VARIOUS MATHEMATICAL ASPECTS

of

TILING SPACES

Jean BELLISSARD 1 2

Georgia Institute of Technology
&
Institut Universitaire de France

Collaborations:

- D. SPEHNER (Essen, Germany)
- M. ZARROUATI (IRSAMC, Toulouse)
- D. HERRMANN (T.U. Berlin)
- J. KELLENDONK (U. Cardiff, United Kingdom)
- A. LEGRAND (U. Paul Sabatier, Toulouse)
- J.M. GAMBAUDO (U. Dijon, France)
- R. BENEDETTI (U. Pisa, Italy)

¹Georgia Institute of Technology, School of Mathematics, Atlanta GA 30332-0160

²e-mail: jeanbel@math.gatech.edu

Main References

- A. Connes, Sur la théorie non commutative de l'intégration, Lecture Notes in Math **725**, 19-143, Springer, Berlin (1979).
- J. Bellissard, The Gap Labelling Theorems for Schrödinger's Operators, in From Number Theory to Physics, pp. 538-630, Les Houches March 89, Springer, J.M. Luck, P. Moussa & M. Waldschmidt Eds., (1993).
- J.C. LAGARIAS, P.A.B. PLEASANT, Repetitive Delone sets and perfect quasicrystals, in math.DS/9909033 (1999).
- J. Bellissard, D. Herrmann, M. Zarrouati, Hull of Aperiodic Solids and Gap Labelling Theorems, In Directions in Mathematical Quasicrystals, CRM Monograph Series, Volume 13, (2000), 207-259, M.B. Baake & R.V. Moody Eds., AMS Providence.
- J. Bellissard, R. Benedetti, J. M. Gambaudo, Spaces of Tilings, Finite Telescopic Approximations, and Gap-Labelling, math. DS/0109062, (2001).
- J. Bellissard, Noncommutative Geometry of Aperiodic Solids, in Geometry and Topology Methods for Quantum Field Theory, (Villa de Leyva, 2001), pp. 86-156, World Sci. Publishing, River Edge, NJ, (2003).

Content

- 1. Tilings, Tilings,...
- 2. Delone Sets
- 3. The Hull as a Dynamical System
- 4. Laminations
- 5. Branched Oriented Flat Riemannian Manifolds

I - Tilings, Tilings,...

- A triangle tiling -

- Dominos on a triangular lattice -

- Building the chair tiling -

- The chair tiling -

- The Penrose tiling -

- Kites and Darts -

- Rhombi in Penrose's tiling -

- The Penrose tiling -

- The octagonal tiling -

- Octagonal tiling: inflation rules -

- Another octagonal tiling -

- Building the Pinwheel Tiling -

- The Pinwheel Tiling -

- The icosahedral quasicrystal AlPdMn -

- The icosahedral quasicrystal HoMgZn-

II - The Hull as a Dynamical System

Point Sets

A subset $\mathcal{L} \subset \mathbb{R}^d$ may be:

- 1. Discrete.
- 2. Uniformly discrete: $\exists r > 0 \text{ s.t.}$ each ball of radius r contains at most one point of \mathcal{L} .
- 3. Relatively dense: $\exists R > 0$ s.t. each ball of radius R contains at least one points of \mathcal{L} .
- 4. A *Delone* set: \mathcal{L} is uniformly discrete and relatively dense.
- 5. Finite type Delone set: $\mathcal{L} \mathcal{L}$ is discrete.
- 6. Meyer set: \mathcal{L} and $\mathcal{L} \mathcal{L}$ are Delone.

 $\mathfrak{M}(\mathbb{R}^d)$ is the set of Radon measures on \mathbb{R}^d namely the dual space to $\mathcal{C}_c(\mathbb{R}^d)$ (continuous functions with compact support), endowed with the weak* topology.

For \mathcal{L} a uniformly discrete point set in \mathbb{R}^d :

$$\nu := \nu^{\mathcal{L}} = \sum_{y \in \mathcal{L}} \delta(x - y) \in \mathfrak{M}(\mathbb{R}^d) .$$

Point Sets and Tilings

Given a tiling with finitely many tiles (modulo translations), a Delone set is obtained by defining a point in the interior of each (translation equivalence class of) tile.

Conversely, given a Delone set, a tiling is built through the *Voronoi cells*

$$V(x) = \{a \in \mathbb{R}^d ; |a - x| < |a - y|, \forall y \mathcal{L} \setminus \{x\}\}$$

- 1. V(x) is an open convex polyhedron containing B(x;r) and contained into $\overline{B(x;R)}$.
- 2. Two Voronoi cells touch face-to-face.
- 3. If \mathcal{L} has finite type, then the Voronoi tiling has finitely many tiles modulo translations.

- Building a Voronoi cell-

- A Delone set and its Voronoi Tiling-

The Hull

A point measure is $\mu \in \mathfrak{M}(\mathbb{R}^d)$ such that $\mu(B) \in \mathbb{N}$ for any ball $B \subset \mathbb{R}^d$. Its support is

- 1. Discrete.
- 2. r-Uniformly discrete: iff $\forall B$ ball of radius $r, \mu(B) \leq 1$.
- 3. R-Relatively dense: iff for each ball B of radius $R, \mu(B) \geq 1$.

 \mathbb{R}^d acts on $\mathfrak{M}(\mathbb{R}^d)$ by translation.

Theorem 1 The set of r-uniformly discrete point measures is compact and \mathbb{R}^d -invariant.

Its subset of R-relatively dense measures is compact and \mathbb{R}^d -invariant.

Definition 1 Given \mathcal{L} a uniformly discrete subset of \mathbb{R}^d , the Hull of \mathcal{L} is the closure in $\mathfrak{M}(\mathbb{R}^d)$ of the \mathbb{R}^d -orbit of $\nu^{\mathcal{L}}$.

Hence the Hull is a compact metrizable space on which \mathbb{R}^d acts by homeomorphisms.

Properties of the Hull

If $\mathcal{L} \subset \mathbb{R}^d$ is r-uniformly discrete with Hull Ω then using compactness

- 1. each point $\omega \in \Omega$ is an r-uniformly discrete point measure with support \mathcal{L}_{ω} .
- 2. if \mathcal{L} is (r, R)-Delone, so are all \mathcal{L}_{ω} 's.
- 3. if \mathcal{L} has *finite type*, so are all the \mathcal{L}_{ω} 's. Moreover then $\mathcal{L} - \mathcal{L} = \mathcal{L}_{\omega} - \mathcal{L}_{\omega} \ \forall \omega \in \Omega$.

Definition 2 The transversal of the Hull Ω of a uniformly discrete set is the set of $\omega \in \Omega$ such that $0 \in \mathcal{L}_{\omega}$.

Theorem 2 If \mathcal{L} has finite type, then its transversal is completely discontinuous.

Minimality

A *patch* is a finite subset of \mathcal{L} of the form

$$p = (\mathcal{L} - x) \cap \overline{B(0, r_1)}$$
 $x \in \mathcal{L}, r_1 \ge 0$

 \mathcal{L} is *repetitive* if for any finite patch p there is R > 0 such that each ball of radius R contains an ϵ -approximant of a translated of p.

Theorem 3 \mathbb{R}^d acts minimaly on Ω if and only if \mathcal{L} is repetitive.

Examples

1. Crystals: $\Omega = \mathbb{R}^d/\mathcal{T} \simeq \mathbb{T}^d$ with the quotient action of \mathbb{R}^d on itself. (Here \mathcal{T} is the translation group leaving the lattice invariant. \mathcal{T} is isomorphic to \mathbb{Z}^D .)

The transversal is a finite set (number of point per unit cell).

- 2. Quasicrystals: $\Omega \simeq \mathbb{T}^n$, n > d with an irrational action of \mathbb{R}^d and a completely discontinuous topology in the transverse direction to the \mathbb{R}^d -orbits. The transversal is a Cantor set.
- 3. Impurities in Si: let \mathcal{L} be the lattices sites for Si atoms (it is a Bravais lattice). Let \mathfrak{A} be a finite set (alphabet) indexing the types of impurities.

The transversal is $X = \mathfrak{A}^{\mathbb{Z}^d}$ with \mathbb{Z}^d -action given by shifts.

The Hull Ω is the mapping torus of X.

- The Hull of a Periodic Lattice -

Quasicrystals

Use the *cut-and-project* construction:

$$\mathbb{R}^d \simeq \mathcal{E}_{\parallel} \stackrel{\pi_{\parallel}}{\longleftarrow} \mathbb{R}^n \stackrel{\pi_{\perp}}{\longrightarrow} \mathcal{E}_{\perp} \simeq \mathbb{R}^{n-d}$$

$$\mathcal{L} \stackrel{\pi_{\parallel}}{\longleftarrow} \widetilde{\mathcal{L}} \stackrel{\pi_{\perp}}{\longrightarrow} W$$
,

Here

- 1. $\tilde{\mathcal{L}}$ is a *lattice* in \mathbb{R}^n ,
- 2. the window W is a compact polytope.
- 3. \mathcal{L} is the *quasilattice* in \mathcal{E}_{\parallel} defined as

$$\mathcal{L} = \{ \pi_{\parallel}(m) \in \mathcal{E}_{\parallel} ; m \in \tilde{\mathcal{L}}, \pi_{\perp}(m) \in W \}$$

The cut-and-project construction –

- The transversal of the Octagonal Tiling -
 - is completely disconnected -

III - Branched Oriented Flat Riemannian Manifolds

Laminations and Boxes

A lamination is a foliated manifold with \mathcal{C}^{∞} -structure along the leaves but only finite \mathcal{C}^0 -structure transversally. The Hull of a Delone set is a lamination with \mathbb{R}^d -orbits as leaves.

If \mathcal{L} is a *finite type*, *repetitive*, *Delone* set, with Hull $\Omega \to box$ is the homeomorphic image of

$$\phi: (\omega, x) \in F \times U \mapsto \mathbf{T}^{-x} \omega \in \Omega$$

if F is a clopen subset of the transversal, $U \subset \mathbb{R}^d$ is open and T denotes the \mathbb{R}^d -action on Ω .

A quasi-partition is a family $(B_i)_{i=1}^n$ of boxes such that $\bigcup_i \overline{B_i} = \Omega$ and $B_i \cap B_j = \emptyset$.

Theorem 4 The Hull of a finite type, repetitive, Delone set admits a finite quasi-partition. It is always possible to choose these boxes as $\phi(F \times U)$ with U a d-rectangle.

Branched Oriented Flat Manifolds

Flattening a box decomposition along the transverse direction leads to a *Branched Oriented Flat manifold*. Such manifolds can be built from the tiling itself as follows

Step 1:

- 1. X is the disjoint union of all *prototiles*;
- 2. glue prototiles T_1 and T_2 along a face $F_1 \subset T_1$ and $F_2 \subset T_2$ if F_2 is a translated of F_1 and if there are $x_1, x_2 \in \mathbb{R}^d$ such that $x_i + T_i$ are tiles of \mathcal{T} with $(x_1 + T_1) \cap (x_2 + T_2) = x_1 + F_1 = x_2 + F_2$;
- 3. after identification of faces, X becomes a branched oriented flat manifold (BOF) B_0 .

- Vertex branching for the octagonal tiling -

Step 2:

- 1. Having defined the patch p_n for $n \geq 0$, let \mathcal{L}_n be the subset of \mathcal{L} of points centered at a translated of p_n . By repetitivity this is a finite type repetitive Delone set too. Its prototiles are tiled by tiles of \mathcal{L} and define a finite family \mathfrak{P}_n of patches.
- 2. Color each patch in $\mathcal{T} \in \mathfrak{P}_n$ by the tiles touching it from outside along its frontier. Call such a patch modulo translation a a colored patch and \mathfrak{P}_n^c their set.
- 3. Proceed then as in Step 1 by replacing prototiles by colored patches to get the BOF-manifold B_n .
- 4. Then choose for p_{n+1} as the colored patch in \mathfrak{P}_n^c containing p_n .

Step 3:

- 1. Define a BOF-submersion $f_n: B_{n+1} \mapsto B_n$ by identifying patches of order n in B_{n+1} with the prototiles of B_n . Note that $Df_n = \mathbf{1}$.
- 2. Call Ω the *projective limit* of the sequence

$$\cdots \stackrel{f_{n+1}}{\rightarrow} B_{n+1} \stackrel{f_n}{\rightarrow} B_n \stackrel{f_{n-1}}{\rightarrow} \cdots$$

3. $X_1, \dots X_d$ are the commuting constant vector fields on B_n generating local translations and giving rise to a \mathbb{R}^d action T on Ω .

Theorem 5 The dynamical system

$$(\Omega, \mathbb{R}^d, \mathbf{T}) = \lim_{\longleftarrow} (B_n, f_n)$$

obtained as inverse limit of branched oriented flat manifolds, is conjugate to the Hull of the Delone set of the tiling \mathcal{T} by an homemorphism.

Longitudinal (co)-Homology

The Homology groups are defined by the inverse limit

$$H_*(\Omega, \mathbb{R}^d) = \lim_{\leftarrow} (H_*(B_n, \mathbb{R}), f_n^*)$$

Theorem 6 The homology group $H_d(\Omega, \mathbb{R}^d)$ admits a canonical positive cone induced by the orientation of \mathbb{R}^d , isomorphic to the affine set of positive \mathbb{R}^d -invariant measures on Ω .

The cohomology groups are defined by the direct limit

$$H^*(\Omega, \mathbb{R}^d) = \lim_{\longrightarrow} (H^*(B_n, \mathbb{R}), f_n^*)$$

Theorem 7 If \mathbb{P} is an \mathbb{R}^d -invariant probability on Ω , then the pairing with $H^d(\Omega, \mathbb{R}^d)$ satisfies

$$\langle \mathbb{P}|H^d(\Omega,\mathbb{R}^d)\rangle = \int_{\Xi} d\mathbb{P}_{\mathrm{tr}} \ \mathcal{C}(\Xi,\mathbb{Z})$$

where Ξ is the transversal, \mathbb{P}_{tr} is the probability on Ξ induced by \mathbb{P} and $\mathcal{C}(\Xi, \mathbb{Z})$ is the space of integer valued continuous functions on Ξ .

Conclusion

- 1. Tilings can be equivalently be represented by Delone sets or point measures.
- 2. The *Hull* allows to give tilings the structure of a *dynamical system* with a transversal.
- 3. This dynamical system can be seen as a *lamination* and admits *finite box decompositions*.
- 4. Such box decompositions gives rise to *inverse limits* of *Branched Oriented Flat Riemannian Manifolds*, an equivalent description.
- 5. Such inverse limit gives the *longitudinal Homology* and *Cohomology* groups of this tiling space. In maximum degree, they give the family of *invariant measures* and the *Gap Labelling Theorem*.