TRANSVERSEGEOMETRY

br
 TILINGSPACES

Jean BELLISSARD

Sponsoring

Georgialnstiture Tech

Georgia Institute of Technology, Atlanta
School of Mathematics \& School of Physics
e-mail: jeanbel@math.gatech.edu
Collaboration:
J. PEARSON (Gatech, Atlanta, GA)
I. PALMER (Gatech, Atlanta, GA)
M. MARCOLLI (Caltech, Pasadena, CA)
K. REIHANI (U. Kansas, Lawrence, KS)

Mini-course delivered at SISSA, Trieste, Italy on Wednesday May 18 and Friday May 20, 2011

The speaker thanks the organizers especially Gianfausto Dell'Antonio and Ludwik Da̧browski for giving him the opportunity to give a synthesis on this growing set of research

Main References

I. Palmer,

Noncommutative Geometry and Compact Metric Spaces,
PhD Thesis, Georgia Institute of Technology, May 2010
J. Pearson, J. Bellissard,

Noncommutative Riemannian Geometry and Diffusion on Ultrametric Cantor Sets, J. Noncommutative Geometry, 3, (2009), 447-480.
A. Connes,

Noncommutative Geometry,
Academic Press, 1994.
G. Michon,

Les Cantors réguliers,
C. R. Acad. Sci. Paris Sér. I Math., (19), 300, (1985) 673-675.
K. Falconer,

Fractal Geometry: Mathematical Foundations and Applications,
John Wiley and Sons 1990.
M. Rieffel, Compact quantum metrics spaces, in Operator Algebras, Quantization, and Noncommutative Geometry: a Centemnial Celebration Honoring Joln von Neummamn and Marshall H. Stone (Doran, R. S. and Kadison, R. V., eds.)
vol. 365 of Contemporary Mathematics, AMS, 2004, pp. 315-330.
J. Bellissard, M. Marcolli, K. Reifani,

Dynamical Systems on Spectral Metric Spaces, arXiv: 1008.4617, Aug. 302010.

Content

1. Lecture I: The Fibonacci Tiling
2. Lecture II: Ultrametric Cantor Sets
(a) Michon's Trees
(b) Spectral Triples
(c) ζ-function and Metric Measure
(d) The Laplace-Beltrami Operator
(e) To conclude
3. Lecture III: Spectral Dynamical Systems
(a) Spectral Triples and Dynamics
(b) The Basic Construction
(c) The Metric Bundle
(d) Conclusion and Remarks

Lecture I - The Fibonacci Tiling

The Fibonacci Sequence

The Fibonacci sequence is an infinite word generated by the substitution

$$
\hat{\sigma}: \quad a \longrightarrow a b, \quad b \longrightarrow a
$$

Iterating gives

$$
\underbrace{a}_{a_{0}} \rightarrow \underbrace{a b}_{a_{1}} \rightarrow \underbrace{a b \mid a}_{a_{2}=a_{1} a_{0}} \rightarrow \underbrace{a b a \mid a b}_{a_{3}=a_{2} a_{1}} \rightarrow \underbrace{a b a a b \mid a b a}_{a_{4}=a_{3} a_{2}} \rightarrow \underbrace{\text { abaababa|abaab }}_{a_{5}=a_{4} a_{3}}
$$

It can be represented by a $1 D$-tiling if

$$
a \rightarrow[0,1] \quad b \rightarrow[0, \sigma] \quad \sigma=\frac{\sqrt{5}-1}{2} \sim .618
$$

The Fibonacci Sequence

- Collared tiles in the Fibonacci tiling -

The Fibonacci Sequence

- The Anderson-Putnam complex for the Fibonacci tiling -

The Fibonacci Sequence

- The substitution map -

The Fibonacci Sequence

Let $\Xi_{n} \subset X_{n}$ be the set of tile endpoints (0-cells). The sequence of complexes $\left(X_{n}\right)_{n \in \mathbb{N}}$ together with the maps $f_{n}: X_{n+1} \mapsto X_{n}$ gives rise to inverse limits

$$
\underset{\leftarrow}{\lim }\left(X_{n}, f_{n}\right)=\Omega \quad \lim _{\leftarrow}\left(\Xi_{n}, f_{n}\right)=\Xi
$$

- The space Ω is compact and is called the Hull.
- It is endowed with an action of \mathbb{R} generated by infinitesimal translation on the X_{n} 's
- The space Ξ is a Cantor set and is called the transversal
- Ξ parametrizes a the set of all tilings sharing the same words as the Fibonacci sequence with one tile endpoint at the origin.
- There is a two-to one correspondence between Ξ and the window.

The Fibonacci Sequence

The Fibonacci Sequence: Groupoid

Γ_{Ξ} is the set of pairs (ξ, a) with $\xi \in \Xi$ and $a \in \mathcal{L}_{\xi}$.
It is a locally compact groupoid when endowed with the following structure

- Units: Ξ,
- Range and Source maps: $r(\xi, a)=\xi, s(\xi, a)=\mathrm{T}^{-a} \xi$
- Composition: $(\xi, a) \circ\left(\mathrm{T}^{-a} \xi, b\right)=(\xi, a+b)$
- Inverse: $(\xi, a)^{-1}=\left(\mathrm{T}^{-a} \xi,-a\right)$
- Topology: induced by $\Xi \times \mathbb{R}$

Lecture II -Ultrametric Cantor Sets

I - Michon's Trees

G. Michon, "Les Cantors réguliers", C. R. Acad. Sci. Paris Sér. I Math., (19), 300, (1985) 673-675.

I.1)- Cantor sets

I.1)- Cantor sets

The triadic Cantor set

Definition A Cantor set is a compact, completely disconnected set without isolated points

Definition A Cantor set is a compact, completely disconnected set without isolated points

Theorem Any Cantor set is homeomorphic to $\{0,1\}^{\mathbb{N}}$.
L. Brouwer, "On the structure of perfect sets of points", Proc. Akad. Amsterdam, 12, (1910), 785-794.

Definition A Cantor set is a compact, completely disconnected set without isolated points

Theorem Any Cantor set is homeomorphic to $\{0,1\}^{\mathbb{N}}$.
L. Brouwer, "On the structure of perfect sets of points", Proc. Akad. Amsterdam, 12, (1910), 785-794.

Hence without extra structure there is only one Cantor set.

I.2) - Metrics

Definition Let X be a set. A metric d on X is a mapd: $X \times X \mapsto \mathbb{R}_{+}$ such that, for all $x, y, z \in X$
(i) $d(x, y)=0$ if and only if $x=y$,
(ii) $d(x, y)=d(y, x)$,
(iii) $d(x, y) \leq d(x, z)+d(z, y)$.

I.2) - Metrics

Definition Let X be a set. A metric d on X is a mapd: $X \times X \mapsto \mathbb{R}_{+}$ such that, for all $x, y, z \in X$
(i) $d(x, y)=0$ if and only if $x=y$,
(ii) $d(x, y)=d(y, x)$,
(iii) $d(x, y) \leq d(x, z)+d(z, y)$.

Definition A metric d on a set X is an ultrametric if it satisfies

$$
d(x, y) \leq \max \{d(x, z), d(z, y)\}
$$

for all family x, y, z of points of C.

Given (C, d) a metric space, for $\epsilon>0$ let $\stackrel{\epsilon}{\sim}$ be the equivalence relation defined by

$$
x \stackrel{\epsilon}{\sim} y \quad \Leftrightarrow \quad \exists x_{0}=x, x_{1}, \cdots, x_{n-1}, x_{n}=y \quad d\left(x_{k-1}, x_{k}\right)<\epsilon
$$

Given (C, d) a metric space, for $\epsilon>0$ let $\stackrel{\epsilon}{\sim}$ be the equivalence relation defined by

$$
x \stackrel{\epsilon}{\sim} y \quad \Leftrightarrow \quad \exists x_{0}=x, x_{1}, \cdots, x_{n-1}, x_{n}=y \quad d\left(x_{k-1}, x_{k}\right)<\epsilon
$$

Theorem Let (C, d) be a metric Cantor set. Then there is a sequence $\epsilon_{1}>\epsilon_{2}>\cdots \epsilon_{n}>\cdots \geq 0$ converging to 0 , such that $\stackrel{\mathcal{E}}{\sim}=\stackrel{\epsilon_{n}}{\sim}$ whenever $\epsilon_{n} \geq \epsilon>\epsilon_{n+1}$.

Given (C, d) a metric space, for $\epsilon>0$ let $\stackrel{\epsilon}{\sim}$ be the equivalence relation defined by

$$
x \stackrel{\epsilon}{\sim} y \quad \Leftrightarrow \quad \exists x_{0}=x, x_{1}, \cdots, x_{n-1}, x_{n}=y \quad d\left(x_{k-1}, x_{k}\right)<\epsilon
$$

Theorem Let (C, d) be a metric Cantor set. Then there is a sequence $\epsilon_{1}>\epsilon_{2}>\cdots \epsilon_{n}>\cdots \geq 0$ converging to 0 , such that $\stackrel{\mathcal{E}}{\sim}=\stackrel{\epsilon_{n}}{\sim}$ whenever $\epsilon_{n} \geq \epsilon>\epsilon_{n+1}$.
For each $\epsilon>0$ there is a finite number of equivalence classes and each of them is close and open.

Given (C, d) a metric space, for $\epsilon>0$ let $\stackrel{\epsilon}{\sim}$ be the equivalence relation defined by

$$
x \stackrel{\epsilon}{\sim} y \quad \Leftrightarrow \quad \exists x_{0}=x, x_{1}, \cdots, x_{n-1}, x_{n}=y \quad d\left(x_{k-1}, x_{k}\right)<\epsilon
$$

Theorem Let (C, d) be a metric Cantor set. Then there is a sequence $\epsilon_{1}>\epsilon_{2}>\cdots \epsilon_{n}>\cdots \geq 0$ converging to 0 , such that $\stackrel{\mathcal{E}}{\sim}=\stackrel{\epsilon_{n}}{\sim}$ whenever $\epsilon_{n} \geq \epsilon>\epsilon_{n+1}$.
For each $\epsilon>0$ there is a finite number of equivalence classes and each of them is close and open.
Moreover, the sequence $[x]_{e_{n}}$ of clopen sets converges to $\{x\}$ as $n \rightarrow \infty$.

I.3)- Michon's graph

I.3)- Michon's graph

Set

- $\mathscr{V}_{0}=\{C\}$ (called the root),

I.3) Midichon's graph

Set

- $\mathscr{V}_{0}=\{C\}$ (called the root),
- for $n \geq 1, \mathscr{V}_{n}=\left\{[x]_{e_{n}} ; x \in C\right\}$,

I.3)- Michon's graph

Set

- $\mathscr{V}_{0}=\{C\}$ (called the root),
- for $n \geq 1, \mathscr{V}_{n}=\left\{[x]_{e_{n}} ; x \in C\right\}$,
- \mathscr{V} is the disjoint union of the \mathscr{V}_{n} 's,
1.3)- Michon's graph

Set

- $\mathscr{V}_{0}=\{C\}$ (called the root),
- for $n \geq 1, \mathscr{V}_{n}=\left\{[x]_{\epsilon_{n}} ; x \in C\right\}$,
- \mathscr{V} is the disjoint union of the \mathscr{V}_{n} 's,
- $\mathscr{E}=\left\{\left(v, v^{\prime}\right) \in \mathscr{V} \times \mathscr{V} ; \exists n \in \mathbb{N}, v \in \mathscr{V}_{n}, v^{\prime} \in \mathscr{V}_{n+1}, v^{\prime} \subset v\right\}$,
1.3)- Michon's graph

Set

- $\mathscr{V}_{0}=\{C\}$ (called the root),
- for $n \geq 1, \mathscr{V}_{n}=\left\{[x]_{\epsilon_{n}} ; x \in C\right\}$,
- \mathscr{V} is the disjoint union of the \mathscr{V}_{n} 's,
- $\mathscr{E}=\left\{\left(v, v^{\prime}\right) \in \mathscr{V} \times \mathscr{V} ; \exists n \in \mathbb{N}, v \in \mathscr{V}_{n}, v^{\prime} \in \mathscr{V}_{n+1}, v^{\prime} \subset v\right\}$,
- $\delta(v)=\operatorname{diam}\{v\}$.
1.3)- Michon's graph

Set

- $\mathscr{V}_{0}=\{C\}$ (called the root),
- for $n \geq 1, \mathscr{V}_{n}=\left\{[x]_{\epsilon_{n}} ; x \in C\right\}$,
- \mathscr{V} is the disjoint union of the \mathscr{V}_{n} 's,
- $\mathscr{E}=\left\{\left(v, v^{\prime}\right) \in \mathscr{V} \times \mathscr{V} ; \exists n \in \mathbb{N}, v \in \mathscr{V}_{n}, v^{\prime} \in \mathscr{V}_{n+1}, v^{\prime} \subset v\right\}$,
- $\delta(v)=\operatorname{diam}\{v\}$.

The family $\mathscr{T}=(C, \mathscr{V}, \mathscr{E}, \delta)$ defines a weighted rooted tree, with root C, set of vertices \mathscr{V}, set of edges \mathscr{E} and weight δ

$$
\begin{gathered}
\mathrm{C}=\text { root } \\
\boldsymbol{\varepsilon}_{1}=1 / 3
\end{gathered}
$$

The Michon tree for the triadic Cantor set

The Michon tree for the triadic ring $\mathbb{Z}(3)$

The Michon tree for the triadic ring $\mathbb{Z}(3)$

The Michon tree for the triadic ring $\mathbb{Z}(3)$

The Michon tree for the triadic ring $\mathbb{Z}(3)$

I.4)- The boundary of a triee

I.4)-The boundary of a tree

Let $\mathscr{T}=(0, \mathscr{V}, \mathscr{E})$ be a rooted tree. It will be called Cantorian if

1.4)- The boundary of a tree

Let $\mathscr{T}=(0, \mathscr{V}, \mathscr{E})$ be a rooted tree. It will be called Cantorian if

- Each vertex admits one descendant with more than one child

1.4)- The boundary of a tree

Let $\mathscr{T}=(0, \mathscr{V}, \mathscr{E})$ be a rooted tree. It will be called Cantorian if

- Each vertex admits one descendant with more than one child
- Each vertex has only a finite number of children.
1.4)-The boundary of a tree

Let $\mathscr{T}=(0, \mathscr{V}, \mathscr{E})$ be a rooted tree. It will be called Cantorian if

- Each vertex admits one descendant with more than one child
- Each vertex has only a finite number of children.

Then $\partial \mathscr{T}$ is the set of infinite path starting form the root. If $v \in \mathscr{V}$ then $[v]$ will denote the set of such paths passing through v
1.4)-The boundary of a tree

Let $\mathscr{T}=(0, \mathscr{V}, \mathscr{E})$ be a rooted tree. It will be called Cantorian if

- Each vertex admits one descendant with more than one child
- Each vertex has only a finite number of children.

Then $\partial \mathscr{T}$ is the set of infinite path starting form the root. If $v \in \mathscr{V}$ then $[v]$ will denote the set of such paths passing through v

Theorem The family $\{[v] ; v \in \mathscr{V}\}$ is the basis of a topology making $\partial \mathscr{T}$ a Cantor set.

A weight on \mathscr{T} is a map $\delta: \mathscr{V} \mapsto \mathbb{R}_{+}$such that

A weight on \mathscr{T} is a map $\delta: \mathscr{V} \mapsto \mathbb{R}_{+}$such that

- If $w \in \mathscr{V}$ is a child of v then $\delta(v) \geq \delta(w)$,

A weight on \mathscr{T} is a map $\delta: \mathscr{V} \mapsto \mathbb{R}_{+}$such that

- If $w \in \mathscr{V}$ is a child of v then $\delta(v) \geq \delta(w)$,
- If $v \in \mathscr{V}$ has only one child w then $\delta(v)=\delta(w)$,

A weight on \mathscr{T} is a map $\delta: \mathscr{V} \mapsto \mathbb{R}_{+}$such that

- If $w \in \mathscr{V}$ is a child of v then $\delta(v) \geq \delta(w)$,
- If $v \in \mathscr{V}$ has only one child w then $\delta(v)=\delta(w)$,
- If v_{n} is the decreasing sequence of vertices along an infinite path $x \in \partial \mathscr{T}$ then $\lim _{n \rightarrow \infty} \delta\left(v_{n}\right)=0$.

A weight on \mathscr{T} is a map $\delta: \mathscr{V} \mapsto \mathbb{R}_{+}$such that

- If $w \in \mathscr{V}$ is a child of v then $\delta(v) \geq \delta(w)$,
- If $v \in \mathscr{V}$ has only one child w then $\delta(v)=\delta(w)$,
- If v_{n} is the decreasing sequence of vertices along an infinite path $x \in \partial \mathscr{T}$ then $\lim _{n \rightarrow \infty} \delta\left(v_{n}\right)=0$.

Theorem If \mathscr{T} is a Cantorian rooted tree with a weight δ, then $\partial \mathscr{T}$ admits a canonical ultrametric d_{δ} defined by.

$$
d_{\delta}(x, y)=\delta([x \wedge y])
$$

where $[x \wedge y]$ is the least common ancestor of x and y.

The least common ancestor of x and y

Theorem Let \mathscr{T} be a Cantorian rooted tree with weight δ. Then if $v \in \mathscr{V}, \delta(v)$ coincides with the diameter of $[v]$ for the canonical metric.

Theorem Let \mathscr{T} be a Cantorian rooted tree with weight δ. Then if $v \in \mathscr{V}, \delta(v)$ coincides with the diameter of $[v]$ for the canonical metric.
Conversely, if \mathscr{T} is the Michon tree of a metric Cantor set (C, d), with weight $\delta(v)=\operatorname{diam}(v)$, then there is a contracting homeomorphism from (C, d) onto $\left(\partial \mathscr{T}, d_{\delta}\right)$ and d_{δ} is the smallest ultrametric dominating d.

Theorem Let \mathscr{T} be a Cantorian rooted tree with weight δ. Then if $v \in \mathscr{V}, \delta(v)$ coincides with the diameter of $[v]$ for the canonical metric.
Conversely, if \mathscr{T} is the Michon tree of a metric Cantor set (C, d), with weight $\delta(v)=\operatorname{diam}(v)$, then there is a contracting homeomorphism from (C, d) onto $\left(\partial \mathscr{T}, d_{\delta}\right)$ and d_{δ} is the smallest ultrametric dominating d.

In particular, if d is an ultrametric, then $d=d_{\delta}$ and the homeomorphism is an isometry.

Theorem Let \mathscr{T} be a Cantorian rooted tree with weight δ. Then if $v \in \mathscr{V}, \delta(v)$ coincides with the diameter of $[v]$ for the canonical metric.
Conversely, if \mathscr{T} is the Michon tree of a metric Cantor set (C, d), with weight $\delta(v)=\operatorname{diam}(v)$, then there is a contracting homeomorphism from (C, d) onto $\left(\partial \mathscr{T}, d_{\delta}\right)$ and d_{δ} is the smallest ultrametric dominating d.

In particular, if d is an ultrametric, then $d=d_{\delta}$ and the homeomorphism is an isometry.

This gives a representation of all ultrametric Cantor sets together with a parametrization of the space of ultrametrics.

II - Spectral Triples

A. Conses, Noncommutative Geometry, Academic Press, 1994.

II.1)-Spectral Triples

II.1)-Spectral Triples

A spectral triple is a family $(\mathcal{H}, \mathcal{A}, D)$, such that

II.1)-Spectral Triples

A spectral triple is a family $(\mathcal{H}, \mathcal{A}, D)$, such that

- \mathcal{H} is a Hilbert space

II.1)-Spectral Triples

A spectral triple is a family $(\mathcal{H}, \mathcal{A}, D)$, such that

- \mathcal{H} is a Hilbert space
- \mathcal{A} is a *-algebra invariant by holomorphic functional calculus, with a representation π into \mathcal{H} by bounded operators

II.1)-Spectral Triples

A spectral triple is a family $(\mathcal{H}, \mathcal{A}, D)$, such that

- \mathcal{H} is a Hilbert space
- \mathcal{A} is a *-algebra invariant by holomorphic functional calculus, with a representation π into \mathcal{H} by bounded operators
- D is a self-adjoint operator on \mathcal{H} with compact resolvent such that $[D, \pi(f)] \in \mathcal{B}(\mathcal{H})$ is a bounded operator for all $f \in \mathcal{A}$.

II.1)- Spectral Triples

A spectral triple is a family $(\mathcal{H}, \mathcal{A}, D)$, such that

- \mathcal{H} is a Hilbert space
- \mathcal{A} is a *-algebra invariant by holomorphic functional calculus, with a representation π into \mathcal{H} by bounded operators
- D is a self-adjoint operator on \mathcal{H} with compact resolvent such that $[D, \pi(f)] \in \mathcal{B}(\mathcal{H})$ is a bounded operator for all $f \in \mathcal{A}$.
- $(\mathcal{H}, \mathcal{A}, D)$ is called even if there is $G \in \mathcal{B}(\mathcal{H})$ such that

II.1)- Spectral Triples

A spectral triple is a family $(\mathcal{H}, \mathcal{A}, D)$, such that

- \mathcal{H} is a Hilbert space
- \mathcal{A} is a *-algebra invariant by holomorphic functional calculus, with a representation π into \mathcal{H} by bounded operators
- D is a self-adjoint operator on \mathcal{H} with compact resolvent such that $[D, \pi(f)] \in \mathcal{B}(\mathcal{H})$ is a bounded operator for all $f \in \mathcal{A}$.
- $(\mathcal{H}, \mathcal{A}, D)$ is called even if there is $G \in \mathcal{B}(\mathcal{H})$ such that
$-G=G^{*}=G^{-1}$

II.1)- Spectral Triples

A spectral triple is a family $(\mathcal{H}, \mathcal{A}, D)$, such that

- \mathcal{H} is a Hilbert space
- \mathcal{A} is a *-algebra invariant by holomorphic functional calculus, with a representation π into \mathcal{H} by bounded operators
- D is a self-adjoint operator on \mathcal{H} with compact resolvent such that $[D, \pi(f)] \in \mathcal{B}(\mathcal{H})$ is a bounded operator for all $f \in \mathcal{A}$.
- $(\mathcal{H}, \mathcal{A}, D)$ is called even if there is $G \in \mathcal{B}(\mathcal{H})$ such that

$$
\begin{aligned}
& -G=G^{*}=G^{-1} \\
& -[G, \pi(f)]=0 \text { for } f \in \mathcal{A}
\end{aligned}
$$

II.1)- Spectral Triples

A spectral triple is a family $(\mathcal{H}, \mathcal{A}, D)$, such that

- \mathcal{H} is a Hilbert space
- \mathcal{A} is a *-algebra invariant by holomorphic functional calculus, with a representation π into \mathcal{H} by bounded operators
- D is a self-adjoint operator on \mathcal{H} with compact resolvent such that $[D, \pi(f)] \in \mathcal{B}(\mathcal{H})$ is a bounded operator for all $f \in \mathcal{A}$.
- $(\mathcal{H}, \mathcal{A}, D)$ is called even if there is $G \in \mathcal{B}(\mathcal{H})$ such that
$-G=G^{*}=G^{-1}$
$-[G, \pi(f)]=0$ for $f \in \mathcal{A}$
$-G D=-D G$

II.2) -The spectral triple of an ultrametric Cantor set

II.2) - The spectral triple of an ultrametric Cantor set

Let $\mathscr{T}=(C, \mathscr{V}, \mathscr{E}, \delta)$ be the reduced Michon tree associated with an ultrametric Cantor set (C, d). Then

II.2) - The spectral triple of an ultrametric Cantor set

Let $\mathscr{T}=(C, \mathscr{V}, \mathscr{E}, \delta)$ be the reduced Michon tree associated with an ultrametric Cantor set (C, d). Then

- $\mathcal{H}=\ell^{2}(\mathscr{V}) \otimes \mathbb{C}^{2}$: any $\psi \in \mathcal{H}$ will be seen as a sequence $\left(\psi_{v}\right)_{v \in \mathscr{V}}$ with $\psi_{v} \in \mathbb{C}^{2}$

II.2) The spectral triple of an ultrametric Cantor set

Let $\mathscr{T}=(C, \mathscr{V}, \mathscr{E}, \delta)$ be the reduced Michon tree associated with an ultrametric Cantor set (C, d). Then

- $\mathcal{H}=\ell^{2}(\mathscr{V}) \otimes \mathbb{C}^{2}$: any $\psi \in \mathcal{H}$ will be seen as a sequence $\left(\psi_{v}\right)_{v \in \mathscr{V}}$ with $\psi_{v} \in \mathbb{C}^{2}$
- G, D are defined by

$$
(D \psi)_{v}=\frac{1}{\delta(v)}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \psi_{v} \quad(G \psi)_{v}=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right] \psi_{v}
$$

so that they anticommute.

II.2) -The spectral triple of an ultrametric Cantor set

Let $\mathscr{T}=(C, \mathscr{V}, \mathscr{E}, \delta)$ be the reduced Michon tree associated with an ultrametric Cantor set (C, d). Then

- $\mathcal{H}=\ell^{2}(\mathscr{V}) \otimes \mathbb{C}^{2}$: any $\psi \in \mathcal{H}$ will be seen as a sequence $\left(\psi_{v}\right)_{v \in \mathscr{V}}$ with $\psi_{v} \in \mathbb{C}^{2}$
- G, D are defined by

$$
(D \psi)_{v}=\frac{1}{\delta(v)}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \psi_{v} \quad(G \psi)_{v}=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right] \psi_{v}
$$

so that they anticommute.

- $\mathcal{A}=C_{\text {Lip }}(C)$ is the space of Lipshitz continuous functions on (C, d)

II.3)-Choices

II.3)- Choices

The tree \mathscr{T} is reduced, meaning that only the vertices with more than one child are considered.

II.3)- Choices

The tree \mathscr{T} is reduced, meaning that only the vertices with more than one child are considered.

A choice will be a function $\tau: \mathscr{V} \mapsto C \times C$ such that if $\tau(v)=(x, y)$ then

II.3)- Choices

The tree \mathscr{T} is reduced, meaning that only the vertices with more than one child are considered.

A choice will be a function $\tau: \mathscr{V} \mapsto C \times C$ such that if $\tau(v)=(x, y)$ then

- $x, y \in[v]$

II.3)- Choices

The tree \mathscr{T} is reduced, meaning that only the vertices with more than one child are considered.

A choice will be a function $\tau: \mathscr{V} \mapsto C \times C$ such that if $\tau(v)=(x, y)$ then

- $x, y \in[v]$
- $d(x, y)=\delta(v)=\operatorname{diam}([v])$

II.3)-Choices

The tree \mathscr{T} is reduced, meaning that only the vertices with more than one child are considered.

A choice will be a function $\tau: \mathscr{V} \mapsto C \times C$ such that if $\tau(v)=(x, y)$ then

- $x, y \in[v]$
- $d(x, y)=\delta(v)=\operatorname{diam}([v])$

Let $\mathrm{Ch}(v)$ be the set of children of v. Consequently, the set $\Upsilon(C)$ of choices is given by

$$
\Upsilon(C)=\prod_{v \in \mathscr{V}} \Upsilon_{v} \quad \Upsilon_{v}=\bigsqcup_{w \neq w^{\prime} \in \operatorname{Ch}(v)}[w] \times\left[w^{\prime}\right]
$$

The set \mathscr{V} of vertices can be seen as a coarse-grained approximation of the Cantor set C.

The set \mathscr{V} of vertices can be seen as a coarse-grained approximation of the Cantor set C.

Similarly, the set Υ_{v} can be seen as a coarse-grained approximation the unit tangent vectors at v.

The set \mathscr{V} of vertices can be seen as a coarse-grained approximation of the Cantor set C.

Similarly, the set Υ_{v} can be seen as a coarse-grained approximation the unit tangent vectors at v.

Within this interpretation, the set $\Upsilon(C)$ can be seen as the unit sphere bundle inside the tangent bundle.

II.4)-Representations of \mathcal{A}

II.4)- Representations of \mathcal{A}

Let $\tau \in \Upsilon(C)$ be a choice. If $v \in \mathscr{V}$ write $\tau(v)=\left(\tau_{+}(v), \tau_{-}(v)\right)$. Then π_{τ} is the representation of $C_{\text {Lip }}(C)$ into \mathcal{H} defined by

II.4)-Representations of \mathcal{A}

Let $\tau \in \Upsilon(C)$ be a choice. If $v \in \mathscr{V}$ write $\tau(v)=\left(\tau_{+}(v), \tau_{-}(v)\right)$. Then π_{τ} is the representation of $C_{\text {Lip }}(C)$ into \mathcal{H} defined by

$$
\left(\pi_{\tau}(f) \psi\right)_{v}=\left[\begin{array}{cc}
f\left(\tau_{+}(v)\right) & 0 \\
0 & f\left(\tau_{-}(v)\right)
\end{array}\right] \psi_{v} \quad f \in C_{\text {Lip }}(C)
$$

II.4)- Representations of \mathcal{A}

Let $\tau \in \Upsilon(C)$ be a choice. If $v \in \mathscr{V}$ write $\tau(v)=\left(\tau_{+}(v), \tau_{-}(v)\right)$. Then π_{τ} is the representation of $C_{\text {Lip }}(C)$ into \mathcal{H} defined by

$$
\left(\pi_{\tau}(f) \psi\right)_{v}=\left[\begin{array}{cc}
f\left(\tau_{+}(v)\right) & 0 \\
0 & f\left(\tau_{-}(v)\right)
\end{array}\right] \psi_{v} \quad f \in C_{\text {Lip }}(C)
$$

Theorem The distance d on C can be recovered from the following Connes formula

$$
d(x, y)=\sup \left\{|f(x)-f(y)| ; \sup _{\tau \in \Upsilon(C)}\left\|\left[D, \pi_{\tau}(f)\right]\right\| \leq 1\right\}
$$

Remark: the commutator $\left[D, \pi_{\tau}(f)\right]$ is given by

$$
\left(\left[D, \pi_{\tau}(f)\right] \psi\right)_{v}=\frac{f\left(\tau_{+}(v)\right)-f\left(\tau_{-}(v)\right)}{d_{\delta}\left(\tau_{+}(v), \tau_{-}(v)\right)}\left[\begin{array}{cc}
0 & -1 \\
+1 & 0
\end{array}\right] \psi_{v}
$$

Remark: the commutator $\left[D, \pi_{\tau}(f)\right]$ is given by

$$
\left(\left[D, \pi_{\tau}(f)\right] \psi\right)_{v}=\frac{f\left(\tau_{+}(v)\right)-f\left(\tau_{-}(v)\right)}{d_{\delta}\left(\tau_{+}(v), \tau_{-}(v)\right)}\left[\begin{array}{cc}
0 & -1 \\
+1 & 0
\end{array}\right] \psi_{v}
$$

In particular $\sup _{\tau}\left\|\left[D, \pi_{\tau}(f)\right]\right\|$ is the Lipshitz norm of f

$$
\|f\|_{\text {Lip }}=\sup _{x \neq y \in C}\left|\frac{f(x)-f(y)}{d_{\delta}(x, y)}\right|
$$

III - C.function and Metric Measure

A. Connes, Noncommutative Geometry, Academic Press, 1994.
K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, John Wiley and Sons 1990.
G.H. Hardy \& M. Ressz, The General Theory of Dirichlet's Series, Cambridge University Press (1915).

III.1)- C-function

III.1)- ̧-function

The ζ-function of the Dirac operator is defined by

$$
\zeta(s)=\operatorname{Tr}\left(\frac{1}{|D|^{s}}\right) \quad s \in \mathbb{C}
$$

III.1)- C-function

The ζ-function of the Dirac operator is defined by

$$
\zeta(s)=\operatorname{Tr}\left(\frac{1}{|D|^{s}}\right) \quad s \in \mathbb{C}
$$

The abscissa of convergence is the smallest positive real number $s_{0}>0$ so that the series defined by the trace above converges for $\mathfrak{R}(s)>s_{0}$.

III.1)- --function

The ζ-function of the Dirac operator is defined by

$$
\zeta(s)=\operatorname{Tr}\left(\frac{1}{|D|^{s}}\right) \quad s \in \mathbb{C}
$$

The abscissa of convergence is the smallest positive real number $s_{0}>0$ so that the series defined by the trace above converges for $\mathfrak{R}(s)>s_{0}$.

Theorem Let (C, d) be an ultrametric Cantor set. The abscissa of convergence of the ζ-function of the corresponding Dirac operator coincides with the upper box dimension of (C, d).

- The upper box dimension of a compact metric space (X, d) is defined by

$$
\overline{\operatorname{dim}}_{B}(C)=\limsup _{\delta \downarrow 0} \frac{\log N_{\delta}(C)}{-\log \delta}
$$

where $N_{\delta}(X)$ is the least number of sets of diameter at most δ that cover X.

- The upper box dimension of a compact metric space (X, d) is defined by

$$
\overline{\operatorname{dim}}_{B}(C)=\limsup _{\delta \downarrow 0} \frac{\log N_{\delta}(C)}{-\log \delta}
$$

where $N_{\delta}(X)$ is the least number of sets of diameter at most δ that cover X.

- Thanks to the definition of the Dirac operator

$$
\zeta(s)=2 \sum_{v \in \mathscr{V}} \delta(v)^{s}
$$

- The upper box dimension of a compact metric space (X, d) is defined by

$$
\overline{\operatorname{dim}}_{B}(C)=\limsup _{\delta \downarrow 0} \frac{\log N_{\delta}(C)}{-\log \delta}
$$

where $N_{\delta}(X)$ is the least number of sets of diameter at most δ that cover X.

- Thanks to the definition of the Dirac operator

$$
\zeta(s)=2 \sum_{v \in \mathscr{V}} \delta(v)^{s}
$$

- There are examples of metric Cantor sets with infinite upper box dimension. This is the case for the transversal of tilings with positive entropy.
III.2)- Dixmier Trace \& Metric Measure

III.2)- Dixmier Trace \& Metric Measure

If the abscissa of convergence is finite, then a probability measure μ on (C, d) can be defined as follows (if the limit exists)

$$
\mu(f)=\lim _{s \backslash s_{0}} \frac{\operatorname{Tr}\left(|D|^{-s} \pi_{\tau}(f)\right)}{\operatorname{Tr}\left(|D|^{-s}\right)} \quad f \in \mathcal{C}_{\mathrm{Lip}}(C)
$$

III.2)- Dixmier Trace \& Metric Measure

If the abscissa of convergence is finite, then a probability measure μ on (C, d) can be defined as follows (if the limit exists)

$$
\mu(f)=\lim _{s \downarrow s_{0}} \frac{\operatorname{Tr}\left(|D|^{-s} \pi_{\tau}(f)\right)}{\operatorname{Tr}\left(|D|^{-s}\right)} \quad f \in C_{\mathrm{Lip}}(C)
$$

This limit coincides with the normalized Dixmier trace

$$
\frac{\operatorname{Tr}_{\mathrm{Dix}}\left(|D|^{-s_{0}} \pi_{\tau}(f)\right)}{\operatorname{Tr}_{\mathrm{Dix}}\left(|D|^{-s_{0}}\right)}
$$

III.2)- Dixmier Trace \& Metric Measure

If the abscissa of convergence is finite, then a probability measure μ on (C, d) can be defined as follows (if the limit exists)

$$
\mu(f)=\lim _{s \backslash s_{0}} \frac{\operatorname{Tr}\left(|D|^{-s} \pi_{\tau}(f)\right)}{\operatorname{Tr}\left(|D|^{-s}\right)} \quad f \in \mathcal{C}_{\mathrm{Lip}}(C)
$$

This limit coincides with the normalized Dixmier trace

$$
\frac{\operatorname{Tr}_{\text {Dix }}\left(|D|^{-s_{0}} \pi_{\tau}(f)\right)}{\operatorname{Tr}_{\text {Dix }}\left(|D|^{-s_{0}}\right)}
$$

Theorem The definition of the Metric Measure μ is independent of the choice τ.

- If ζ admits an isolated simple pole at $s=s_{0}$, then $|D|^{-1}$ belongs to the Mačaev ideal $\mathcal{L}^{s_{0}+}(\mathcal{H})$. Therefore the measure μ is well defined.
- If ζ admits an isolated simple pole at $s=s_{0}$, then $|D|^{-1}$ belongs to the Mačaev ideal $\mathcal{L}^{s_{0}+}(\mathcal{H})$. Therefore the measure μ is well defined.
- There is a large class of Cantor sets (such as Iterated Function System) for which the measure μ coincides with the Hausdorff measure associated with the upper box dimension.
- If ζ admits an isolated simple pole at $s=s_{0}$, then $|D|^{-1}$ belongs to the Mačaev ideal $\mathcal{L}^{s_{0}+}(\mathcal{H})$. Therefore the measure μ is well defined.
- There is a large class of Cantor sets (such as Iterated Function System) for which the measure μ coincides with the Hausdorff measure associated with the upper box dimension.
- In particular μ is the metric analog of the Lebesgue measure class on a Riemannian manifold, in that the measure of a ball of radius r behaves like $r^{s_{0}}$ for r small

$$
\mu(B(x, r)) \stackrel{r \downarrow 0}{\sim} r^{s_{0}}
$$

- If ζ admits an isolated simple pole at $s=s_{0}$, then $|D|^{-1}$ belongs to the Mačaev ideal $\mathcal{L}^{s_{0}+}(\mathcal{H})$. Therefore the measure μ is well defined.
- There is a large class of Cantor sets (such as Iterated Function System) for which the measure μ coincides with the Hausdorff measure associated with the upper box dimension.
- In particular μ is the metric analog of the Lebesgue measure class on a Riemannian manifold, in that the measure of a ball of radius r behaves like $r^{s_{0}}$ for r small

$$
\mu(B(x, r)) \stackrel{r \downarrow 0}{\sim} r^{s_{0}}
$$

- μ is the analog of the volume form on a Riemannian manifold.

As a consequence μ defines a canonical probability measure v on the space of choices Υ as follows

$$
v=\bigotimes_{v \in \mathscr{V}} v_{v} \quad v_{v}=\left.\frac{1}{Z_{v}} \sum_{w \neq w^{\prime} \in \operatorname{Ch}(v)} \mu \otimes \mu\right|_{[w] \times[w]}
$$

where Z_{v} is a normalization constant given by

$$
Z_{v}=\sum_{w \neq w^{\prime} \in \operatorname{Ch}(v)} \mu([w]) \mu\left(\left[w^{\prime}\right]\right)
$$

IV - The Laplace-Beltrami Operator

M. Fukushima, Dirichlet Forms and Markou Processes, North-Holland (1980).
J. Pearson, J. Bellissard,

Noncommutative Riemannian Geometry and Diffusion on Ultrametric Cantor Sets,
J. Noncommutative Geometry, 3, (2009), 447-480.
A. Julien, J. Savinien,

Transverse Laplacians for Substitution Tilings, arXiv:0908. 1095, August 2009, to appear in Commun. Math. Phys.

IV.1)-Dirichlef Forms

IV.1)-Dirichlef Forms

Let (X, μ) be a probability space space. For f a real valued measurable function on X, let \hat{f} be the function obtained as

$$
\hat{f}(x)=\left\{\begin{array}{lll}
1 & \text { if } & f(x) \geq 1 \\
f(x) & \text { if } & 0 \leq f(x) \leq 1 \\
0 & \text { if } & f(x) \leq 0
\end{array}\right.
$$

Markovian cut-off of a real valued function

IV.1)- Dirichlef Forms

Let (X, μ) be a probability space space. For f a real valued measurable function on X, let \hat{f} be the function obtained as

$$
\hat{f}(x)=\left\{\begin{array}{lll}
1 & \text { if } & f(x) \geq 1 \\
f(x) & \text { if } & 0 \leq f(x) \leq 1 \\
0 & \text { if } & f(x) \leq 0
\end{array}\right.
$$

A Dirichlet form Q on X is a positive definite sesquilinear form $Q: L^{2}(X, \mu) \times L^{2}(X, \mu) \mapsto \mathbb{C}$ such that

IV.1)- Dirichlet Forms

Let (X, μ) be a probability space space. For f a real valued measurable function on X, let \hat{f} be the function obtained as

$$
\hat{f}(x)=\left\{\begin{array}{lll}
1 & \text { if } & f(x) \geq 1 \\
f(x) & \text { if } & 0 \leq f(x) \leq 1 \\
0 & \text { if } & f(x) \leq 0
\end{array}\right.
$$

A Dirichlet form Q on X is a positive definite sesquilinear form $Q: L^{2}(X, \mu) \times L^{2}(X, \mu) \mapsto \mathbb{C}$ such that

- Q is densely defined with domain $\mathscr{D} \subset L^{2}(X, \mu)$

IV.1)- Dirichlet Forms

Let (X, μ) be a probability space space. For f a real valued measurable function on X, let \hat{f} be the function obtained as

$$
\hat{f}(x)=\left\{\begin{array}{lll}
1 & \text { if } & f(x) \geq 1 \\
f(x) & \text { if } & 0 \leq f(x) \leq 1 \\
0 & \text { if } & f(x) \leq 0
\end{array}\right.
$$

A Dirichlet form Q on X is a positive definite sesquilinear form $Q: L^{2}(X, \mu) \times L^{2}(X, \mu) \mapsto \mathbb{C}$ such that

- Q is densely defined with domain $\mathscr{D} \subset L^{2}(X, \mu)$
- Q is closed

[V.1)- Dirichlef Forms

Let (X, μ) be a probability space space. For f a real valued measurable function on X, let \hat{f} be the function obtained as

$$
\hat{f}(x)=\left\{\begin{array}{lll}
1 & \text { if } & f(x) \geq 1 \\
f(x) & \text { if } & 0 \leq f(x) \leq 1 \\
0 & \text { if } & f(x) \leq 0
\end{array}\right.
$$

A Dirichlet form Q on X is a positive definite sesquilinear form
$Q: L^{2}(X, \mu) \times L^{2}(X, \mu) \mapsto \mathbb{C}$ such that

- Q is densely defined with domain $\mathscr{D} \subset L^{2}(X, \mu)$
- Q is closed
- Q is Markovian, namely if $f \in \mathscr{D}$, then $Q(\hat{f}, \hat{f}) \leq Q(f, f)$

The simplest typical example of Dirichlet form is related to the Laplacian Δ_{Ω} on a bounded domain $\Omega \subset \mathbb{R}^{D}$

$$
Q_{\Omega}(f, g)=\int_{\Omega} d^{\mathrm{D}} x \overline{\nabla f(x)} \cdot \nabla g(x)
$$

with domain $\mathscr{D}=C_{0}^{1}(\Omega)$ the space of continuously differentiable functions on Ω vanishing on the boundary.

This form is closeable in $L^{2}(\Omega)$ and its closure defines a Dirichlet form.

Any closed positive sesquilinear form Q on a Hilbert space, defines canonically a positive self-adjoint operator $-\Delta_{Q}$ satisfying

$$
\left\langle f \mid-\Delta_{Q} g\right\rangle=Q(f, g)
$$

Any closed positive sesquilinear form Q on a Hilbert space, defines canonically a positive self-adjoint operator $-\Delta_{Q}$ satisfying

$$
\left\langle f \mid-\Delta_{Q} g\right\rangle=Q(f, g)
$$

In particular $\Phi_{t}=\exp \left(t \Delta_{Q}\right)$ (defined for $\left.t \in \mathbb{R}_{+}\right)$is a strongly continuous contraction semigroup.

Any closed positive sesquilinear form Q on a Hilbert space, defines canonically a positive self-adjoint operator $-\Delta_{Q}$ satisfying

$$
\left\langle f \mid-\Delta_{Q} g\right\rangle=Q(f, g)
$$

In particular $\Phi_{t}=\exp \left(t \Delta_{e}\right)$ (defined for $\left.t \in \mathbb{R}_{+}\right)$is a strongly continuous contraction semigroup.

If Q is a Dirichlet form on X, then the contraction semigroup $\Phi=\left(\Phi_{t}\right)_{t \geq 0}$ is a Markov semigroup.

A Markov semi-group Φ on $L^{2}(X, \mu)$ is a family $\left(\Phi_{t}\right)_{t \in[0,+\infty)}$ where

A Markov semi-group Φ on $L^{2}(X, \mu)$ is a family $\left(\Phi_{t}\right)_{t \in[0,+\infty)}$ where

- For each $t \geq 0, \Phi_{t}$ is a contraction from $L^{2}(X, \mu)$ into itself

A Markov semi-group Φ on $L^{2}(X, \mu)$ is a family $\left(\Phi_{t}\right)_{t \in[0,+\infty)}$ where

- For each $t \geq 0, \Phi_{t}$ is a contraction from $L^{2}(X, \mu)$ into itself
- (Markov property) $\Phi_{t} \circ \Phi_{s}=\Phi_{t+s}$

A Markov semi-group Φ on $L^{2}(X, \mu)$ is a family $\left(\Phi_{t}\right)_{t \in[0,+\infty)}$ where

- For each $t \geq 0, \Phi_{t}$ is a contraction from $L^{2}(X, \mu)$ into itself
- (Markov property) $\Phi_{t} \circ \Phi_{s}=\Phi_{t+s}$
- (Strong continuity) the map $t \in[0,+\infty) \mapsto \Phi_{t}$ is strongly continuous

A Markov semi-group Φ on $L^{2}(X, \mu)$ is a family $\left(\Phi_{t}\right)_{t \in[0,+\infty)}$ where

- For each $t \geq 0, \Phi_{t}$ is a contraction from $L^{2}(X, \mu)$ into itself
- (Markov property) $\Phi_{t} \circ \Phi_{s}=\Phi_{t+s}$
- (Strong continuity) the map $t \in[0,+\infty) \mapsto \Phi_{t}$ is strongly continuous
- $\forall t \geq 0, \Phi_{t}$ is positivity preserving : $f \geq 0 \Rightarrow \Phi_{t}(f) \geq 0$

A Markov semi-group Φ on $L^{2}(X, \mu)$ is a family $\left(\Phi_{t}\right)_{t \in[0,+\infty)}$ where

- For each $t \geq 0, \Phi_{t}$ is a contraction from $L^{2}(X, \mu)$ into itself
- (Markov property) $\Phi_{t} \circ \Phi_{s}=\Phi_{t+s}$
- (Strong continuity) the map $t \in[0,+\infty) \mapsto \Phi_{t}$ is strongly continuous
- $\forall t \geq 0, \Phi_{t}$ is positivity preserving : $f \geq 0 \Rightarrow \Phi_{t}(f) \geq 0$
- Φ_{t} is normalized, namely $\Phi_{t}(1)=1$.

A Markov semi-group Φ on $L^{2}(X, \mu)$ is a family $\left(\Phi_{t}\right)_{t \in[0,+\infty)}$ where

- For each $t \geq 0, \Phi_{t}$ is a contraction from $L^{2}(X, \mu)$ into itself
- (Markov property) $\Phi_{t} \circ \Phi_{s}=\Phi_{t+s}$
- (Strong continuity) the map $t \in[0,+\infty) \mapsto \Phi_{t}$ is strongly continuous
- $\forall t \geq 0, \Phi_{t}$ is positivity preserving : $f \geq 0 \Rightarrow \Phi_{t}(f) \geq 0$
- Φ_{t} is normalized, namely $\Phi_{t}(1)=1$.

Theorem (Fukushima) A contraction semi-group on $L^{2}(X, \mu)$ is a Markov semi-group if and only if its generator is defined by a Dirichlet form.

IV.2). The Laplace-Beltrami Form

IV.2) The Laplace-Beltrami Form

Let M be a Riemannian manifold of dimension D. The LaplaceBeltrami operator is associated with the Dirichlet form

IV.2) The Laplace-Beltrami Form

Let M be a Riemannian manifold of dimension D. The LaplaceBeltrami operator is associated with the Dirichlet form

$$
Q_{\mathrm{M}}(f, g)=\sum_{i, j=1}^{D} \int_{M} d^{\mathrm{D}} x \sqrt{\operatorname{det}(g(x))} g^{i j}(x) \overline{\partial_{i} f(x)} \partial_{j} g(x)
$$

where g is the metric.

IV.2) The Laplace-Beltrami Form

Let M be a Riemannian manifold of dimension D. The LaplaceBeltrami operator is associated with the Dirichlet form

$$
Q_{\mathrm{M}}(f, g)=\sum_{i, j=1}^{D} \int_{M} d^{\mathrm{D}} x \sqrt{\operatorname{det}(g(x))} g^{i j}(x) \overline{\partial_{i} f(x)} \partial_{j} g(x)
$$

where g is the metric. Equivalently (in local coordinates)

$$
Q_{M}(f, g)=\int_{M} d^{\mathrm{D}} x \sqrt{\operatorname{det}(g(x))} \int_{S(x)} d v_{x}(u) \overline{u \cdot \nabla f(x)} u \cdot \nabla g(x)
$$

IV.2) The Laplace-Beltrami Form

Let M be a Riemannian manifold of dimension D. The LaplaceBeltrami operator is associated with the Dirichlet form

$$
Q_{\mathrm{M}}(f, g)=\sum_{i, j=1}^{D} \int_{M} d^{\mathrm{D}} x \sqrt{\operatorname{det}(g(x))} g^{i j}(x) \overline{\partial_{i} f(x)} \partial_{j} g(x)
$$

where g is the metric. Equivalently (in local coordinates)

$$
Q_{\mathrm{M}}(f, g)=\int_{M} d^{\mathrm{D}} x \sqrt{\operatorname{det}(g(x))} \int_{S(x)} d v_{x}(u) \overline{u \cdot \nabla f(x)} u \cdot \nabla g(x)
$$

where $S(x)$ represent the unit sphere in the tangent space whereas v_{x} is the normalized Haar measure on $S(x)$.

Similarly, if (C, d) is an ultrametric Cantor set, the expression

$$
\left[D, \pi_{\tau}(f)\right]
$$

can be interpreted as a directional derivative, analogous to $u \cdot \nabla f$, since a choice τ has been interpreted as a unit tangent vector.

Similarly, if (C, d) is an ultrametric Cantor set, the expression

$$
\left[D, \pi_{\tau}(f)\right]
$$

can be interpreted as a directional derivative, analogous to $u \cdot \nabla f$, since a choice τ has been interpreted as a unit tangent vector.

The Laplace-Pearson operators are defined, by analogy, by

$$
Q_{s}(f, g)=\int_{\Upsilon} d v(\tau) \operatorname{Tr}\left\{\frac{1}{|D|^{S}}\left[D, \pi_{\tau}(f)\right]^{*}\left[D, \pi_{\tau}(g)\right]\right\}
$$

for $f, g \in C_{\text {Lip }}(C)$ and $s>0$.

Let \mathscr{D} be the linear subspace of $L^{2}(C, \mu)$ generated by the characteristic functions of the clopen sets $[v], v \in \mathscr{V}$. Then

Let \mathscr{D} be the linear subspace of $L^{2}(C, \mu)$ generated by the characteristic functions of the clopen sets $[v], v \in \mathscr{V}$. Then

Theorem For any $s \in \mathbb{R}$, the form Q_{s} defined on \mathscr{D} is closeable on $L^{2}(C, \mu)$ and its closure is a Dirichlet form.

Let \mathscr{D} be the linear subspace of $L^{2}(C, \mu)$ generated by the characteristic functions of the clopen sets $[v], v \in \mathscr{V}$. Then

Theorem For any $s \in \mathbb{R}$, the form Q_{s} defined on \mathscr{D} is closeable on $L^{2}(C, \mu)$ and its closure is a Dirichlet form.
The corresponding operator $-\Delta_{s}$ leaves \mathscr{D} invariant, has a discrete spectrum.

Let \mathscr{D} be the linear subspace of $L^{2}(C, \mu)$ generated by the characteristic functions of the clopen sets $[v], v \in \mathscr{V}$. Then

Theorem For any $s \in \mathbb{R}$, the form Q_{s} defined on \mathscr{D} is closeable on $L^{2}(C, \mu)$ and its closure is a Dirichlet form.
The corresponding operator $-\Delta_{s}$ leaves \mathscr{D} invariant, has a discrete spectrum.

For $s<s_{0}+2,-\Delta_{s}$ is unbounded with compact resolvent.

IV.3). Jumps Process over Gaps

IV.3). Jumps Process over Gaps

Δ_{s} generates a Markov semigroup, thus a stochastic process $\left(X_{t}\right)_{t \geq 0}$ where the X_{t} 's takes on values in C.

IV.3). Jumps Process over Gaps

Δ_{s} generates a Markov semigroup, thus a stochastic process $\left(X_{t}\right)_{t \geq 0}$ where the X_{t} 's takes on values in C.

Given $v \in \mathscr{V}$, its spine is the set of vertices located along the finite path joining the root to v.

IV.3)- Jumps Process over Gaps

Δ_{s} generates a Markov semigroup, thus a stochastic process $\left(X_{t}\right)_{t \geq 0}$ where the X_{t} 's takes on values in C.

Given $v \in \mathscr{V}$, its spine is the set of vertices located along the finite path joining the root to v. The vine $\mathcal{V}(v)$ of v is the set of vertices w, not in the spine, which are children of one vertex of the spine.

IV.3)- Jumps Process over Gaps

Δ_{s} generates a Markov semigroup, thus a stochastic process $\left(X_{t}\right)_{t \geq 0}$ where the X_{t} 's takes on values in C.

Given $v \in \mathscr{V}$, its spine is the set of vertices located along the finite path joining the root to v. The vine $\mathcal{V}(v)$ of v is the set of vertices w, not in the spine, which are children of one vertex of the spine.
Then if χ_{v} is the characteristic function of [v]

$$
\Delta_{s} \chi_{v}=\sum_{w \in \mathcal{Y}(v)} p(v, w)\left(\chi_{w}-\chi_{v}\right)
$$

IV.3)- Jumps Process over Gaps

Δ_{s} generates a Markov semigroup, thus a stochastic process $\left(X_{t}\right)_{t \geq 0}$ where the X_{t} 's takes on values in C.

Given $v \in \mathscr{V}$, its spine is the set of vertices located along the finite path joining the root to v. The vine $\mathcal{V}(v)$ of v is the set of vertices w, not in the spine, which are children of one vertex of the spine.
Then if χ_{v} is the characteristic function of $[v]$

$$
\Delta_{s} \chi_{v}=\sum_{w \in \mathcal{Y}(v)} p(v, w)\left(\chi_{w}-\chi_{v}\right)
$$

where $p(v, w)>0$ represents the probability for X_{t} to jump from v to w per unit time.

The vine of a vertex v

Jump process from v to w

The tree for the triadic ring $\mathbb{Z}(3)$

Jump process in $\mathbb{Z}(3)$

Jump process in $\mathbb{Z}(3)$

Jump process in $\mathbb{Z}(3)$

Concretely, if \hat{w} denotes the father of w (which belongs to the spine)

$$
p(v, w)=2 \delta(\hat{w})^{s-2} \frac{\mu([v])}{Z_{\hat{w}}}
$$

where $Z_{\hat{w}}$ is the normalization constant for the measure $v_{\hat{w}}$ on the set of choices at \hat{w}, namely

$$
Z_{\hat{w}}=\sum_{u \neq u^{\prime} \in \operatorname{Ch}(\hat{w})} \mu([u]) \mu\left(\left[u^{\prime}\right]\right)
$$

IV.4)- Eigenspaces

Let v be a vertex of the Michon graph with $\mathrm{Ch}(v)$ as its set of children.

IV.4)- Eigenspaces

Let v be a vertex of the Michon graph with $\mathrm{Ch}(v)$ as its set of children. Let \mathcal{E}_{v} be the linear space generated by the characteristic function χ_{w} of the $[w]^{\prime}$ s with $w \in \operatorname{Ch}(v)$.

IV.4)-Eigenspaces

Let v be a vertex of the Michon graph with $\mathrm{Ch}(v)$ as its set of children. Let \mathcal{E}_{v} be the linear space generated by the characteristic function χ_{w} of the $[w]$'s with $w \in \mathrm{Ch}(v)$. In particular

$$
\chi_{v}=\sum_{w \in \operatorname{Ch}(v)} \chi_{w} \in \mathcal{E}_{v}
$$

IV.4)-Eigenspaces

Let v be a vertex of the Michon graph with $\mathrm{Ch}(v)$ as its set of children. Let \mathcal{E}_{v} be the linear space generated by the characteristic function χ_{w} of the $[w]$'s with $w \in \mathrm{Ch}(v)$. In particular

$$
\chi_{v}=\sum_{w \in \operatorname{Ch}(v)} \chi_{w} \in \mathcal{E}_{v}
$$

Theorem For any $s \in \mathbb{R}$, the eigenspaces of $-\Delta_{s}$ are the spaces of the form $\left\{\chi_{v}\right\}^{\perp} \subset \mathcal{E}_{v}$, namely, the orthogonal complement of χ_{v} is \mathcal{E}_{v}.

V - To conclude

- Ultrametric Cantor sets can be described as Riemannian manifolds, through Noncommutative Geometry.
- An analog of the tangent unit sphere is given by choices
- The upper box dimension plays the role of the dimension
- A volume measure is defined through the Dixmier trace
- A Laplace-Beltrami operator is defined with compact resolvent and Weyl asymptotics
- It generates a jump process playing the role of the Brownian motion.
- This process exhibits anomalous diffusion.

Recent Progress

I. Palmer, Noncommutative Geometry and Compact Metric Spaces, PhD Thesis, Georgia Tech, May 2010.
J. Cheeger, Differentiability of Lipschitz continuous Functions on Metric Measure Spaces

GAFA, Geom. funct. anal., 9, 428-517, (1999).

- The construction of a spectral triple can be extended to any compact metric space if the partitions by clopen sets are replaces by suitable open covers.
- If the compact metric space (X, d) has finite Hausdorff dimension then the spectral triple can be chosen to admits $\operatorname{dim}_{H}(X)$ as abscissa of convergence.
- If (X, d) admits a positive finite Hausdorff measure the spectral triple can be constructed so as to have the measure μ, defined by the Dixmier trace, equal to the normalized Hausdorf measure.
- Under some extra local regularity property on (X, d) a LaplaceBeltrami operator be defined (J. Сневger).

Lecture III - Spectral Metric Spaces

I -Spectral Triples and Dynamics

Spectral Triples

A spectral triple for a C^{*}-algebra \mathcal{A} is a family $X=(\mathcal{A}, \mathcal{H}, D)$ where \mathcal{H} is a Hilbert space, D and unbounded operator on \mathcal{H} such that

- there is a (faithful) representation $\pi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H})$
- D is selfadjoint with compact resolvent (Dirac operator)
- there is a core $\mathcal{D} \subset \mathcal{H}$ for D and a ${ }^{*}$-invariant subset $\mathscr{A} \subset \mathcal{A}$, generating \mathcal{A}, such that any element $a \in \mathscr{A}$ leaves \mathcal{D} invariant and such that $[D, a]$ is bounded.

Remark: Then the set $C^{1}(X)=\{a \in \mathcal{A} ;\|[D, a]\|<\infty\}$ is a dense *-subalgebra of \mathcal{A}, invariant under the holomorphic functional calculus.

A *-automorphism α on \mathcal{A} is a quasi-isometry on X if α and α^{-1} leave $C^{1}(X)$ invariant. Then (X, α) is called a metric dynamical system.

Example

Let M be a spin^{c} Riemannian manifold, $\mathcal{A}=\mathcal{C}(M), \mathcal{H}$ the space of L^{2}-sections of the spin bundle and D the corresponding Dirac operator, where \mathcal{A} acts by pointwise multiplication.

Theorem (Connes) The family $X_{M}=(\mathcal{A}, \mathcal{H}, D)$ above is a spectral triple. The geodesic distance between $x, y \in M$ can be recovered through

$$
d(x, y)=\sup \{|f(x)-f(y)| ; f \in \mathcal{A},\|[D, f]\| \leq 1\}
$$

Actually $\|[D, f]\|=\|\nabla f\|_{L^{\infty}}=\|f\|_{C_{\text {Lip }}}$ and $C^{1}(X)=\operatorname{Lip}(M)$.
The geodesic flow defines a one-parameter group of quasi-isometries (actually isometries) on \mathcal{A}.

Problem

Let $(X, \alpha)=(\mathcal{A}, \mathcal{H}, D, \alpha)$ be a metric dynamical system.
Is there a canonical spectral triple $Y=\left(\mathcal{A} \rtimes_{\alpha} \mathbb{Z}, \mathcal{K}, \hat{D}\right)$, based on the crossed product algebra induced by the dynamics, inducing on X an equivalent metric structure?

It will be shown that the answer is YES only when α is equivalent to an isometry.

Problem

If α cannot be reduced to an isometry, then, following the ConnesMoscovici approach, the analog of the metric bundle construction gives a way to change X into a new spectral triple \hat{X} on which α induces a dynamic $\hat{\alpha}$ which becomes an isometry and allows to make the construction.

The latter construction comes with a price: \hat{X} is no longer compact on which the metric is unbounded in general.

This is a source of technical difficulties that are not understood fully yet.

II - The Basic Construction

Compact Spectral Metric Spaces

Let $X=(\mathcal{A}, \mathcal{H}, D)$ be a spectral triple.
It will be called compact whenever \mathcal{A} is unital.
It will be called a spectral metric space if

- The D-commutant $\mathcal{A}_{D}^{\prime}=\{a \in \mathcal{A} ;[D, a]=0\}$ is reduced to $\mathbb{C} 1$
- The Lipshitz ball $B_{\text {Lip }}=\{a \in \mathcal{A} ;\|[D, a]\| \leq 1\}$ has a precompact image in $\mathcal{A} / \mathcal{A}^{\prime}{ }_{D}$.

Theorem (Pavlovic, Rieffel) A compact spectral triple is a spectral metric space if and only if the Connes distance on the state space

$$
d(\rho, \omega)=\sup \{|\rho(a)-\omega(a)| ; a \in \mathcal{A},\|[D, a]\| \leq 1\}
$$

is bounded and generates the weak*-topology.

Quasi-isometries

Let Qiso(X) be the set of quasi-isometries of the compact spectral metric space $X=(\mathcal{A}, \mathcal{H}, D)$. Then

Proposition A *-automorphism of \mathcal{A} is a quasi-isometry if and only if it generates a bi-Lipshitz transformation of the state space, namely there is $C>0$ such that

$$
\frac{1}{C} d(\rho, \omega) \leq d(\rho \circ \alpha, \omega \circ \alpha) \leq C d(\rho, \omega)
$$

for every pair of states (ρ, ω).

Equicontinuity

Let $X=(\mathcal{A}, \mathcal{H}, D)$ be a compact spectral metric space. A quasiisometry $\alpha \in \operatorname{Qiso}(X)$ is called equicontinuous whenever

$$
\sup _{n \in \mathbb{Z}}\left\|\left[D, \alpha^{n}(a)\right]\right\|<\infty \quad \forall a \in C^{1}(X)
$$

Theorem A quasi-isometry is equicontinuous if and only if the group it generates in the set of $*$-automorphism of \mathcal{A} has a compact closure $\alpha \in \operatorname{Qiso}(X)$ is called an isometry whenever

$$
\|[D, a]\|=\|[D, \alpha(a)]\| \quad \forall a \in C^{1}(X)
$$

Proposition (Rieffel) $\alpha \in \operatorname{Qiso}(X)$ is an isometry if and only if it defines an isometry in the state space for the Connes metric.

Main Result

Let \mathcal{A} be a unital separable C^{*}-algebra.
Let α be a $*$-automorphism of \mathcal{A}.
Then, let u denotes the unitary implementing α in $\mathcal{A} \rtimes_{\alpha} \mathbb{Z}$.
Theorem There is a spectral metric space $X=(\mathcal{A}, \mathcal{H}, D)$ based on \mathcal{A} for which α is equicontinuous if and only if there is a spectral metric space $Y=\left(\mathcal{A} \rtimes_{\alpha} \mathbb{Z}, \mathcal{K}, \hat{D}\right)$, based on the crossed product, such that

- The dual action on $\mathcal{A} \rtimes_{\alpha} \mathbb{Z}$ is equicontinuous
- $u^{-1}[\hat{D}, u]$ is bounded and commutes to the elements of \mathcal{A}
- The Connes metrics induced by X and by Y on the state space of \mathcal{A} are equivalent

Constructing Y

- Hilbert space: $\mathcal{K}=\mathcal{H} \otimes \ell^{2}(\mathbb{Z}) \otimes \mathbb{C}^{2}$

Then $f \in \mathcal{K} \Leftrightarrow f=\left(f_{n+}, f_{n-}\right)_{n \in \mathbb{Z}}$ with $f_{n \pm} \in \mathcal{H}$

- Representation: left regular representation $\hat{\pi}$ of $\mathcal{A} \rtimes_{\alpha} \mathbb{Z}$

$$
(\hat{\pi}(a) f)_{n}=\alpha^{-n}(a) f_{n} \quad(\hat{\pi}(u) f)_{n}=f_{n-1} \quad a \in \mathcal{A}
$$

- Dirac operator:

$$
(\widehat{D} f)_{n}=\left[\begin{array}{cc}
0 & D-\imath n \\
D+\imath n & 0
\end{array}\right] f_{n}
$$

Properties of Y

- Commutator with \widehat{D} :

$$
([\widehat{D}, \hat{\pi}(a)] f)_{n}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[D, \alpha^{-n}(a)\right] f_{n}
$$

Hence $[\widehat{D}, \hat{\pi}(a)]$ is bounded if and only if $\alpha \in \operatorname{Qiso}(X)$.

$$
\left(\hat{\pi}\left(u^{-1}\right)[\widehat{D}, \hat{\pi}(u)] f\right)_{n}=\left[\begin{array}{cc}
0 & -\imath \\
\imath & 0
\end{array}\right] f_{n}
$$

Hence $u^{-1}[\widehat{D}, u]$ commutes with the elements of \mathcal{A}.

- Dual action:

$$
\left(v_{k} f\right)_{n}=e^{-i k n} f_{n} \quad k \in \mathbb{T}
$$

commutes with \widehat{D}, thus is isometric

Properties of Y

Lemma: (difficult) The Lipshitz Ball of Y is precompact modulo the \widehat{D}-commutant

Lemma: The metric induced on the state space of \mathcal{A} by \widehat{D} is equivalent to the metric induced by X and makes α an isometry

The last result shows that the basic construction is the noncommutative analog of the construction of an invariant metric on a classical metric space when the action is provided by an equicontinuous bi-Lipshitz homeomorphism.

Examples

Crossed product algebra $C(M) \rtimes_{\phi} \mathbb{Z}$ if M is a compact metric space and ϕ an isometry or, more generally, an homeomorphism satisfying

$$
\sup _{n \in \mathbb{Z}}\left(\sup _{x \neq y} \frac{d\left(\phi^{n}(x), \phi^{n}(y)\right)}{d(x, y)}\right)<\infty
$$

- For instance the action of an odometer on the Cantor set can be seen in this way.
- Any Kronecker flow on a torus (leading to a noncommutative torus)
- The geodesic flow at time $t=1$ on a compact spin^{c} Riemannian manifold

III - The Metric Bundle

Examples

Arnold's cat map: $\mathcal{A}=C\left(\mathbb{T}^{2}\right), \mathcal{H}=L^{2}\left(\mathbb{T}^{2}\right) \otimes \mathbb{C}^{2}$, and

$$
D=\left[\begin{array}{cc}
0 & -\imath \partial_{1}-\partial_{2} \\
-\imath \partial_{1}+\partial_{2} & 0
\end{array}\right], \quad \phi(x)=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right] x
$$

with $\alpha(f)=f \circ \phi^{-1}$. Then α is a quasi-isometry that is not equicontinuous

$$
\left\|\left[D, \alpha^{n}(f)\right]\right\| \stackrel{|n| \uparrow \infty}{\sim}\left(\frac{\sqrt{5}+1}{2}\right)^{|n|}
$$

More generally any strictly hyperbolic map on a compact metric space (Smale spaces) will give rise to a similar situation.

The Metric Bundle

If M is a smooth manifold, the metric bundle is a principle bundle over M such that the fiber over each point is the cone of possible positive definite metrics on the tangent space.

Connes and Moscovici have shown that this bundle admits a tautological Riemannian structure that is invariant by the diffeomorphisms of M. In particular each diffeomorphim becomes an isometry for this structure.

The Metric Bundle

If ϕ is a diffeomorphism of M, it is sufficient to restrict this bundle to the orbits of ϕ with its Riemannian structure.

The C^{*}-algebra of this orbit is the tensor product $C(M) \otimes c_{0}(\mathbb{Z})$. The action of ϕ on the \mathbb{Z}-part is reduced to the shift.

Metric on Z

Let $d_{\mathbb{Z}}$ be a bounded translation invariant metric on \mathbb{Z}. Then a spectral triple, based on $c_{0}(\mathbb{Z})$, can be defined as follows

- Clifford matrices: $\gamma_{1}, \cdots, \gamma_{4}$ acting on the Hilbert space \mathcal{E}
- Hilbert Space: $\ell^{2}(\mathbb{Z} \times \mathbb{N}) \otimes \mathcal{E}$
- Operators:,

$$
(\nabla f)_{n, r}=\frac{f_{n, r}-f_{n-r, r}}{d_{\mathbb{Z}}(n, n-r)}, \quad(X f)_{n, r}=\left(n \gamma_{3}+\frac{1}{d_{\mathbb{Z}}(0, r)^{2}} \gamma_{4}\right) f_{n, r}
$$

- Dirac operator:

$$
D_{\mathbb{Z}}=\frac{\gamma_{1}+\imath \gamma_{2}}{2} \nabla+\frac{\gamma_{1}-\imath \gamma_{2}}{2} \nabla^{*}+X .
$$

Metric on Z

Ref.: F. Latrémolière, Taizoanese J. of Math., 11, (2007), 447-469.

Proposition: $\left(c_{0}(\mathbb{Z}), \ell^{2}(\mathbb{Z} \times \mathbb{N}) \otimes \mathcal{E}, D_{\mathbb{Z}}\right)$ is a spectral triple.
Its Lipshitz Ball $B_{\text {Lip }}$ is bounded and, for any strictly positive sequence $h \in c_{0}(\mathbb{Z}), h B_{\text {Lip }} h$ is precompact.
In particular, while the state space of $c_{0}(\mathbb{Z})$ is not weak*-compact, the Connes distance is bounded and generates the weak*-topology.

The Spectral Metric Bundle

Theorem: Let $X=(\mathcal{A}, \mathcal{H}, D)$ be a compact spectral metric space. Let $\alpha \in \operatorname{Qiso}(X)$ be non-equicontinuous.
Then there is a spectral triple $Y=\left(\mathcal{A} \otimes c_{0}(\mathbb{Z}), \mathcal{K}, D_{\mathcal{K}}\right)$ which is a noncompact spectral metric space for which the Connes metric is bounded on which α can be extended as an isometry.
Moreover, \mathcal{K} support a representation of $C=\mathcal{A} \otimes c_{0}(\mathbb{Z}) \rtimes_{\alpha} \mathbb{Z}$ which makes $\mathrm{Z}=\left(C, \mathcal{K}, D_{\mathcal{K}}\right)$ a spectral metric space on which the dual action is equicontinuous with respect to the weak-uniform topology.

The Spectral Metric Bundle

Let $X=(\mathcal{A}, \mathcal{H}, D)$ be a compact spectral metric space and let $\alpha \in \operatorname{Qiso}(X)$. If α is not equicontinuous, then Y will be the spectral triple built as follows

- \mathcal{A} is replaced by $\mathcal{A} \otimes c_{0}(\mathbb{Z})$. Then α is extended as

$$
\hat{\alpha}(b)_{n}=\alpha\left(b_{n-1}\right), \quad b \in \mathcal{A} \otimes c_{0}(\mathbb{Z})
$$

- Hilbert space: $\mathcal{K}=\mathcal{H} \otimes \ell^{2}(\mathbb{Z} \times \mathbb{N}) \otimes \mathcal{E}$, where now, \mathcal{E} is the representation space for five Clifford matrices.
- Representation:

$$
(b f)_{n, r}=\alpha^{-n}\left(b_{n}\right) f_{n, r}, \quad b \in \mathcal{A} \otimes c_{0}(\mathbb{Z})
$$

The Spectral Metric Bundle

- Dirac operator: $D_{\mathcal{K}}=D_{\mathbb{Z}}+\gamma_{5} D$
- The action $\hat{\alpha}$

$$
(u f)_{n, r}=f_{n-1, r}, \quad \Rightarrow \quad u b u^{1}=\hat{\alpha}(b)
$$

- Then $u^{-1}\left[D_{\mathcal{K}}, u\right]$ is bounded and commutes with the elements of $\mathcal{A} \otimes c_{0}(\mathbb{Z})$.
- In particular $\hat{\alpha}$ is isometric on Y.
- Moreover, \mathcal{K} supports a representation of the crossed product $\mathcal{C}=\mathcal{A} \otimes c_{0}(\mathbb{Z}) \rtimes_{\hat{\alpha}} \mathbb{Z}$.

The Spectral Metric Bundle

- Dual action:

$$
\left(v_{k} f\right)_{n, r}=e^{\imath k n} f_{n, r}, \quad \Rightarrow \quad v_{k} u v_{k}^{-1}=e^{\imath k} u
$$

This dual action is not equicontinuous for the norm topology. However it is equicontinuous for the weak-uniform topology.

- If $C_{L i p}$ is the Lipshitz ball in the crossed product, then there is h strictly positive in $C=\mathcal{A} \otimes \mathcal{C}_{0}(\mathbb{Z}) \rtimes_{\hat{\alpha}} \mathbb{Z}$ such that $h C_{\text {Lip }} h$ is norm compact.
- this is enough to show that the Connes metric associated with the triple $\left(C, \mathcal{K}, D_{\mathcal{K}}\right)$ generates the weak*-topology in the state space.

IV - Conclusion and Remarks

To Conclude

1. Equicontinuity of a quasi-isometry is necessary and sufficient to built a spectral metric space over the crossed product algebra.
2. If equicontinuity fails, the metric bundle construction, restricted to the orbit of the dynamical system, provides a way to make the dynamics isometric.
3. As long as the metric chosen along this orbit is bounded the construction is under control: the Connes metric generates the weak ${ }^{*}$ topology on the state space.

Open Problems

1. Can this construction be extended to the case of a group action ? Say for discrete groups with a length function?
2. - What if the metric on \mathbb{Z} chosen along the orbit in the metric bundle, is unbounded (like the usual metric on \mathbb{Z}) ?

- More generally, is there an analog of the Rieffel-Pavlovič result for spectral triples for which the Lipshitz ball is unbounded ? Namely, what are the condition for the Connes metric to generate the weak*-topology?
- This is the noncommutative analog of the Wasserstein distance on the set of probabilities on a complete (unbounded) metric space.

