VARIOLS
 NATHELAMTCLL ASPRCTS
 of

 TIININSPRCES

 TIININSPRCES}

Jean BELLISSARD ${ }^{12}$

Georgia Institute of Technology
E
Institut Universitaire de France

Collaborations:

D. SPEHNER (Essen, Germany)
M. ZARROUATI (IRSAMC, Toulouse)
D. HERRMANN (T.U. Berlin)
J. KELLENDONK (U. Cardiff, United Kingdom)
A. LEGRAND (U. Paul Sabatier, Toulouse)
J.M. GAMBAUDO (U. Dijon, France)
R. BENEDETTI (U. Pisa, Italy)

[^0]
Main References

A. Connes, Sur la théorie non commutative de l'intégration, Lecture Notes in Math 725, 19-143, Springer, Berlin (1979).
J. Bellissard, The Gap Labelling Theorems for Schrödinger's Operators, in From Number Theory to Physics, pp. 538-630, Les Houches March 89, Springer, J.M. Luck, P. Moussa \& M. Waldschmidt Eds., (1993).
J.C. Lagarias, P.A.B. Pleasant, Repetitive Delone sets and perfect quasicrystals, in math. DS/9909033 (1999).
J. Bellissard, D. Herruanv, M. Zarrouatr, Hull of Aperiodic Solids and Gap Labelling Theorems, In Directions in Mathematical Quasicrystals, CRM Monograph Series, Volume 13, (2000), 207-259, M.B. Baake \& R.V. Moody Eds., AMS Providence.
J. Bellissard, R. Bevedetti, J. M. Gambaudo, Spaces of Tilings, Finite Telescopic Approximations, and Gap-Labelling, math.DS/0109062, (2001).
J. Beluissard, Noncommutative Geometry of Aperiodic Solids, in Geometry and Topology Methods for Quantum Field Theory, (Villa de Leyva, 2001), pp. 86-156, World Sci. Publishing, River Edge, NJ, (2003).

Content

1. Tilings, Tilings,...
2. Delone Sets
3. The Hull as a Dynamical System
4. Laminations
5. Branched Oriented Flat Riemannian Manifolds
I - Tilings, Tilings,...

- A triangle tiling -

- Dominos on a triangular lattice -

- Building the chair tiling -
A

- The Penrose tiling -

- Kites and Darts -

- Rhombi in Penrose's tiling -

- The Penrose tiling -

- The octagonal tiling -

- Octagonal tiling: inflation rules -

484848 45454
ar ar ar ar an a
\& 4 5

 4545

 $48 \% 8485858$ 84585

 4×4545 \&s 48 54 54

 -

- Another octagonal tiling -

- Building the Pinwheel Tiling -

- The Pinwheel Tiling -

- The icosahedral quasicrystal $A l P d M n$ -

- The icosahedral quasicrystal $H o M g Z n$ -

II - The Hull as a Dynamical System

Point Sets

A subset $\mathcal{L} \subset \mathbb{R}^{d}$ may be:

1. Discrete.
2. Uniformly discrete: $\exists r>0$ s.t. each ball of radius r contains at most one point of \mathcal{L}.
3. Relatively dense: $\exists R>0$ s.t. each ball of radius R contains at least one points of \mathcal{L}.
4. A Delone set: \mathcal{L} is uniformly discrete and relatively dense.
5. Finite type Delone set: $\mathcal{L}-\mathcal{L}$ is discrete.
6. Meyer set: \mathcal{L} and $\mathcal{L}-\mathcal{L}$ are Delone.
$\mathfrak{M}\left(\mathbb{R}^{d}\right)$ is the set of Radon measures on \mathbb{R}^{d} namely the dual space to $\mathcal{C}_{c}\left(\mathbb{R}^{d}\right)$ (continuous functions with compact support), endowed with the weak* topology.
For \mathcal{L} a uniformly discrete point set in \mathbb{R}^{d} :

$$
\nu:=\nu^{\mathcal{L}}=\sum_{y \in \mathcal{L}} \delta(x-y) \quad \in \mathfrak{M}\left(\mathbb{R}^{d}\right) .
$$

Point Sets and Tilings

Given a tiling with finitely many tiles (modulo translations), a Delone set is obtained by defining a point in the interior of each (translation equivalence class of) tile.

Conversely, given a Delone set, a tiling is built through the Voronoi cells

$$
V(x)=\left\{a \in \mathbb{R}^{d} ;|a-x|<|a-y|, \forall y \mathcal{L} \backslash\{x\}\right\}
$$

1. $V(x)$ is an open convex polyhedron containing $B(x ; r)$ and contained into $\overline{B(x ; R)}$.
2. Two Voronoi cells touch face-to-face.
3. If \mathcal{L} has finite type, then the Voronoi tiling has finitely many tiles modulo translations.

- Building a Voronoi cell-

- A Delone set and its Voronoi Tiling-

The Hull

A point measure is $\mu \in \mathfrak{M}\left(\mathbb{R}^{d}\right)$ such that $\mu(B) \in \mathbb{N}$ for any ball $B \subset \mathbb{R}^{d}$. Its support is

1. Discrete.
2. r-Uniformly discrete: iff $\forall B$ ball of radius $r, \mu(B) \leq 1$.
3. R-Relatively dense: iff for each ball B of radius $R, \mu(B) \geq 1$.
\mathbb{R}^{d} acts on $\mathfrak{M}\left(\mathbb{R}^{d}\right)$ by translation.

Theorem 1 The set of r-uniformly discrete point measures is compact and \mathbb{R}^{d}-invariant.
Its subset of R-relatively dense measures is compact and \mathbb{R}^{d}-invariant.

Definition 1 Given \mathcal{L} a uniformly discrete subset of \mathbb{R}^{d}, the Hull of \mathcal{L} is the closure in $\mathfrak{M}\left(\mathbb{R}^{d}\right)$ of the \mathbb{R}^{d}-orbit of $\nu^{\mathcal{L}}$.

Hence the Hull is a compact metrizable space on which \mathbb{R}^{d} acts by homeomorphisms.

Properties of the Hull

If $\mathcal{L} \subset \mathbb{R}^{d}$ is r-uniformly discrete with Hull Ω then using compactness

1. each point $\omega \in \Omega$ is an r-uniformly discrete point measure with support \mathcal{L}_{ω}.
2. if \mathcal{L} is (r, R)-Delone, so are all \mathcal{L}_{ω} 's.
3. if \mathcal{L} has finite type, so are all the \mathcal{L}_{ω} 's.

Moreover then $\mathcal{L}-\mathcal{L}=\mathcal{L}_{\omega}-\mathcal{L}_{\omega} \forall \omega \in \Omega$.

Definition 2 The transversal of the Hull Ω of a uniformly discrete set is the set of $\omega \in \Omega$ such that $0 \in \mathcal{L}_{\omega}$.

Theorem 2 If \mathcal{L} has finite type, then its transversal is completely discontinuous.

Minimality

A patch is a finite subset of \mathcal{L} of the form

$$
p=(\mathcal{L}-x) \cap \overline{B\left(0, r_{1}\right)} \quad x \in \mathcal{L}, r_{1} \geq 0
$$

\mathcal{L} is repetitive if for any finite patch p there is $R>0$ such that each ball of radius R contains an ϵ-approximant of a translated of p.

Theorem $3 \mathbb{R}^{d}$ acts minimaly on Ω if and only if \mathcal{L} is repetitive.

Examples

1. Crystals : $\Omega=\mathbb{R}^{d} / \mathcal{T} \simeq \mathbb{T}^{d}$ with the quotient action of \mathbb{R}^{d} on itself. (Here \mathcal{T} is the translation group leaving the lattice invariant. \mathcal{T} is isomorphic to \mathbb{Z}^{D}.)
The transversal is a finite set (number of point per unit cell).
2. Quasicrystals : $\Omega \simeq \mathbb{T}^{n}, n>d$ with an irrational action of \mathbb{R}^{d} and a completely discontinuous topology in the transverse direction to the \mathbb{R}^{d}-orbits. The transversal is a Cantor set.
3. Impurities in Si : let \mathcal{L} be the lattices sites for $S i$ atoms (it is a Bravais lattice). Let \mathfrak{A} be a finite set (alphabet) indexing the types of impurities.
The transversal is $X=\mathfrak{A}^{\mathbb{Z}^{d}}$ with \mathbb{Z}^{d}-action given by shifts.
The Hull Ω is the mapping torus of X.

- The Hull of a Periodic Lattice -

Quasicrystals

Use the cut-and-project construction:

$$
\mathbb{R}^{d} \simeq \mathcal{E}_{\|} \stackrel{\pi_{\|}}{\longleftarrow} \mathbb{R}^{n} \xrightarrow{\pi_{\perp}} \mathcal{E}_{\perp} \simeq \mathbb{R}^{n-d}
$$

$$
\mathcal{L} \stackrel{\pi_{\|}}{\longleftarrow} \tilde{\mathcal{L}} \xrightarrow{\pi_{\perp}} W,
$$

Here

1. $\tilde{\mathcal{L}}$ is a lattice in \mathbb{R}^{n},
2. the window W is a compact polytope.
3. \mathcal{L} is the quasilattice in $\mathcal{E}_{\|}$defined as

$$
\mathcal{L}=\left\{\pi_{\|}(m) \in \mathcal{E}_{\|} ; m \in \tilde{\mathcal{L}}, \pi_{\perp}(m) \in W\right\}
$$

- The cut-and-project construction -

- The transversal of the Octagonal Tiling -
- is completely disconnected -

III - Branched Oriented Flat Riemannian Manifolds

Laminations and Boxes

A lamination is a foliated manifold with \mathcal{C}^{∞}-structure along the leaves but only finite \mathcal{C}^{0}-structure transversally. The Hull of a Delone set is a lamination with \mathbb{R}^{d}-orbits as leaves.

If \mathcal{L} is a finite type, repetitive, Delone set, with Hull Ω A box is the homeomorphic image of

$$
\phi:(\omega, x) \in F \times U \mapsto \mathrm{~T}^{-x} \omega \in \Omega
$$

if F is a clopen subset of the transversal, $U \subset \mathbb{R}^{d}$ is open and T denotes the \mathbb{R}^{d}-action on Ω.

A quasi-partition is a family $\left(B_{i}\right)_{i=1}^{n}$ of boxes such that $\bigcup_{i} \overline{B_{i}}=\Omega$ and $B_{i} \cap B_{j}=\emptyset$.

Theorem 4 The Hull of a finite type, repetitive, Delone set admits a finite quasi-partition. It is always possible to choose these boxes as $\phi(F \times U)$ with U a d-rectangle.

Branched Oriented Flat Manifolds

Flattening a box decomposition along the transverse direction leads to a Branched Oriented Flat manifold. Such manifolds can be built from the tiling itself as follows

Step 1:

1. X is the disjoint union of all prototiles;
2. glue prototiles T_{1} and T_{2} along a face $F_{1} \subset T_{1}$ and $F_{2} \subset T_{2}$ if F_{2} is a translated of F_{1} and if there are $x_{1}, x_{2} \in \mathbb{R}^{d}$ such that $x_{i}+T_{i}$ are tiles of \mathcal{T} with $\left(x_{1}+T_{1}\right) \cap\left(x_{2}+T_{2}\right)=x_{1}+F_{1}=x_{2}+F_{2} ;$
3. after identification of faces, X becomes a branched oriented flat manifold (BOF) B_{0}.

- Vertex branching for the octagonal tiling -

Step 2:

1. Having defined the patch p_{n} for $n \geq 0$, let \mathcal{L}_{n} be the subset of \mathcal{L} of points centered at a translated of p_{n}. By repetitivity this is a finite type repetitive Delone set too. Its prototiles are tiled by tiles of \mathcal{L} and define a finite family \mathfrak{P}_{n} of patches.
2. Color each patch in $\mathcal{T} \in \mathfrak{P}_{n}$ by the tiles touching it from outside along its frontier. Call such a patch modulo translation a a colored patch and \mathfrak{P}_{n}^{c} their set.
3. Proceed then as in Step 1 by replacing prototiles by colored patches to get the BOF-manifold B_{n}.
4. Then choose for p_{n+1} as the colored patch in \mathfrak{P}_{n}^{c} containing p_{n}.

Step 3:

1. Define a BOF-submersion $f_{n}: B_{n+1} \mapsto B_{n}$ by identifying patches of order n in B_{n+1} with the prototiles of B_{n}. Note that $D f_{n}=\mathbf{1}$.
2. Call Ω the projective limit of the sequence

$$
\ldots \xrightarrow{f_{n+1}} B_{n+1} \xrightarrow{f_{n}} B_{n} \xrightarrow{f_{n-1}} \ldots
$$

3. $X_{1}, \cdots X_{d}$ are the commuting constant vector fields on B_{n} generating local translations and giving rise to a \mathbb{R}^{d} action T on Ω.

Theorem 5 The dynamical system

$$
\left(\Omega, \mathbb{R}^{d}, \mathrm{~T}\right)=\lim _{\leftarrow}\left(B_{n}, f_{n}\right)
$$

obtained as inverse limit of branched oriented flat manifolds, is conjugate to the Hull of the Delone set of the tiling \mathcal{T} by an homemorphism.

Longitudinal (co)-Homology

The Homology groups are defined by the inverse limit

$$
H_{*}\left(\Omega, \mathbb{R}^{d}\right)=\lim _{\leftarrow}\left(H_{*}\left(B_{n}, \mathbb{R}\right), f_{n}^{*}\right)
$$

Theorem 6 The homology group $H_{d}\left(\Omega, \mathbb{R}^{d}\right)$ admits a canonical positive cone induced by the orientation of \mathbb{R}^{d}, isomorphic to the affine set of positive \mathbb{R}^{d} invariant measures on Ω.
The cohomology groups are defined by the direct limit

$$
H^{*}\left(\Omega, \mathbb{R}^{d}\right)=\lim _{\rightarrow}\left(H^{*}\left(B_{n}, \mathbb{R}\right), f_{n}^{*}\right)
$$

Theorem 7 If \mathbb{P} is an \mathbb{R}^{d}-invariant probability on Ω, then the pairing with $H^{d}\left(\Omega, \mathbb{R}^{d}\right)$ satisfies

$$
\left\langle\mathbb{P} \mid H^{d}\left(\Omega, \mathbb{R}^{d}\right)\right\rangle=\int_{\Xi} d \mathbb{P}_{\mathrm{tr}} \mathcal{C}(\Xi, \mathbb{Z})
$$

where Ξ is the transversal, $\mathbb{P}_{\text {tr }}$ is the probability on Ξ induced by \mathbb{P} and $\mathcal{C}(\Xi, \mathbb{Z})$ is the space of integer valued continuous functions on Ξ.

Conclusion

1. Tilings can be equivalently be represented by $D e$ lone sets or point measures.
2. The Hull allows to give tilings the structure of a dynamical system with a transversal.
3. This dynamical system can be seen as a lamination and admits finite box decompositions.
4. Such box decompositions gives rise to inverse limits of Branched Oriented Flat Riemannian Manifolds, an equivalent description.
5. Such inverse limit gives the longitudinal Homology and Cohomology groups of this tiling space. In maximum degree, they give the family of invariant measures and the Gap Labelling Theorem.

[^0]: ${ }^{1}$ Georgia Institute of Technology, School of Mathematics, Atlanta GA 30332-0160
 ${ }^{2} \mathrm{e}$-mail: jeanbel@math.gatech.edu

