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Definition A Cantor set is a compact, completely disconnected set
without isolated points

Theorem Any Cantor set is homeomorphic to {0, 1}N.
L. Brouwer, “On the structure of perfect sets of points”, Proc. Akad. Amsterdam, 12, (1910), 785-794.

Hence without extra structure there is only one Cantor set.
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Definition Let X be a set. A metric d on X is a map d : X × X 7→ R+

such that, for all x, y, z ∈ X
(i) d(x, y) = 0 if and only if x = y,
(ii) d(x, y) = d(y, x),
(iii) d(x, y) ≤ d(x, z) + d(z, y).

Definition A metric d on a set X is an ultrametric if it satisfies

d(x, y) ≤ max{d(x, z), d(z, y)}

for all family x, y, z of points of C.
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Given (C, d) a metric space, for ε > 0 let ε
∼ be the equivalence

relation defined by

x ε
∼ y ⇔ ∃x0 = x, x1, · · · , xn−1, xn = y d(xk−1, xk) < ε

Theorem Let (C, d) be a metric Cantor set. Then there is a sequence
ε1 > ε2 > · · · εn > · · · ≥ 0 converging to 0, such that ε∼ =

εn
∼ whenever

εn ≥ ε > εn+1.

For each ε > 0 there is a finite number of equivalence classes and each of
them is close and open.

Moreover, the sequence [x]εn of clopen sets converges to {x} as n→∞.
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I.3)- Michon’s graph
Set

• V0 = {C} (called the root),

• for n ≥ 1, Vn = {[x]εn; x ∈ C},

• V is the disjoint union of the Vn’s,

• E = {(v, v′) ∈ V × V ; ∃n ∈N , v ∈ Vn, v′ ∈ Vn+1 , v′ ⊂ v},

• δ(v) = diam{v}.

The family T = (C,V,E, δ) defines a weighted rooted tree, with
root C, set of vertices V, set of edges E and weight δ
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I.4)- The boundary of a tree
Let T = (0,V,E) be a rooted tree. It will be called Cantorian if

• Each vertex admits one descendant with more than one child

• Each vertex has only a finite number of children.

Then ∂T is the set of infinite path starting form the root. If v ∈ V

then [v] will denote the set of such paths passing through v

Theorem The family {[v] ; v ∈ V} is the basis of a topology making ∂T
a Cantor set.
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A weight on T is a map δ : V 7→ R+ such that

• If w ∈ V is a child of v then δ(v) ≥ δ(w),

• If v ∈ V has only one child w then δ(v) = δ(w),

• If vn is the decreasing sequence of vertices along an infinite
path x ∈ ∂T then limn→∞ δ(vn) = 0.

Theorem If T is a Cantorian rooted tree with a weight δ, then ∂T admits
a canonical ultrametric dδ defined by.

dδ(x, y) = δ([x ∧ y])

where [x ∧ y] is the least common ancestor of x and y.
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Theorem Let T be a Cantorian rooted tree with weight δ. Then if v ∈ V,
δ(v) coincides with the diameter of [v] for the canonical metric.

Conversely, if T is the Michon tree of a metric Cantor set (C, d), with
weight δ(v) = diam(v), then there is a contracting homeomorphism
from (C, d) onto (∂T, dδ) and dδ is the smallest ultrametric dominating
d.

In particular, if d is an ultrametric, then d = dδ and the homeomorphism
is an isometry.

This gives a representation of all ultrametric Cantor sets together
with a parametrization of the space of ultrametrics.



I.5)- Sub-trees
A similar construction might be done by replacing the vertices by
a sequence (Πn)n∈N of finite clopen partitions such that

•Π0 is reduced to {C}

•Πn+1 is a refinement of Πn

• if δn is the diameter of the largest atom of Πn, then
limn→∞ δn = 0

• An edge is a pair (v,w) ∈ Πn × Πn+1, for some n ≥ 0 such that
w ⊂ v

Such a tree will be reduced if each vertex has more than one child.



II - Spectral Triples

A. Connes, Noncommutative Geometry, Academic Press, 1994.
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II.1)- Spectral Triples
A spectral triple is a family (H ,A,D), such that

• H is a Hilbert space

• A is a ∗-algebra invariant by holomorphic functional calculus,
with a representation π intoH by bounded operators

• D is a self-adjoint operator on H with compact resolvent such
that [D, π( f )] ∈ B(H) is a bounded operator for all f ∈ A.

• (H ,A,D) is called even if there is G ∈ B(H) such that

– G = G∗ = G−1

– [G, π( f )] = 0 for f ∈ A
– GD = −DG
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II.2)- The spectral triple of an ultrametric Cantor set
Let T = (C,V,E, δ) be a reduced Michon tree associated with an
ultrametric Cantor set (C, d). Then

• H = `2(V) ⊗ C2: any ψ ∈ H will be seen as a sequence (ψv)v∈V
with ψv ∈ C2

• G, D are defined by

(Dψ)v =
1
δ(v)

[
0 1
1 0

]
ψv (Gψ)v =

[
1 0
0 −1

]
ψv

so that they anticommute.

• A = CLip(C) is the space of Lipshitz continuous functions on
(C, d)
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II.3)- Choices
The tree T is reduced, meaning that only the vertices with more
than one child are considered.

A choice will be a function τ : V 7→ C × C such that if τ(v) = (x, y)
then

• x, y ∈ [v]

• d(x, y) = δ(v) = diam([v])

Let Ch(v) be the set of children of v. Consequently, the set Υ(C) of
choices is given by

Υ(C) =
∏
v∈V

Υv Υv =
⊔

w,w′∈ Ch(v)

[w] × [w′]
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The set V of vertices can be seen as a coarse-grained approximation of
the Cantor set C.

Similarly, the set Υv can be seen as a coarse-grained approximation the
unit tangent vectors at v.

Within this interpretation, the set Υ(C) can be seen as the unit sphere
bundle inside the tangent bundle.
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II.4)- Representations ofA
Let τ ∈ Υ(C) be a choice. If v ∈ V write τ(v) = (τ+(v), τ−(v)). Then
πτ is the representation of CLip(C) intoH defined by

(
πτ( f )ψ

)
v =

[
f (τ+(v)) 0

0 f (τ−(v))

]
ψv f ∈ CLip(C)

Theorem The distance d on C can be recovered from the following
Connes formula

d(x, y) = sup

∣∣∣ f (x) − f (y)
∣∣∣ ; sup

τ∈Υ(C)
‖[D, πτ( f )]‖ ≤ 1





Remark: the commutator [D, πτ( f )] is given by

(
[D, πτ( f )]ψ

)
v =

f (τ+(v)) − f (τ−(v))
dδ (τ+(v), τ−(v))

[
0 −1

+1 0

]
ψv



Remark: the commutator [D, πτ( f )] is given by

(
[D, πτ( f )]ψ

)
v =

f (τ+(v)) − f (τ−(v))
dδ (τ+(v), τ−(v))

[
0 −1

+1 0

]
ψv

In particular supτ ‖[D, πτ( f )]‖ is the Lipshitz norm of f

‖ f ‖Lip = sup
x,y∈C

∣∣∣∣∣∣ f (x) − f (y)
dδ(x, y)

∣∣∣∣∣∣
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III.1)- ζ-function
The ζ-function of the Dirac operator is defined by

ζ(s) = Tr
(

1
|D|s

)
s ∈ C

The abscissa of convergence is the smallest positive real number
s0 > 0 so that the series defined by the trace above converges for
<(s) > s0.

Thanks to the definition of the Dirac operator

ζ(s) = 2
∑
v∈V

δ(v)s



Theorem Let (C, d) be an ultrametric Cantor set associated with a
reduced Michon tree.

• The abscissa of convergence of the ζ-function of the corresponding
Dirac operator is always larger than or equal to the Hausdorff dimen-
sion of (C, d).

• If the Hausdorff dimension is finite, then there is a choice of the
Michon tree so that s0 = dimH(C, d).
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III.2)- Dixmier Trace & Metric Measure
If the abscissa of convergence is finite, then a probability measure µ
on (C, d) can be defined as follows (if the limit exists)

µ( f ) = lim
s↓s0

Tr
(
|D|−sπτ( f )

)
Tr (|D|−s)

f ∈ CLip(C)

This limit coincides with the normalized Dixmier trace

Tr Dix

(
|D|−s0πτ( f )

)
Tr Dix (|D|−s0)



Theorem

• The definition of the measure µ is independent of the choice τ.

• The Dixmier trace is unique if and only if the Hausdorff measure of
(C, d) exists, is positive and finite.

• in the latter case µ coincides with the normalized Hausdorff measure
of (C, d).



• If ζ admits an isolated simple pole at s = s0, then |D|−1 belongs
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• If ζ admits an isolated simple pole at s = s0, then |D|−1 belongs
to the Mačaev ideal Ls0+(H). Therefore the measure µ is well
defined.

• In particular µ is the metric analog of the Lebesgue measure class on
a Riemannian manifold, in that the measure of a ball of radius
r behaves like rs0 for r small

µ(B(x, r)) r↓0
∼ rs0

• µ is the analog of the volume form on a Riemannian manifold.



As a consequence µ defines a canonical probability measure ν on the
space of choices Υ as follows

ν =
⊗
v∈V

νv νv =
1

Zv

∑
w,w′∈Ch(v)

µ ⊗ µ|[w]×[w]

where Zv is a normalization constant given by

Zv =
∑

w,w′∈Ch(v)

µ([w])µ([w′])
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0 if f (x) ≤ 0
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IV.1)- Dirichlet Forms
Let (X, µ) be a probability space space. For f a real valued measur-
able function on X, let f̂ be the function obtained as

f̂ (x) =


1 if f (x) ≥ 1
f (x) if 0 ≤ f (x) ≤ 1
0 if f (x) ≤ 0

A Dirichlet form Q on X is a positive definite sesquilinear form
Q : L2(X, µ) × L2(X, µ) 7→ C such that

• Q is densely defined with domain D ⊂ L2(X, µ)

• Q is closed

• Q is Markovian, namely if f ∈ D, then Q( f̂ , f̂ ) ≤ Q( f , f )



The simplest typical example of Dirichlet form is related to the
Laplacian ∆Ω on a bounded domain Ω ⊂ RD

QΩ( f , g) =

∫
Ω

dDx ∇ f (x) · ∇g(x)

with domain D = C1
0(Ω) the space of continuously differentiable

functions on Ω vanishing on the boundary.

This form is closeable in L2(Ω) and its closure defines a Dirichlet form.
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Any closed positive sesquilinear form Q on a Hilbert space, de-
fines canonically a positive self-adjoint operator −∆Q satisfying

〈 f | − ∆Q g〉 = Q( f , g)

In particular Φt = exp (t∆Q) (defined for t ∈ R+) is a strongly
continuous contraction semigroup.

If Q is a Dirichlet form on X, then the contraction semigroup
Φ = (Φt)t≥0 is a Markov semigroup.
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A Markov semi-group Φ on L2(X, µ) is a family (Φt)t∈[0,+∞) where

• For each t ≥ 0, Φt is a contraction from L2(X, µ) into itself

• (Markov property) Φt ◦Φs = Φt+s

• (Strong continuity) the map t ∈ [0,+∞) 7→ Φt is
strongly continuous

• ∀t ≥ 0, Φt is positivity preserving : f ≥ 0 ⇒ Φt( f ) ≥ 0

• Φt is normalized, namely Φt(1) = 1.

Theorem (Fukushima) A contraction semi-group on L2(X, µ) is a
Markov semi-group if and only if its generator is defined by a Dirichlet
form.



IV.2)- The Laplace-Beltrami Form



IV.2)- The Laplace-Beltrami Form
Let M be a Riemannian manifold of dimension D. The Laplace-
Beltrami operator is associated with the Dirichlet form



IV.2)- The Laplace-Beltrami Form
Let M be a Riemannian manifold of dimension D. The Laplace-
Beltrami operator is associated with the Dirichlet form

QM( f , g) =

D∑
i, j=1

∫
M

dDx
√

det(g(x)) gi j(x) ∂i f (x) ∂ jg(x)

where g is the metric.



IV.2)- The Laplace-Beltrami Form
Let M be a Riemannian manifold of dimension D. The Laplace-
Beltrami operator is associated with the Dirichlet form

QM( f , g) =

D∑
i, j=1

∫
M

dDx
√

det(g(x)) gi j(x) ∂i f (x) ∂ jg(x)

where g is the metric. Equivalently (in local coordinates)

QM( f , g) =

∫
M

dDx
√

det(g(x))
∫

S(x)
dνx(u) u · ∇ f (x) u · ∇g(x)



IV.2)- The Laplace-Beltrami Form
Let M be a Riemannian manifold of dimension D. The Laplace-
Beltrami operator is associated with the Dirichlet form

QM( f , g) =

D∑
i, j=1

∫
M

dDx
√

det(g(x)) gi j(x) ∂i f (x) ∂ jg(x)

where g is the metric. Equivalently (in local coordinates)

QM( f , g) =

∫
M

dDx
√

det(g(x))
∫

S(x)
dνx(u) u · ∇ f (x) u · ∇g(x)

where S(x) represent the unit sphere in the tangent space whereas
νx is the normalized Haar measure on S(x).



Similarly, if (C, d) is an ultrametric Cantor set, the expression
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can be interpreted as a directional derivative, analogous to u · ∇ f ,
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Similarly, if (C, d) is an ultrametric Cantor set, the expression

[D, πτ( f )]

can be interpreted as a directional derivative, analogous to u · ∇ f ,
since a choice τ has been interpreted as a unit tangent vector.

The Laplace-Pearson operators are defined, by analogy, by

Qs( f , g) =

∫
Υ

dν(τ) Tr
{

1
|D|s

[D, πτ( f )]∗ [D, πτ(g)]
}

for f , g ∈ CLip(C) and s > 0.
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Let D be the linear subspace of L2(C, µ) generated by the charac-
teristic functions of the clopen sets [v] , v ∈ V. Then

Theorem For any s ∈ R, the form Qs defined on D is closeable on
L2(C, µ) and its closure is a Dirichlet form.

The corresponding operator −∆s leaves D invariant, has a discrete spec-
trum.

For s < s0 + 2, −∆s is unbounded with compact resolvent.
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IV.3)- Jumps Process over Gaps
∆s generates a Markov semigroup,
thus a stochastic process (Xt)t≥0 where the Xt’s takes on values in
C.

Given v ∈ V, its spine is the set of vertices located along the finite
path joining the root to v. The vineV(v) of v is the set of vertices
w, not in the spine, which are children of one vertex of the spine.

Then if χv is the characteristic function of [v]

∆sχv =
∑

w∈V(v)

p(v,w)(χw − χv)

where p(v,w) > 0 represents the probability for Xt to jump from v to
w per unit time.



The vine of a vertex v



Jump process from v to w



The tree for the triadic ring Z(3)



Jump process in Z(3)
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Concretely, if ŵ denotes the father of w (which belongs to the spine)

p(v,w) = 2δ(ŵ)s−2 µ([v])
Zŵ

where Zŵ is the normalization constant for the measure νŵ on the
set of choices at ŵ, namely

Zŵ =
∑

u,u′∈Ch(ŵ)

µ([u])µ([u′])
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IV.4)- Eigenspaces
Let v be a vertex of the Michon graph with Ch(v) as its set of
children. Let Ev be the linear space generated by the characteristic
function χw of the [w]’s with w ∈ Ch(v). In particular

χv =
∑

w∈Ch(v)

χw ∈ Ev .

Theorem For any s ∈ R, the eigenspaces of −∆s are the spaces of the
form {χv}⊥ ⊂ Ev, namely, the orthogonal complement of χv is Ev .



V - To conclude



• Ultrametric Cantor sets can be described as Riemannian mani-
folds, through Noncommutative Geometry.

• An analog of the tangent unit sphere is given by choices

• The Hausdorff dimension plays the role of the dimension

• A volume measure is defined through the Dixmier trace

• A Laplace-Beltrami operator is defined with compact resolvent
and Weyl asymptotics

• It generates a jump process playing the role of the Brownian
motion.

• This process exhibits anomalous diffusion.
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• The construction of a spectral triple can be extended to any
compact metric space if the partitions by clopen sets are replaces
by suitable open covers.

• If the compact metric space (X, d) has finite Hausdorff dimension
then the spectral triple can be chosen to admits dimH(X) as
abscissa of convergence.

• If (X, d) admits a positive finite Hausdorff measure the spectral
triple can be constructed so as to have the measure µ, defined
by the Dixmier trace, equal to the normalized Hausdorf measure.

• Under some extra local regularity property on (X, d) a Laplace-
Beltrami operator be defined (J. Cheeger).


