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I - Motivations



Motivation
Spectrum of the Kohmoto

model
(Fibonacci Hamiltonian)

(Hψ)(n) =

ψ(n + 1) + ψ(n − 1)
+λ χ(0,α](x − nα) ψ(n)

as a function of α.

Method:
transfer matrix calculation



Motivation

Solvable 2D-model, reducible to 1D-calculations



Motivation

A sample of the icosahedral quasicrystal AlPdMn



Methodologies

• For one dimensional Schrödinger equation of the form

Hψ(x) = −
d2ψ

dx2 + V(x)ψ(x)

a transfer matrix approach has been used for a long time to analyze
the spectral properties (Bogoliubov ‘36).

• A KAM-type perturbation theory has been used successfully (Dinaburg,

Sinai ‘76, JB ‘80’s).



Methodologies

• For discrete one-dimensional models of the form

Hψ(n) = tn+1ψ(n + 1) + tnψ(n − 1) + Vnψ(n)

a transfer matrix approach is the most efficient method, both for
numerical calculation and for mathematical approach:

– the KAM-type perturbation theory also applies (JB ‘80’s).
– models defined by substitutions using the trace map

(Khomoto et al., Ostlundt et al. ‘83, JB ‘89, JB, Bovier, Ghez, Damanik... in the nineties)

– theory of cocycle (Avila, Jitomirskaya, Damanik, Krikorian, Gorodestsky...).



Methodologies
• In higher dimension almost no rigorous results are available

• Exceptions are for models that are Cartesian products of 1D mod-
els (Sire ‘89, Damanik, Gorodestky,Solomyak ‘14)

•Numerical calculations performed on quasi-crystals have shown
that

– Finite cluster calculation lead to a large number of spurious edge
states.

– Periodic approximations are much more efficient
– Some periodic approximations exhibit defects giving contribu-

tions in the energy spectrum.



II - Continuous Fields



Continuous Fields of Hamiltonians
A = (At)t∈T is a field of self-adjoint operators whenever

1. T is a topological space,

2. for each t ∈ T,Ht is a Hilbert space,

3. for each t ∈ T, At is a self-adjoint operator acting onHt.

The field A = (At)t∈T is called p2-continuous whenever, for every
polynomial p ∈ R(X) with degree at most 2, the following norm map
is continuous

Φp : t ∈ T 7→ ‖p(At)‖ ∈ [0,+∞)



Continuous Fields of Hamiltonians

Theorem: (S. Beckus, J. Bellissard ‘16)

1. A field A = (At)t∈T of self-adjoint bounded operators is p2-continuous
if and only if the spectrum of At, seen as a compact subset of R, is a
continuous function of t with respect to the Hausdorff metric.

2. Equivalently A = (At)t∈T is p2-continuous if and only if the spectral
gap edges of At are continuous functions of t.



Continuous Fields of Hamiltonians

The field A = (At)t∈T is called p2-α-Hölder continuous whenever, for
every polynomial p ∈ R(X) with degree at most 2, the following
norm map is α-Hölder continuous

Φp : t ∈ T 7→ ‖p(At)‖ ∈ [0,+∞)

uniformly w.r.t. p(X) = p0+p1X+p2X2
∈ R(X) such that |p0|+|p1|+|p2| ≤

M, for some M > 0.



Continuous Fields of Hamiltonians
Theorem: (S. Beckus, J. Bellissard ‘16)

1. A field A = (At)t∈T of self-adjoint bounded operators is p2-α-Hölder
continuous then the spectrum of At, seen as a compact subset of R, is
an α/2-Hölder continuous function of t with respect to the Hausdorff
metric.

2. In such a case, the edges of a spectral gap of At are α-Hölder continuous
functions of t at each point t where the gap is open.

3. At any point t0 for which a spectral gap of At is closing, if the tip of the
gap is isolated from other gaps, then its edges are α/2-Hölder continuous
functions of t at t0.

4. Conversely if the gap edges are α-Hölder continuous, then the field A is
p2-α-Hölder continuous.



Continuous Fields of Hamiltonians

The spectrum of the Harper model

the Hamiltonina is p2-Lipshitz continuous

(JB, ’94)

A gap closing (enlargement)



Continuous Fields on C∗-algebras
(Tomyama 1958, Dixmier-Douady 1962)

Given a topological space T, letA = (At)t∈T be a family of C∗-algebras.

A vector field is a family a = (at)t∈T with at ∈ At for all t ∈ T.

A is called continuous whenever there is a family Υ of vector fields
such that,

• for all t ∈ T, the set Υt of elements at with a ∈ Υ is a dense ∗-
subalgebra ofAt

• for all a ∈ Υ the map t ∈ T 7→ ‖at‖ ∈ [0,+∞) is continuous

• a vector field b = (bt)t∈T belongs to Υ if and only if, for any t0 ∈ T
and any ε > 0, there is U an open neighborhood of t0 and a ∈ Υ,
with ‖at − bt‖ < ε whenever t ∈ U.



Continuous Fields on C∗-algebras

Theorem If A is a continuous field of C∗-algebras and if a ∈ Υ is a
continuous self-adjoint vector field, then, for any continuous function f ∈
C0(R), the maps t ∈ T 7→ ‖ f (at)‖ ∈ [0,+∞) are continuous

In particular, such a vector field is p2-continuous



Groupoids
(Ramsay ‘76, Connes, 79, Renault ‘80)

A groupoid G is a category the object of which G0 and the morphism
of which G make up two sets. More precisely

• there are two maps r, s : G→ G0 (range and source)

• (γ, γ′) ∈ G2 are compatible whenever s(γ) = r(γ′)

• there is an associative composition law (γ, γ′) ∈ G2 7→ γ ◦ γ′ ∈ G,
such that r(γ ◦ γ′) = r(γ) and s(γ ◦ γ′) = s(γ′)

• a unit e is an element of G such that e ◦ γ = γ and γ′ ◦ e = γ′

whenever compatibility holds; then r(e) = s(e) and the map e →
x = r(e) = s(e) ∈ G0 is a bijection between units and objects;

• each γ ∈ G admits an inverse such that γ ◦ γ−1 = r(γ) = s(γ−1) and
γ−1
◦ γ = s(γ) = r(γ−1)



Locally Compact Groupoids

• A groupoid G is locally compact whenever

– G is endowed with a locally compact Hausdorff topology
– the maps r, s, the composition and the inverse are continuous func-

tions.

Then the set of units is a closed subset of G.

• A Haar system is a family λ = (λx)x∈G0 of positive Borel measures
on the fibers Gx = r−1(x), such that

– if γ : x→ y, then γ∗λx = λy

– if f ∈ Cc(G) is continuous with compact support, then the map
x ∈ G0 7→ λx( f ) is continuous.



Locally Compact Groupoids
Example:

Let Ω be a compact Hausdorff space, let G be a locally compact group
acting on Ω by homeomorphisms. Then Γ = Ω×G becomes a locally
compact groupoid as follows

• Γ0 = Ω, is the set of units,

• r(ω, g) = ω and s(ω, g) = g−1ω

• (ω, g) ◦ (g−1ω, h) = (ω, gh)

• Each fiber Γω ' G, so that if µ is the Haar measure on G, it gives a
Haar system λ with λω = µ for all ω ∈ Ω.

This groupoid is called the crossed-product and is denoted Ω o G



Groupoid C∗-algebra
Let G be a locally compact groupoid with a Haar system λ. Then
the complex vector space space Cc(G) of complex valued continuous
functions with compact support on G becomes a ∗-algebra as follows

• Product (convolution):

ab(γ) =

∫
Gx

a(γ′) b(γ′−1
◦ γ) dλx(γ′) x = r(γ)

• Adjoint:

a∗(γ) = a(γ−1)



Groupoid C∗-algebra
The following construction gives a C∗-norm

• for each x ∈ G0, letHx = L2(Gx, λx)

• for a ∈ Cc(G), let πx(a) be the operator onHx defined by

πx(a)ψ(γ) =

∫
Gx

a(γ−1
◦ γ′) ψ(γ′)dλx(γ′)

• (πx)x∈G0 gives a faithful covariant family of ∗-representations of
Cc(G), namely if γ : x→ y then πx ∼ πy.

• then ‖a‖ = supx∈G0
‖πx(a)‖ is a C∗-norm; the completion of Cc(G)

with respect to this norm is called the reduced C∗-algebra of G and
is denoted by C∗red(G).



Continuous Fields of Groupoids
(N. P. Landsman, B. Ramazan, 2001)

• A field of groupoid is a triple (G,T, p), where G is a groupoid, T a
set and p : G→ T a map, such that,
if p0 = p �G0, then p = p0 ◦ r = p0 ◦ s

• Then the subset Gt = p−1
{t} is a groupoid depending on t.

• If G is locally compact, T a Hausdorff topological space and p contin-
uous and open, then (G,T,P) = (Gt)t∈T is called a continuous field of
groupoids.



Continuous Fields of Groupoids

Theorem: (N. P. Landsman, B. Ramazan, 2001)

Let (G,T, p) be a continuous field of locally compact groupoids with Haar
systems. If Gt is amenable for all t ∈ T, then the field A = (At)t∈T of
C∗-algebras defined byAt = C∗(Gt) is continuous.



III - Tautological Groupoid



Periodic Approximations
Approximating an aperiodic system by a periodic one makes sense
within the following framework

•Ω is a compact Hausdorff metrizable space,

• a locally compact group G acts on Ω by homeomorphisms,

• I(Ω) is the set of closed G-invariant subsets of Ω:

– a subset M ∈ I(Ω) is minimal if all its G-orbits are dense.
– a point ω ∈ Ω is called periodic if there is a uniform lattice Λ ⊂ G

such that gω = ω for g ∈ Λ. In such a case Orb(ω) is a quotient
of G/Λ, and is thus is compact.

– if G is discrete, any periodic orbit is a finite set.



Periodic Approximations
Example 1)- Subshifts

Let A be a finite set (alphabet). Let Ω = AZ: it is compact for the
product topology. The shift operator S defines a Z-action.

1. A sequence ξ = (xn)n∈Z is periodic if and only if ξ can be written
as an infinite repetition of a finite word. The S-orbit of ξ is then
finite.

2. The set of periodic points of Ω is dense.

3. A subshift is provided by a closed S-invariant subset, namely a
point in I(Ω).



Periodic Approximations

Example 2)- Delone Sets A Delone set L ⊂ Rd is

• a discrete closed subset,

• there is 0 < r such that each ball of radius r intersects L at one
point at most,

• here is 0 < R such that each ball of radius R intersects L at one
point at least.

Then

1. the set Ω = Delr,R of such Delone sets inRd can be endowed with
a topology that makes it compact,

2. the group Rd acts on Ω by homeomorphisms,

3. the periodic Delone sets make up a dense subset in Ω.



Periodic Approximations

Question: in which sense can one approximate a minimal infinite G-
invariant subset by a sequence of periodic orbits ?



The Fell and Vietoris Topologies
(Vietoris 1922, Fell 1962)

Given a topological space X, let C(X) be the set of closed subsets of X.

Let F ⊂ X be closed and let F be a finite family of open sets. Then

U(F,F ) = {G ∈ C(X) ; G ∩ F = ∅ , G ∩O , ∅ , ∀O ∈ F }

Then the family of U(F,F )’s is a basis for a topology called the
Vietoris topology.

Replacing F by a compact set K, the same definition leads to the Fell
topology.



The Fell and Vietoris Topologies

• C(X) is Fell-compact,

• if X is locally compact and Hausdorff, C(X) is Hausdorff for both
Fell and Vietoris,

• if (X, d) is a complete metric space, the Vietoris topology coincides
with the topology defined by the Hausdorff metric.

• If X is compact both topologies coincide.

Theorem If (Ω,G) is a topological dynamical system, the set I(Ω) is
compact for both the Fell and the Vietoris topologies.



The Fell and Vietoris Topologies
Example:

If (Ω = AZ,S), periodic orbits ARE NOT Vietoris-dense in I(Ω)

For instance, if A = {0, 1} let ξ0 ∈ Ω be the sequence defined by

ξ0 = (xn)n∈Z xn =

{
0 if n < 0
1 if n ≥ 0

Then Orb(ξ) is isolated in I(Ω) for the Vietoris topology.



The Tautological Groupoid

• Let T(Ω) ⊂ I(Ω) × Ω be the set of pairs (M, ω) such that ω ∈ M.
Endowed with the product topology it is compact Hausdorff.

• G acts on it by homeomorphisms through g(M, ω) = (M, gω).

• Let Γ = T(Ω) o G, let T = I(Ω) and let p : Γ→ T defined by

p(M, ω, g) = M

Then (G,T, p) is a continuous field of locally compact groupoids.

• If G is amenable, then the family A = (AM)M∈I(Ω) where AM =
C∗(ΓM) gives a continuous field of C∗-algebras.



The Tautological Groupoid

Hence

If M is a closed invariant subset of Ω that is a Vietoris-limit point of the
set of periodic orbit, then any continuous field of Hamiltonian in A has a
spectrum that can be approximated by the spectrum of a suitable sequence
of periodic approximations.

Question: Which invariant subsets of Ω are Vietoris limit points of peri-
odic orbits ?



IV - Periodic Approximations for Subshifts



Subshifts
Let A be a finite alphabet, let Ω = AZ be equipped with the shift S.
Let Σ ∈ J(Ω) be a subshift. Then

• given l, r ∈N an (l, r)-collared dot is a dotted word of the form u · v
with u, v being words of length |u| = l, |v| = r such that uv is a
sub-word of at least one element of Σ

• an (l, r)-collared letter is a dotted word of the form u · a · v with
a ∈ A, u, v being words of length |u| = l, |v| = r such that uav is
a sub-word of at least one element of Σ: a collared letter links two
collared dots

• let Vl,r be the set of (l, r)-collared dots, let El,r be the set of (l, r)-
collared letters: then the pair Gl,r = (Vl,r,El,r) gives a finite directed
graph
(de Bruijn, ‘46, Anderson-Putnam ‘98, Gähler, ‘01)



The Fibonacci Tiling

• Alphabet: A = {a, b}

• Fibonacci sequence: generated by the substitution a→ ab , b→ a
starting from either a · a or b · a

Left: G1,1 Right: G8,8



The Thue-Morse Tiling

• Alphabet: A = {a, b}

• Thue-Morse sequences: generated by the substitution a →
ab , b→ ba starting from either a · a or b · a

Thue-Morse G1,1



The Rudin-Shapiro Tiling

• Alphabet: A = {a, b, c, d}

• Rudin-Shapiro sequences: generated by the substitution a →
ab , b → ac , c → db , d → dc starting from either b · a , c · a or
b · d , c · d

Rudin-Shapiro G1,1



The Full Shift on Two Letters

• Alphabet: A = {a, b} all possible word allowed.

G1,2 G2,2



Strongly Connected Graphs

The de Bruijn graphs are

• simple: between two vertices there is at most one edge,

• connected: if the sub-shift is topologically transitive, (i.e. one orbit is
dense), then between any two vertices, there is at least one path
connected them,

• has no dandling vertex: each vertex admits at least one ingoing and
one outgoing vertex,

• if n = l + r = l′+ r′ then the graphs Gl,r and Gl′,r′ are isomorphic and
denoted by Gn.



Strongly Connected Graphs
(S. Beckus, PhD Thesis, 2016)

A directed graph is called strongly connected if any pair x, y of vertices
there is an oriented path from x to y and another one from y to x.

Proposition: If the sub-shift Σ is minimal (i.e. every orbit is dense), then
each of the de Bruijn graph is stongly connected.

Main result:

Theorem: A subshift Σ ⊂ AZ can be Vietoris approximated by a sequence
of periodic orbits if and only if it admits is a sequence of strongly connected
de Bruijn graphs.



Open Problem

Question:

Is there a similar criterion for the space of Delone sets in Rd or for some
remarkable subclasses of it ?

Some sufficient conditions have been found for Ω = AG, where G is a
discrete, countable and amenable group, in particular when G = Zd.
(S. Beckus, PhD Thesis, 2016)



Thanks for listening !

Now it’s time for tea !


