ a. Then
H0 = Z , H1 = Z2
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Examples
J. E. Anderson, I. Putnam, Ergodic Theory Dynam. Systems, 18, (1998), 509-537.
L. Sadun, Topology of Tiling Spaces. AMS (2008)

• Fibonacci: dividesR into intervals a, b of length 1, σ = (
√

5−1)/2
according to the substitution rule a 7→ ab , b 7→ a. Then
H0 = Z , H1 = Z2

• Thue-Morse: substitution a 7→ ab , b 7→ ba
H0 = Z , H1 = Z[1/2] ⊕Z
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Examples
J. E. Anderson, I. Putnam, Ergodic Theory Dynam. Systems, 18, (1998), 509-537.
L. Sadun, Topology of Tiling Spaces. AMS (2008)

• Fibonacci: dividesR into intervals a, b of length 1, σ = (
√

5−1)/2
according to the substitution rule a 7→ ab , b 7→ a. Then
H0 = Z , H1 = Z2

• Thue-Morse: substitution a 7→ ab , b 7→ ba
H0 = Z , H1 = Z[1/2] ⊕Z

• Penrose 2D:
H0 = Z , H1 = Z5 , H2 = Z8
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Examples
J. E. Anderson, I. Putnam, Ergodic Theory Dynam. Systems, 18, (1998), 509-537.
L. Sadun, Topology of Tiling Spaces. AMS (2008)

• Fibonacci: dividesR into intervals a, b of length 1, σ = (
√

5−1)/2
according to the substitution rule a 7→ ab , b 7→ a. Then
H0 = Z , H1 = Z2

• Thue-Morse: substitution a 7→ ab , b 7→ ba
H0 = Z , H1 = Z[1/2] ⊕Z

• Penrose 2D:
H0 = Z , H1 = Z5 , H2 = Z8

• Chair tiling:
H0 = Z , H1 = Z[1/2]⊕Z[1/2] , H2 = Z[1/4]⊕Z[1/2]⊕Z[1/2]



Seoul National University March20, 2014 66

Other Cohomologies

• Longitudinal Cohomology (Connes, Moore-Schochet)

• Pattern-equivariant cohomology (Kellendonk-Putnam, Sadun)

• PV-cohomology (Savinien-Bellissard)

In maximal degree the Čech Homology does exists. It contains a
natural positive cone isomorphic to the set of positive Rd-invariant
measures on the Hull (Bellissard-Benedetti-Gambaudo).
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Cohomology and K-theory
The main topological property of the Hull (or tiling psace) is
summarized in the following

Theorem 8 (i) The various cohomologies, Čech, longitudinal, pattern-
equivariant and PV, are isomorphic.
(ii) There is a spectral sequence converging to the K-group of the Hull
with page 2 given by the cohomology of the Hull.
(iii) In dimension d ≤ 3 the K-group coincides with the cohomology.
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Conclusion

1. Tilings can be equivalently be represented by Delone sets or point
measures.

2. The Hull allows to give tilings the structure of a dynamical system
with a transversal.

3. This dynamical system can be seen as a lamination or, equiva-
lently, as the inverse limit of Branched Oriented Flat Riemannian
Manifolds.
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4. The Čech cohomology is equivalent to the longitudinal one,
obtained by inverse limit, to the pattern-equivariant one or to
the Pimsner cohomology are equivalent Cohomology of the Hull.
The K-group of the Hull can be computed through a spectral
sequence with the cohomology in page 2.

5. In maximum degree, the Homology gives the family of invariant
measures and the Gap Labelling Theorem.


