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I - Why Revisiting Transport ?

• It is a very old problem
Boltzmann (1872-80) for classical systems;
Drude (1900) for electrons.

• It is treated in textbooks: phenomenology, pertur-
bation theory, numerical calculations.
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I.1)- Motivations

Conceptual Difficulties

1. No mathematically rigorous proof of the Kubo
formulæ for transport coefficients.
( However substantial progress for classical systems (Lebowitz’s school)

and for quantum ones (Pillet-Jaksic, Fröhlich et. al.) ).

2. Low temperature effects are difficult to describe
ex. : Mott’s variable range hopping
(see e.g. Efros & Schklovsky)

3. Aperiodic materials escape Bloch theory : need for
a more systematic treatment
(ex. : quasicrystals).

4. Aperiodic media exhibit anomalous quantum diffu-
sion
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Transport is complex

• Thermodynamic quantities are much easier to
measure: experiments are cleaner, easier to control.
Ex. : heat capacity, magnetic susceptibility,
structure factors... .
But they do not separate various mechanisms.

• Transport measurements are mostly indirect:
harder to interpret (especially at low temperature).
Too many mechanisms occur at once.
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Few mechanisms

1. For metals, σ(T) increases as temperature decreases
�

σ(T)
T↓0
∼ T−2, (Fermi liquid theory).

2. For a thermally activated process
�

σ(T)
T↓0
∼ e−∆/T (If a gap holds at Fermi level).

3. For weakly disordered systems
�

σ(T)
T↓0
→ σ(0) > 0 (residual conductivity).

4. For strongly disordered systems in 3D
�

σ(T)
T↓0
∼ e−(T0/T)1/4

(variable range hopping).
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I.2)- Mott’s variable range hopping
N. Mott, (1968).

B. Shklovskii, A. L. Effros, Electronic Properties of Doped Semiconductors,
Springer-Verlag, Berlin, (1984).
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• Strongly localized regime, dimension d

• Low electronic DOS, Low temperature
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• Absorption-emission of a phonon of energy ε

Prob ∝ e−ε/kBT

• Tunnelling probability at distance r

Prob ∝ e−r/ξ

• Density of state at Fermi level nF ,

εnF rd ≈ 1

• Optimizing, the conductivity satisfies

σ ∝ e−(T0/T)1/d+1
Mott’s law

• Optimal energy εopt ∼ Td/(d+1) � T

• Optimal distance ropt ∼ 1/T1/(d+1) � ξ
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I.3)- Transport in Quasicrystals
Lectures on Quasicrystals,
F. Hippert & D. Gratias Eds., Editions de Physique, Les Ulis, (1994),

S. Roche, D. Mayou and G. Trambly de Laissardière,
Electronic transport properties of quasicrystals, J. Math. Phys., 38, 1794-1822 (1997).

Quasicrystalline alloys :

Metastable QC’s: AlMn
(Shechtman D., Blech I., Gratias D. & Cahn J., PRL 53, 1951 (1984))

AlMnSi

AlMgT (T = Ag,Cu, Zn)

Defective stable QC’s: AlLiCu (Sainfort-Dubost, (1986))

GaMgZn (Holzen et al., (1989))

High quality QC’s: AlCuT (T = Fe,Ru,Os)
(Hiraga, Zhang, Hirakoyashi, Inoue, (1988); Gurnan et al., Inoue et al., (1989);

Y. Calvayrac et al., (1990))

“Perfect” QC’s: AlPdMn

AlPdRe
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For Quasicrystals

1. Al, Fe, Cu, Pd are very good metals : why is the
conductivity of quasicrystalline alloys so low ?
Why is it decreasing ?

2. At high enough temperature

σ ∝ Tγ 1 < γ < 1.5

There is a new mechanism here!

3. At low temperature for Al70.5Pd22Mn7.5,

σ ≈ σ(0) > 0

4. At low temperature for Al70.5Pd21Re8.5,

σ ∝ e−(T0/T)1/4
C. Berger et al. (1998)

Is disorder playing any role at very low tempera-
ture ?
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II - Coherent Transport

• Transport before collisions destroys
quantum coherence.

• In aperiodic solids this transport can
be anomalous.
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II.1)- Mathematical Framework

1. Closing suitably the set of translated of the set of
atomic positions leads to the Hull : it is a compact
metrizable space Ω endowed with an R

d-action.

2. An invariant ergodic probability measure P is pro-
vided by the Gibbs state at zero temperature.

3. Observables are random operators A = (Aω)ω∈Ω
acting on the Hilbert space H of quantum states
(such as L2(Rd) for spinless electrons) with:

(a) Covariance : T (a)AωT (a)−1 = Aτ−aω.

(b) ω 7→ Aω is strongly continuous.

4. The trace per unit volume, defined by P, exists:

TP(A) = lim
Λ↑Rd

1

|Λ|
Tr(Aω �Λ) =

∫

Ω

dP(ω)〈x|Aω|x〉

5. Differential: (~∇A)ω = −ı[ ~X,Aω]
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II.2)- Local Exponents

Given a positive measure µ on R:

α±
µ (E) = lim

{

sup
inf

}

ε ↓ 0

ln
∫

E + ε

E − ε
dµ

ln ε

For ∆ a Borel subset of R:

α±
µ (∆) = µ−ess

{

sup
inf

}

E∈∆
α±

µ (E)

1. For all E, α±
µ (E) ≥ 0.

α±
µ (E) ≤ 1 for µ-almost all E.

2. If µ is ac on ∆ then α±
µ (∆) = 1,

if µ is pp on ∆ then α±
µ (∆) = 0.

3. If µ and ν are equivalent measures on ∆, then
α±

µ (E) = α±
ν (E) µ-almost surely.

4. α+
µ coincides with the packing dimension.

α−
µ coincides with the Hausdorff dimension.
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II.3)- Fractal Exponents

For p ∈ R :

D±
µ, ∆(q) = lim

q′→q

1

q′ − 1
lim
ε ↓ 0

{

sup

inf

} ln

(

∫

∆ dµ(E)
{

∫ E + ε
E − ε dµ

}q′−1
)

ln ε

1. D±
µ, ∆(q) is a non decreasing function of q.

2. D±
µ, ∆(q) is not an invariant of the measure class, in

general.

3.(a) If µ is ac on ∆ then D±
µ, ∆(q) = 1.

(b) If µ is pp on ∆ then D±
µ, ∆(q) = 0.
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II.4)- Spectral Exponents

Given a Hamiltonian H = (Hω)ω∈Ω, namely a selfad-
joint observable, we define:

1. The local density of state (LDOS) is the spectral
measure of Hω relative to a vector ϕ ∈ H.

2. The corresponding local exponent is obtained after
maximizing (+) or minimizing (-) over ϕ. It is de-
noted α±

LDOS
. It is P − a. s. independent of ω.

3. The density of states (DOS) as the measure defined
by

∫

dNP(E)f (E) = TP(f (H))

4. The local exponent associated with the DOS is de-
noted by α±

DOS
.

5. Inequality : α±
LDOS

(∆) ≤ α±
DOS

(∆) .

6. The fractal exponents for the LDOS are defined in
the same way, provided we consider the average over
ω before taking the logarithm and the limit ε ↓ 0.
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II.5)- Transport Exponents

1. For ∆ ⊂ R Borel, let P∆, ω be the corresponding
spectral projection of Hω. Set:

~Xω(t) = eıtHω ~X e−ıtHω

2. The averaged spread of a typical wave packet with
energy in ∆ is measured by:

L
(p)
∆ (t) =

(
∫ t

0

ds

t

∫

Ω

dP 〈x|P∆, ω| ~Xω(t) − ~X|pP∆, ω|x〉

)1/p

3. Define β = β±
p (∆) similarly so that L

(p)
∆ (t) ∼ tβ.

4. β−
p (∆) ≤ β+

p (∆).

β±
p (∆) are non decreasing in p.

5. Heuristic
β = 0 → absence of diffusion (ex: localization),
β = 1 → ballistic motion (ex: in crystals),
β = 1/2 → quantum diffusion
(ex: weak localization).
β < 1 → subballistic regime,
β < 1/2 → subdiffusive regime
(ex: in quasicrystals).
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II.6)- Inequalities

1. Guarneri’s inequality: (Guarneri ’89, Combes , Last ’96)

β±
p (∆) ≥

α±
LDOS

(∆)

d

2. BGT inequalities: (Barbaroux, Germinet, Tcheremchantsev ’00)

β±
p (∆) ≥

1

d
D±

LDOS,∆(
d

d + p
)

3. Heuristics:

(a) ac spectrum implies β ≥ 1/d.

(b) ac spectrum implies ballistic motion in d = 1

(c) ac spectrum is compatible with quantum diffu-
sion in d = 2. This is expected in weak localiza-
tion regime.

(d) ac spectrum is compatible with subdiffusion for
d ≥ 3.
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II.7)- Results in Models

1. For Jacobi matrices (1D chains), the position oper-
ator is defined by the spectral measure (orthogonal
polynomials) ⇒ transport exponents should be de-
fined through the spectral ones.

2. For Jacobi matrices of a Julia set, with µ the σ-
balanced measure (Barbaroux, Schulz-Baldes ’99)

β+
p ≤ Dµ(1 − p) for all 0 ≤ p ≤ 2

3. If H1, · · · , Hd are Jacobi matrices, η1, · · · , ηd are
positive numbers and if

H(η) =

d
∑

j=1

ηj 1 ⊗ · · · ⊗ Hj ⊗ · · · ⊗ 1

then (Schulz-Baldes, Bellissard ’00)
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β+
p (H(η)) = max

j
β+
p (Hj)

αLDOS(H
(η)) = min{1,

∑

j

αLDOS(Hj)}

for a.e. η. In addition if
∑

j αLDOS(Hj) > 1, H(η)

has a.c. spectrum.

4. For any ε > 0, there is a Jacobi matix H0 such that
if Hj = H0, ∀j, H(η) has a.c. spectrum for d ≥ 3
and spectral exponent ≤ 1/d − ε for a.e. η.
(Schulz-Baldes, Bellissard ’00)

5. There is a class of models of Jacobi matrices on an
infinite dimensional hypercube with a.c. spectrum
and vanishing transport exponents.
(Vidal, Mosseri, Bellissard ’99)
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III - Dissipative Transport

• Transport beyond the collision time.

• Several mechanisms of dissipation may be consid-
ered: electron-electron collisions, interactions with
acoustic phonons or optical ones. etc..
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III.1)- The Drude Model

Assumptions :

1. Electrons in a metal are free classical particles of
mass m∗ and charge q.

2. They experience collisions at random Poissonnian
times · · · < tn < tn+1 < · · ·, with average relax-
ation time τrel.

3. If pn is the electron momentum between times tn
and tn+1, then the pn+1’s is updated according to
the Maxwell distribution at temperature T .

Then the conductivity follows the Drude formula

σ =
q2n

m∗
τrel
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III.2)- The Kubo Formula
(Bellissard, Schulz-Baldes ’95)

1. Replace the classical dynamics by the quantum one
electron dynamic in the aperiodic solid.

2. At each collision, force the density matrix to come
back to equilibrium. (Relaxation time Approxima-
tion or RTA).

3. There is then one relaxation time τrel. The electric
conductivity is then given by Kubo’s formula:

σi,j =
q2

~
TP

(

∂j

(

1

1 + eβ(H−µ)

)

1

1/τrel − LH
∂iH

)

Here q is the charge of the carriers, β = 1/kBT , µ
is the chemical potential and LH = ı/~ [H, .].

4. For the Hilbert-Schmidt inner product defined by
TP, LH is anti-selfadjoint. Thus as τrel ↑ ∞, the
resolvent of LH is evaluated closer to the spectrum
near 0.
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III.3)- The Anomalous Drude Formula
(Mayou ’92, Sire ’93, Bellissard, Schulz-Baldes ’95)

σ
τrel ↑ ∞
∼ τ 2βF − 1

rel

where βF is the transport exponent β2(EF ) evaluated
at Fermi level.

1. In practice, τrel ↑ ∞ as T ↓ 0.

2. If βF = 1 (ballistic motion), σ ∼ τrel (Drude). The
system behaves as a conductor.

3. For 1/2 < βF ≤ 1, σ ↑ ∞ as T ↓ 0:the system
behaves as a conductor.

4. If βF = 1/2 (quantum diffusion), σ ∼ const.:
residual conductivity at low temperature.

5. For 0 ≤ βF < 1/2, σ ↓ 0 as T ↓ 0: the system
behaves as an insulator.
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III.4)- Time Scales

1. The phonon mediated electron-electron interaction
gives τrel ∼ T−2 (Fermi liquid theory).

2. Electron interaction with acoustic phonons, gives
τrel ∼ T−5 (Bloch theory).

3. Quantum chaos in the one electron spectrum makes
the Hamiltonian looks like a random matrix like in
weak localization regime (Bellissard, Magnen, Rivasseau, ‘02).
This leads to a conductivity independent of the tem-
perature.

4. Optical phonons are important in aperiodic system.
They produce a band similar to the spectrum of a
random matrix (quantum chaos).
The influence of optical phonons on the relaxation
time is unknown.
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5. In the conducting regime, the shortest dissipative
time scale dominates, favoring Fermi liquid theory:

σ
T↓0
∼ T−2(2βF−1) if βF > 1/2,

6. In the insulator regime, the longest dissipative time
scale dominates. Thus Bloch theory is likely to dom-
inate

σ
T↓0
∼ T 5(1−2βF) if βF < 1/2,

7. If there is an infinite number of time scales the low
temperature behaviour is not a scaling law: for ex-
ample in the Mott variable range hopping regime.
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III.5)- Conductivity in Quasicrystals
S. Roche & Fujiwara, Phys. Rev., B58, 11338-11396, (1998).

1. LMTO ab initio computations for i−AlCuCo give
βF ≈ 0, 375 < 1/2. Thus Bloch’s law dominates
giving

σ
T↓0
∼ T 5/4 if βF < 1/2,

compatible with experimental results !

2. If disorder dominates at low temperature

(a) for AlPdMn, the occurence of a residual con-
ductivity implies weak localisation. Thus there
should be a high density of defects or impurities

(b) AlPdRe behaves like an insulator with Mott’s
variable range hopping conductivity. This is a
sign for strong localization, implying a low den-
sity of defects or impurities.

This seems with these materials being structurally
similar and samples being high quality.
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III.6)- Quantum Chaos in Quasicrystals
J.B. & D.Mayou, speculations ’99

1. Numerical simulations performed for the octagonal
lattice exhibit level repulsion and Wigner-Dyson’s
distribution (M. Schreiber, U. Grimm, R. A. Roemer, J. -X. Zhong, Comp.

Phys. Commun., 121-122, 499-501 (1999).).

2. For a sample of size L in dimension d :
Mean level spacing ∆ ∼ L−d.
Thus Heisenberg time τH ∼ Ld.

3. Time necessary to reach the boundary (Thouless)

L ∼ τ
βF
Th . Thus τ

βF
Th ∼ L1/β.

4. Hence :

(a) if βF > 1/d level repulsion dominates implying
- quantum diffusion 〈x2〉 ∼ t
- residual conductivity
- absolutely continuous spectrum at Fermi level;

(b) if βF < 1/d level repulsion can be ignored and
- anomalous diffusion dominates 〈x2〉 ∼ t2βF

- insulating behaviour with scaling law
- singular continuous spectrum near Fermi level.
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III.7)- Beyond the RTA

1. At low temperature, the RTA is invalid. There is a
spectrum of relaxation times.

2. A kinetic model of quantum jumps has been pro-
posed leading to the validity of linear response.
(Spehner, Bellissard ’00, Bellissard, Rebolledo, Spehner, von Waldenfels ’00).

3. The current admits two parts : the coherent one,
induced by ~J = ı[ ~X,H ], and a dissipative one in-
cluding other effects like phonon drag, etc.

4. The Kubo formula becomes more involved and can
be decomposed into five contributions in general.

5. Applied to strongly localized electrons, this formal-
ism gives rise to a justification of the Abrahams and
Miller random resistor network model,
(Spehner, Thesis ’00, Spehner, Bellissard, ’00)
describing the Mott variable range hopping.
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IV)- Conclusions :

1. The electron dynamics in an aperiodic solid can be described
by using random operators and rules of Non Commutative
Calculus.

2. The quantum evolution of a typical wave packet leads to ano-
malous diffusion, described through various spectral and trans-
port exponents.

3. These exponents are related by inequalities that allow subdif-
fusion together with absolutely continuous spectrum for d ≥ 3.

4. Dissipative mechanisms, such as electron-phonon interaction,
may be described through kinetic models, generalizing the
Drude model.

5. The interplay between coherent and dissipative transport is
revealed at low temperature. Anomalous diffusion then leads
to an anomalous Drude formula within the RTA.

6. The anomalous Drude formula may explain the behaviour of
quasicrystals.

7. Beyond the RTA, the kinetic models are still valid but involve
more conditions. One consequence is the justification of the
Abraham-Miller random resistor network which usually leads
to a better understanding of the Mott variable range hopping
conductivity, in strongly disordered systems.


