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Aperiodicity

• In a solid, periodic or not, the basic object is its Hull Ω: it
is a compact metrizable space endowed with an action of the
translation group Rd by homeomorphisms.

• The Hamiltonian describing the electronic motion is a strong-
resolvent continuous family H = (Hω)ω∈Ω of self adjoint opera-
tors, acting on a common Hilbert spaceH ' L2(Rd) ⊗ CN and
affiliated to the C∗-algebraA = C(Ω) o Rd.

• There is a unitary representation U of the translation group inH .
The family H is covariant

U(a)HωU(a)−1 = Htaω a ∈ Rd



The Noncommutative Brillouin Zone

• The C∗-algebra A = C(Ω) o Rd is the aperiodic analog of the
space of continuous functions over the Brillouin Zone, which is a
torus in the periodic case.

• A is represented inH through a covariant family of
∗-representations

πω(A)ψ(x) =

∫
Rd

ddy A(t−xω, y − x) eıB·x∧y ψ(y)

if B is a uniform magnetic field added.

• The Hull comes naturally with a translation invariant ergodic
probability measure P associated with the Gibbs measure de-
scribing the atomic equilibrium.



Calculus

• The volume form of the Brillouin zone is given by the trace per
unit volume

TP{A} = lim
Λ↑Rd

1
|Λ|

Tr
{
πω(A)χΛ

}
=

∫
Ω

dP(ω) A(ω, 0)

• The group dual to the translation group acts on A = C(Ω) o
Rd by duality, defining a family (∂i)d

i=1 of ∗-derivations of A,
aperiodic analog of ∂/∂ki, such that
(Connes-Takai-Takesaki duality)

πω(∂iA) = −ı [Xi,A]

where ~X = (X1, · · · ,Xd) denotes the position operators.



Thermodynamics for Electrons

• If A ∈ A is a one-electron observable, its thermal average is given
by

〈A〉T,µ = TP

{
A

1

1 + eβ(H−µ)

}
β =

1
kBT

, µ = chemical potential

• In particular the electron density is given by

nel = TP

{
1

1 + eβ(H−µ)

}



II - Kubo’s Formula
(Relaxation Time Approximation)
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The Drude Model



The Drude Model
P. Drude, Ann. Phys., 1, (1900), 566-613; Ann. Phys., 3, (1900), 369-302.

• Electrons in a metal are free classical particles of mass m∗ and
charge q.

• They experience collisions at random Poissonnian times · · · <
tn < tn+1 < · · ·, with average relaxation time τrel.

• If pn is the electron momentum between times tn and tn+1,
then the pn+1− pn’s are independent random variables distributed
according to the Maxwell distribution at temperature T.

• The conductivity is then given by

σ =
q2n
m∗

τrel



The Relaxation Time Approximation

• Replace the classical dynamics by the quantum one-electron dy-
namic in the aperiodic solid.

• At each collision, force the density matrix to come back to equi-
librium. (Relaxation time Approximation or RTA).

• There is only one relaxation time τrel. The electric conductivity
is then given by Kubo’s formula:

σi, j =
q2

~
TP

{
∂ j

(
1

1 + eβ(H−µ)

)
1

1/τrel − LH
∂iH

}
Here q is the charge of the carriers, β = 1/kBT, µ is the chemical
potential and LH = ı/~ [H, .].



Models for the Electronic Motion
E. Prodan, “Quantum transport in disordered systems under magnetic fields:
a study based on operator algebras”, arXiv:1204.6490.

• Disorder occurs in semiconductors at very low temperature or in
many topological insulators.

• It is convenient to use the tight-binding representation: electrons
are located on a lattice Zd. The kinetic term is given by a sum
of hopping terms with magnetic field

Hkinψ(x) =
∑
|a|≤r

t(a) e−ıB·x∧a ψ(x − a)

• Hkin commutes with the magnetic translation (Zak ‘64)



Models for the Electronic Motion

Example: the Harper model

if t(a) = 0 for |a| , 1 and t(±ei) = 1 for i = 1, 2 (nearest neighbors
hopping) then

Hkin = U1 + U−1
1 + U2 + U−1

2

with

U1U2 = e2ıπφ/φ0 U2U1 φ0 =
h
e

and φ is the the unit cell magnetic flux.





Models for the Electronic Motion

• The disorder potential Vω = Wω with ω = (ωx)x∈Zd where
the ωx’s are i.i.d. uniformly distributed on [−1/2, 1/2] (Anderson)

• The Hull is then Ω = [−1/2, 1/2]Z
d
. The probability P becomes

dP(ω) =
∏

x∈Zd

dωx �[−1/2,1/2]

• The observable algebra becomesA = C(Ω)oZd whereZd acts
like a shift on Ω.



Numerical Computations for Disordered Solids

• Step 1: The space is divided into cubes of size 2N+1 for N large
enough. The disorder is changed into periodic configurations of
period N: Ω is replaced by ΩN ⊂ Ω with

ΩN ' [−1/2, 1/2]CN CN = {−N, · · · ,N}d

• The observable algebra becomes AN = C(ΩN) o Zd and the
Hamiltonian H is approximated by Hper

• The trace becomes

TP, N{A} =
1

(2N + 1)d

∫
ΩN

∏
x∈CN

dωx Tr
{
πω(A)χCN

}



Numerical Computations for Disordered Solids

Result 1(E. Prodan ‘12) The error made with the previous replacement is
exponentially small in N.

More precisely, if f1, · · · , fL are functions of the form f = ∂iΦ(H) where
Φ is analytic in dist(z, σ(H)) ≤ κ, then for any 0 < ξ with
sinh(ξ) < κ/2d, the following bound hold∣∣∣∣∣∣∣∣TP


∏

j
f j

 − TP, N


∏

j
f j


∣∣∣∣∣∣∣∣ ≤ D(i1, · · · , iL; ξ)

L∏
j=1

‖Φ j‖ e−2
√

2/3 ξN

with D(i1, · · · , iL; ξ) uniform in N and independent of the Φ j’s.



Numerical Computations for Disordered Solids

• Step 2: The periodicity introduced in step 1 allows to use
Bloch theory to restrict the volume to CN with Bloch boundary
conditions labeled by the quasi-momentum ~k ∈ Td.

• Such a reduction is possible only if the magnetic fluxes through
the 2-faces of a unit cell of period are rational multiples of the
flux quantum h/e.

• The next step consists in discretizing Td so that only quasi-
momenta of the form below are kept in the calculation

~k ∈ Td
N ⇔ ~k = 2π

~m
2N + 1

~m ∈ (ZN)d ZN = Z/(2N + 1)Z



Numerical Computations for Disordered Solids

• To illustrate the way to estimate the error made during this dis-
cretization process, let f (θ) =

∑
n∈Z aneınθ be analytic in k, so

that its Fourier coefficients decay exponential fast.

• Sampling f on the values θ = 2πm/M gives a finite Fourier
expansion

f
(
2π

m
M

)
=

M−1∑
n=0

âneı2πnm/M ân =
∑
p∈Z

an+Mp

• It follows that |ân− an| ≤ Ce−c2M uniformly w.r.t. 0 ≤ n ≤M− 1.



Numerical Computations for Disordered Solids

• Discretization leads to the algebra BN = C(ΩN × T
d
N) o Zd

N.
Then there is an isometric ∗-endomorphism J : BN →AN and a
conditional expectation P : AN → BN with

P ◦ J = IBN J ◦ P = χCN

• It follows that the spectrum of the discretized Hamiltonian HN
is included in the spectrum of the periodic approximation Hper

• Result 2 (E. Prodan ‘12) The error made with the previous replacement is
exponentially small in N. This method allows to compute efficiently
various physical quantities numerically, including the conductivity.



III - The Quantum Hall Effect
(A Numerical Study)
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A List of Rigorous Results

• In the limit T ↓ 0, at constant electron density nel, the chemical
potential µ(T) converges to the Fermi Energy EF.

• The Fermi projection PF = χ(H ≤ EF) is obtained as a (weak)
limit (with β = 1/kBT)

PF = w − lim
T↓0

1

1 + eβ(H−µ(T))
lim
T↓0
TP

{
1

1 + eβ(H−µ(T))

}
= nel

• The density of states (DoS) is the positive Borel measure on σ(H)
defined by ∫

σ(H)
N(dE) f (E) = TP

{
f (H)

}



A List of Rigorous Results
• The current-current correlation function is the positive Borel mea-

sure on σ(H)×2 defined by∫
σ(H)×σ(H)

m(dE, dE′) f (E) g(E′) =

d∑
i=1

TP
{
f (H) ∂iH g(H) ∂iH

}
• The localization length ξ(E) can be expressed as∫

∆
dN(E)ξ(E)2 =

∫
∆×σ(H)

m(dE, dE′)
|E − E′|2

• If EF lies in an energy interval of localized states with finite
localization length then

d∑
i=0

TP

{
(∂iPF)2

}
< ∞



A List of Rigorous Results

• Under the following assumptions

1. the dimension is d = 2,
2. the magnetic field is uniform,
3. the Fermi energy lies in a region of localized states with finite

localization length
4. the relaxation time τrel ↑ ∞ as T ↓ 0,

lim
T↓0

σxx = lim
T↓0

σyy = 0 lim
T↓0

σxy =
e2

h
Chern(PF) Chern(PF) ∈ Z

• The Chern number is given by

Chern(PF) =
1

2ıπ
TP

{
PF

[
∂1PF, ∂2PF

]}



DoS and Hall Conductivity

DoS (left) and colored map
of the Hall conductivity
(right) for W = 3.
The regions of quantized
Hall conductivity, which
appear as well defined
patches of same color, are
indicated at the right.



The Hall Plateaux

First row (Second row): The
diagonal and the Hall
resistivities as function of
Fermi energy (density) at fixed
magnetic flux φ, temperature
T and disorder strength W

φ = 0.1 h/e
kBT = 1/τrel = 0.025
W = 1, 2, 3.

Each panel compares the data
obtained on the 100 × 100
lattice (circles) and on the
120 × 120 lattice (squares).



The Hall Plateaux
The diagonal and the Hall
resistivities as function of
magnetic flux

kBT = 1/τrel = 0.025
nel = .25
W = 1, 2, 3.

The data obtained on the
100 × 100, 120 × 120 and
140 × 140 lattices are joined
together.
This is the first set of
numerical data showing the
transverse conductivity as a
function of the magnetic field
and exhibiting the appearance
of the first plateau



Transition between Plateaux

Transition from
Chern(PF) = 0 to
Chern(PF) = 1

The simulated (a) σxy and (b)
σxx, as functions of EF at
different temperatures.
(Song & Prodan ‘12)

It shows a fixed point at
EF = Ec

F where

σxx
T↓0
→ σxy = e2/2h



Transition between Plateaux
• Between two plateaux of the QHE, the localization length must

diverge at some critical Fermi energy Ec
F. It has been shown,

using a semiclassical analysis that (Chalker, Coddington ‘88)

ξ(EF) ∼ |EF − Ec
F|
−ν ν =

8
3
' 2.6

• If τrel
T↓0
∼ T−p, using a scaling approach (Thouless ‘77), the resistivity is

given by

ρ(EF,T) = F

(EF − Ec
F)

(
T
T0

)−κ κ =
p
ν

•Many experiments confirm these predictions with ambiguities
about the values of p, ν.



Transition between Plateaux
• The resistivity tensor ρ is the inverse of the conductivity tensor σ

ρ =

[
σxx σxy
−σxy σxx

]−1
⇒ ρxx =

σxx

σ2
xx + σ2

xy
ρxy = −

σxy

σ2
xx + σ2

xy

• The transition between the plateaux Chern(PF) = 0 (plateau
insulator or PI) and Chern(PF) = 1 (Hall plateau or PH) can be
investigated with high precision using the previous numerical

method. On plateaux, σxx
T↓0
→ 0, so that ρxx→∞ on the PI side,

and ρxx→ 0 on the PH side.



Transition between Plateaux
Transition from
Chern(PF) = 0 to
Chern(PF) = 1

(a) The simulated ρxx as
function of EF at different
temperatures. (b) ρxx as
function of temperature for
various EF values. The arrow
indicates the PH-PI
transition.
(Song & Prodan ‘12)



Transition between Plateaux
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Transition from
Chern(PF) = 0 to
Chern(PF) = 1

ρxy as function of EF at
different temperatures. The
curves at lower temperatures
display quantized values well
beyond the critical point,
which is marked by the vertical
dotted line. For convenience
we also show the data for ρxx.
(Song & Prodan ‘12)



Transition between Plateaux
Transition from
Chern(PF) = 0 to
Chern(PF) = 1

The simulated ρxx as function
of EF (a) before and (b) after
the horizontal axis was
rescaled as:

EF → Ec
F + (EF − Ec

F)
( T
T0

)−κ
with Ec

F = −3.15 , kBT0 = .08
and κ = .2 leading to p = 1
(Song & Prodan ‘12)



Transition between Plateaux
• The numerical results of Prodan and Song-Prodan, show that

1. there is no need to introduce the interactions
2. the prediction of the scaling theory and of Chalker & Coddington

are confirmed
3. the temperature dependence of the relaxation time scale like
τrel ∼ T−1 at low temperature.

•However, the RTA does not provide with a mechanism to ex-
plain the extreme experimental precision of the plateau: with the
RTA δσxy/σxy ∼ 10−4

− 10−5
(JB, van Elst, Schulz-Baldes ‘94) while experi-

mentally δσxy/σxy ≤ 10−8
− 10−10 !

This fact requires to introduce the variable range hoping in the
theory. (recent progress in Androulakis, JB, Sadel J. Stat. Phys. ‘12)



To Conclude



• The formalism inspired by Connes’s Noncommutative Geome-
try has been used successfully to describe rigorously various
properties of aperiodic solids.

• The Quantum Hall Effect is among the most spectacular appli-
cation. (JB, van Elst, Schulz-Baldes ‘94)

• The derivation of Kubo’s formula in the relaxation time approx-
imation for aperiodic solids has provided also important ap-
plications in the past, such as the conduction properties of
quasicrystals. (JB ‘02)

• Thanks to the hard work of Emil Prodan and his collaborators,
it is now possible to use this formalism efficiently in numerical
calculations for disordered systems as well.
This is probably the first step towards making this formalism acces-
sible to a wider public of users.



Thanks for listening !


