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Lecture I - The Fibonacci Tiling



The Fibonacci Sequence
The Fibonacci sequence is an infinite word generated by the substi-
tution

σ̂ : a −→ ab , b −→ a

Iterating gives

a︸︷︷︸
a0

→ ab︸︷︷︸
a1

→ ab|a︸︷︷︸
a2=a1a0

→ aba|ab︸︷︷︸
a3=a2a1

→ abaab|aba︸    ︷︷    ︸
a4=a3a2

→ abaababa|abaab︸           ︷︷           ︸
a5=a4a3

It can be represented by a 1D-tiling if

a→ [0, 1] b→ [0, σ] σ =

√
5 − 1
2

∼ .618
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The Fibonacci Sequence

- Collared tiles in the Fibonacci tiling -



The Fibonacci Sequence

- The Anderson-Putnam complex for the Fibonacci tiling -



The Fibonacci Sequence

- The substitution map -



The Fibonacci Sequence
Let Ξn ⊂ Xn be the set of tile endpoints (0-cells). The sequence of
complexes (Xn)n∈N together with the maps fn : Xn+1 7→ Xn gives
rise to inverse limits

lim
←

(Xn, fn) = Ω lim
←

(Ξn, fn) = Ξ

• The space Ω is compact and is called the Hull.
• It is endowed with an action of R generated by infinitesimal

translation on the Xn’s

• The space Ξ is a Cantor set and is called the transversal
• Ξ parametrizes a the set of all tilings sharing the same words

as the Fibonacci sequence with one tile endpoint at the origin.

• There is a two-to one correspondence between Ξ and the win-
dow.
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The Fibonacci Sequence



The Fibonacci Sequence: Groupoid
ΓΞ is the set of pairs (ξ, a) with ξ ∈ Ξ and a ∈ Lξ.

It is a locally compact groupoid when endowed with the following
structure

• Units: Ξ,

• Range and Source maps: r(ξ, a) = ξ, s(ξ, a) = t−aξ

• Composition: (ξ, a) ◦ (t−aξ, b) = (ξ, a + b)

• Inverse: (ξ, a)−1 = (t−aξ,−a)

• Topology: induced by Ξ ×R



Lecture II - Ultrametric Cantor Sets



I - Michon’s Trees
G. Michon, “Les Cantors réguliers”, C. R. Acad. Sci. Paris Sér. I Math., (19), 300, (1985) 673-675.
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Definition A Cantor set is a compact, completely disconnected set
without isolated points

Theorem Any Cantor set is homeomorphic to {0, 1}N.
L. Brouwer, “On the structure of perfect sets of points”, Proc. Akad. Amsterdam, 12, (1910), 785-794.

Hence without extra structure there is only one Cantor set.



I.2)- Metrics
Definition Let X be a set. A metric d on X is a map d : X × X 7→ R+

such that, for all x, y, z ∈ X
(i) d(x, y) = 0 if and only if x = y,
(ii) d(x, y) = d(y, x),
(iii) d(x, y) ≤ d(x, z) + d(z, y).



I.2)- Metrics
Definition Let X be a set. A metric d on X is a map d : X × X 7→ R+

such that, for all x, y, z ∈ X
(i) d(x, y) = 0 if and only if x = y,
(ii) d(x, y) = d(y, x),
(iii) d(x, y) ≤ d(x, z) + d(z, y).

Definition A metric d on a set X is an ultrametric if it satisfies

d(x, y) ≤ max{d(x, z), d(z, y)}

for all family x, y, z of points of C.



Given (C, d) a metric space, for ε > 0 let ε
∼ be the equivalence

relation defined by

x ε
∼ y ⇔ ∃x0 = x, x1, · · · , xn−1, xn = y d(xk−1, xk) < ε
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Given (C, d) a metric space, for ε > 0 let ε
∼ be the equivalence

relation defined by

x ε
∼ y ⇔ ∃x0 = x, x1, · · · , xn−1, xn = y d(xk−1, xk) < ε

Theorem Let (C, d) be a metric Cantor set. Then there is a sequence
ε1 > ε2 > · · · εn > · · · ≥ 0 converging to 0, such that ε∼ =

εn
∼ whenever

εn ≥ ε > εn+1.

For each ε > 0 there is a finite number of equivalence classes and each of
them is close and open.

Moreover, the sequence [x]εn of clopen sets converges to {x} as n→∞.



I.3)- Michon’s graph



I.3)- Michon’s graph
Set

• V0 = {C} (called the root),



I.3)- Michon’s graph
Set

• V0 = {C} (called the root),

• for n ≥ 1, Vn = {[x]εn; x ∈ C},



I.3)- Michon’s graph
Set

• V0 = {C} (called the root),

• for n ≥ 1, Vn = {[x]εn; x ∈ C},

• V is the disjoint union of the Vn’s,



I.3)- Michon’s graph
Set

• V0 = {C} (called the root),

• for n ≥ 1, Vn = {[x]εn; x ∈ C},

• V is the disjoint union of the Vn’s,

• E = {(v, v′) ∈ V × V ; ∃n ∈N , v ∈ Vn, v′ ∈ Vn+1 , v′ ⊂ v},



I.3)- Michon’s graph
Set

• V0 = {C} (called the root),

• for n ≥ 1, Vn = {[x]εn; x ∈ C},

• V is the disjoint union of the Vn’s,

• E = {(v, v′) ∈ V × V ; ∃n ∈N , v ∈ Vn, v′ ∈ Vn+1 , v′ ⊂ v},

• δ(v) = diam{v}.



I.3)- Michon’s graph
Set

• V0 = {C} (called the root),

• for n ≥ 1, Vn = {[x]εn; x ∈ C},

• V is the disjoint union of the Vn’s,

• E = {(v, v′) ∈ V × V ; ∃n ∈N , v ∈ Vn, v′ ∈ Vn+1 , v′ ⊂ v},

• δ(v) = diam{v}.

The family T = (C,V ,E , δ) defines a weighted rooted tree, with
root C, set of vertices V , set of edges E and weight δ
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I.4)- The boundary of a tree
Let T = (0,V ,E ) be a rooted tree. It will be called Cantorian if

• Each vertex admits one descendant with more than one child

• Each vertex has only a finite number of children.

Then ∂T is the set of infinite path starting form the root. If v ∈ V
then [v] will denote the set of such paths passing through v

Theorem The family {[v] ; v ∈ V } is the basis of a topology making ∂T
a Cantor set.
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A weight on T is a map δ : V 7→ R+ such that

• If w ∈ V is a child of v then δ(v) ≥ δ(w),

• If v ∈ V has only one child w then δ(v) = δ(w),

• If vn is the decreasing sequence of vertices along an infinite
path x ∈ ∂T then limn→∞ δ(vn) = 0.

Theorem If T is a Cantorian rooted tree with a weight δ, then ∂T
admits a canonical ultrametric dδ defined by.

dδ(x, y) = δ([x ∧ y])

where [x ∧ y] is the least common ancestor of x and y.



The least common ancestor of x and y



Theorem Let T be a Cantorian rooted tree with weight δ. Then if
v ∈ V , δ(v) coincides with the diameter of [v] for the canonical metric.
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Theorem Let T be a Cantorian rooted tree with weight δ. Then if
v ∈ V , δ(v) coincides with the diameter of [v] for the canonical metric.

Conversely, if T is the Michon tree of a metric Cantor set (C, d), with
weight δ(v) = diam(v), then there is a contracting homeomorphism
from (C, d) onto (∂T , dδ) and dδ is the smallest ultrametric dominating
d.

In particular, if d is an ultrametric, then d = dδ and the homeomorphism
is an isometry.

This gives a representation of all ultrametric Cantor sets together
with a parametrization of the space of ultrametrics.



II - Spectral Triples
A. Connes, Noncommutative Geometry, Academic Press, 1994.
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II.1)- Spectral Triples
A spectral triple is a family (H ,A,D), such that

• H is a Hilbert space

• A is a ∗-algebra invariant by holomorphic functional calculus,
with a representation π intoH by bounded operators

• D is a self-adjoint operator on H with compact resolvent such
that [D, π( f )] ∈ B(H) is a bounded operator for all f ∈ A.

• (H ,A,D) is called even if there is G ∈ B(H) such that

– G = G∗ = G−1

– [G, π( f )] = 0 for f ∈ A
– GD = −DG
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II.2)- The spectral triple of an ultrametric Cantor set
Let T = (C,V ,E , δ) be the reduced Michon tree associated with an
ultrametric Cantor set (C, d). Then

• H = `2(V )⊗C2: any ψ ∈ H will be seen as a sequence (ψv)v∈V
with ψv ∈ C2

• G, D are defined by

(Dψ)v =
1
δ(v)

[
0 1
1 0

]
ψv (Gψ)v =

[
1 0
0 −1

]
ψv

so that they anticommute.

• A = CLip(C) is the space of Lipshitz continuous functions on
(C, d)
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II.3)- Choices
The tree T is reduced, meaning that only the vertices with more
than one child are considered.

A choice will be a function τ : V 7→ C × C such that if τ(v) = (x, y)
then

• x, y ∈ [v]

• d(x, y) = δ(v) = diam([v])

Let Ch(v) be the set of children of v. Consequently, the set Υ(C) of
choices is given by

Υ(C) =
∏
v∈V

Υv Υv =
⊔

w,w′∈ Ch(v)

[w] × [w′]



The set V of vertices can be seen as a coarse-grained approximation of
the Cantor set C.
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The set V of vertices can be seen as a coarse-grained approximation of
the Cantor set C.

Similarly, the set Υv can be seen as a coarse-grained approximation the
unit tangent vectors at v.

Within this interpretation, the set Υ(C) can be seen as the unit sphere
bundle inside the tangent bundle.
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II.4)- Representations ofA
Let τ ∈ Υ(C) be a choice. If v ∈ V write τ(v) = (τ+(v), τ−(v)). Then
πτ is the representation of CLip(C) intoH defined by

(
πτ( f )ψ

)
v =

[
f (τ+(v)) 0

0 f (τ−(v))

]
ψv f ∈ CLip(C)

Theorem The distance d on C can be recovered from the following
Connes formula

d(x, y) = sup

∣∣∣ f (x) − f (y)
∣∣∣ ; sup

τ∈Υ(C)
‖[D, πτ( f )]‖ ≤ 1





Remark: the commutator [D, πτ( f )] is given by

(
[D, πτ( f )]ψ

)
v =

f (τ+(v)) − f (τ−(v))
dδ (τ+(v), τ−(v))

[
0 −1

+1 0

]
ψv



Remark: the commutator [D, πτ( f )] is given by

(
[D, πτ( f )]ψ

)
v =

f (τ+(v)) − f (τ−(v))
dδ (τ+(v), τ−(v))

[
0 −1

+1 0

]
ψv

In particular supτ ‖[D, πτ( f )]‖ is the Lipshitz norm of f

‖ f ‖Lip = sup
x,y∈C

∣∣∣∣∣∣ f (x) − f (y)
dδ(x, y)

∣∣∣∣∣∣



III - ζ-function and Metric Measure
A. Connes, Noncommutative Geometry, Academic Press, 1994.

K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, John Wiley and Sons 1990.

G.H. Hardy & M. Riesz, The General Theory of Dirichlet’s Series, Cambridge University Press (1915).
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III.1)- ζ-function
The ζ-function of the Dirac operator is defined by

ζ(s) = Tr
(

1
|D|s

)
s ∈ C

The abscissa of convergence is the smallest positive real number
s0 > 0 so that the series defined by the trace above converges for
<(s) > s0.

Theorem Let (C, d) be an ultrametric Cantor set. The abscissa of con-
vergence of the ζ-function of the corresponding Dirac operator coincides
with the upper box dimension of (C, d).
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• The upper box dimension of a compact metric space (X, d) is
defined by

dimB(C) = lim sup
δ↓0

log Nδ(C)
− log δ

where Nδ(X) is the least number of sets of diameter at most δ
that cover X.

• Thanks to the definition of the Dirac operator

ζ(s) = 2
∑
v∈V

δ(v)s

• There are examples of metric Cantor sets with infinite upper box
dimension. This is the case for the transversal of tilings with
positive entropy.
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III.2)- Dixmier Trace & Metric Measure
If the abscissa of convergence is finite, then a probability measure µ
on (C, d) can be defined as follows (if the limit exists)

µ( f ) = lim
s↓s0

Tr
(
|D|−sπτ( f )

)
Tr (|D|−s)

f ∈ CLip(C)

This limit coincides with the normalized Dixmier trace

Tr Dix

(
|D|−s0πτ( f )

)
Tr Dix (|D|−s0)

Theorem The definition of the Metric Measure µ is independent of the
choice τ.
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• If ζ admits an isolated simple pole at s = s0, then |D|−1 belongs
to the Mačaev ideal Ls0+(H). Therefore the measure µ is well
defined.

• There is a large class of Cantor sets (such as Iterated Function
System) for which the measure µ coincides with the Hausdorff
measure associated with the upper box dimension.

• In particular µ is the metric analog of the Lebesgue measure class on
a Riemannian manifold, in that the measure of a ball of radius
r behaves like rs0 for r small

µ(B(x, r)) r↓0
∼ rs0

• µ is the analog of the volume form on a Riemannian manifold.



As a consequence µ defines a canonical probability measure ν on the
space of choices Υ as follows

ν =
⊗
v∈V

νv νv =
1

Zv

∑
w,w′∈Ch(v)

µ ⊗ µ|[w]×[w]

where Zv is a normalization constant given by

Zv =
∑

w,w′∈Ch(v)

µ([w])µ([w′])
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IV.1)- Dirichlet Forms
Let (X, µ) be a probability space space. For f a real valued measur-
able function on X, let f̂ be the function obtained as

f̂ (x) =


1 if f (x) ≥ 1
f (x) if 0 ≤ f (x) ≤ 1
0 if f (x) ≤ 0

A Dirichlet form Q on X is a positive definite sesquilinear form
Q : L2(X, µ) × L2(X, µ) 7→ C such that

• Q is densely defined with domain D ⊂ L2(X, µ)

• Q is closed

• Q is Markovian, namely if f ∈ D , then Q( f̂ , f̂ ) ≤ Q( f , f )



The simplest typical example of Dirichlet form is related to the
Laplacian ∆Ω on a bounded domain Ω ⊂ RD

QΩ( f , g) =

∫
Ω

dDx ∇ f (x) · ∇g(x)

with domain D = C1
0(Ω) the space of continuously differentiable

functions on Ω vanishing on the boundary.

This form is closeable in L2(Ω) and its closure defines a Dirichlet form.
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Any closed positive sesquilinear form Q on a Hilbert space, de-
fines canonically a positive self-adjoint operator −∆Q satisfying

〈 f | − ∆Q g〉 = Q( f , g)

In particular Φt = exp (t∆Q) (defined for t ∈ R+) is a strongly
continuous contraction semigroup.

If Q is a Dirichlet form on X, then the contraction semigroup
Φ = (Φt)t≥0 is a Markov semigroup.
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A Markov semi-group Φ on L2(X, µ) is a family (Φt)t∈[0,+∞) where

• For each t ≥ 0, Φt is a contraction from L2(X, µ) into itself

• (Markov property) Φt ◦Φs = Φt+s

• (Strong continuity) the map t ∈ [0,+∞) 7→ Φt is
strongly continuous

• ∀t ≥ 0, Φt is positivity preserving : f ≥ 0 ⇒ Φt( f ) ≥ 0

• Φt is normalized, namely Φt(1) = 1.

Theorem (Fukushima) A contraction semi-group on L2(X, µ) is a
Markov semi-group if and only if its generator is defined by a Dirichlet
form.
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IV.2)- The Laplace-Beltrami Form
Let M be a Riemannian manifold of dimension D. The Laplace-
Beltrami operator is associated with the Dirichlet form

QM( f , g) =

D∑
i, j=1

∫
M

dDx
√

det(g(x)) gi j(x) ∂i f (x) ∂ jg(x)

where g is the metric. Equivalently (in local coordinates)

QM( f , g) =

∫
M

dDx
√

det(g(x))
∫

S(x)
dνx(u) u · ∇ f (x) u · ∇g(x)

where S(x) represent the unit sphere in the tangent space whereas
νx is the normalized Haar measure on S(x).
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can be interpreted as a directional derivative, analogous to u · ∇ f ,
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Similarly, if (C, d) is an ultrametric Cantor set, the expression

[D, πτ( f )]

can be interpreted as a directional derivative, analogous to u · ∇ f ,
since a choice τ has been interpreted as a unit tangent vector.

The Laplace-Pearson operators are defined, by analogy, by

Qs( f , g) =

∫
Υ

dν(τ) Tr
{

1
|D|s

[D, πτ( f )]∗ [D, πτ(g)]
}

for f , g ∈ CLip(C) and s > 0.
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Let D be the linear subspace of L2(C, µ) generated by the charac-
teristic functions of the clopen sets [v] , v ∈ V . Then

Theorem For any s ∈ R, the form Qs defined on D is closeable on
L2(C, µ) and its closure is a Dirichlet form.

The corresponding operator −∆s leaves D invariant, has a discrete spec-
trum.

For s < s0 + 2, −∆s is unbounded with compact resolvent.
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IV.3)- Jumps Process over Gaps
∆s generates a Markov semigroup,
thus a stochastic process (Xt)t≥0 where the Xt’s takes on values in
C.

Given v ∈ V , its spine is the set of vertices located along the finite
path joining the root to v. The vineV(v) of v is the set of vertices
w, not in the spine, which are children of one vertex of the spine.

Then if χv is the characteristic function of [v]

∆sχv =
∑

w∈V(v)

p(v,w)(χw − χv)

where p(v,w) > 0 represents the probability for Xt to jump from v to
w per unit time.



The vine of a vertex v



Jump process from v to w



The tree for the triadic ring Z(3)



Jump process in Z(3)
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Jump process in Z(3)



Concretely, if ŵ denotes the father of w (which belongs to the spine)

p(v,w) = 2δ(ŵ)s−2 µ([v])
Zŵ

where Zŵ is the normalization constant for the measure νŵ on the
set of choices at ŵ, namely

Zŵ =
∑

u,u′∈Ch(ŵ)

µ([u])µ([u′])
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IV.4)- Eigenspaces
Let v be a vertex of the Michon graph with Ch(v) as its set of
children. Let Ev be the linear space generated by the characteristic
function χw of the [w]’s with w ∈ Ch(v). In particular

χv =
∑

w∈Ch(v)

χw ∈ Ev .

Theorem For any s ∈ R, the eigenspaces of −∆s are the spaces of the
form {χv}⊥ ⊂ Ev, namely, the orthogonal complement of χv is Ev .



V - To conclude



• Ultrametric Cantor sets can be described as Riemannian mani-
folds, through Noncommutative Geometry.

• An analog of the tangent unit sphere is given by choices

• The upper box dimension plays the role of the dimension

• A volume measure is defined through the Dixmier trace

• A Laplace-Beltrami operator is defined with compact resolvent
and Weyl asymptotics

• It generates a jump process playing the role of the Brownian
motion.

• This process exhibits anomalous diffusion.



Recent Progress
I. Palmer, Noncommutative Geometry and Compact Metric Spaces, PhD Thesis, Georgia Tech, May 2010.

J. Cheeger, Differentiability of Lipschitz continuous Functions on Metric Measure Spaces
GAFA, Geom. funct. anal., 9, 428-517, (1999).

• The construction of a spectral triple can be extended to any
compact metric space if the partitions by clopen sets are replaces
by suitable open covers.

• If the compact metric space (X, d) has finite Hausdorff dimension
then the spectral triple can be chosen to admits dimH(X) as
abscissa of convergence.

• If (X, d) admits a positive finite Hausdorff measure the spectral
triple can be constructed so as to have the measure µ, defined
by the Dixmier trace, equal to the normalized Hausdorf measure.

• Under some extra local regularity property on (X, d) a Laplace-
Beltrami operator be defined (J. Cheeger).



Lecture III - Spectral Metric Spaces



I - Spectral Triples and Dynamics



Spectral Triples
A spectral triple for a C∗-algebraA is a family X = (A,H ,D) where
H is a Hilbert space, D and unbounded operator onH such that
• there is a (faithful) representation π : A→ B(H)

• D is selfadjoint with compact resolvent (Dirac operator)

• there is a core D ⊂ H for D and a ∗-invariant subset A ⊂ A,
generatingA, such that any element a ∈ A leavesD invariant
and such that [D, a] is bounded.

Remark: Then the set C1(X) = {a ∈ A ; ‖[D, a]‖ < ∞} is a dense
∗-subalgebra ofA, invariant under the holomorphic functional calculus.

A ∗-automorphism α on A is a quasi-isometry on X if α and α−1

leave C1(X) invariant. Then (X, α) is called a metric dynamical
system.



Example
Let M be a spinc Riemannian manifold, A = C(M), H the space
of L2-sections of the spin bundle and D the corresponding Dirac
operator, whereA acts by pointwise multiplication.

Theorem (Connes) The family XM = (A,H ,D) above is a spectral
triple. The geodesic distance between x, y ∈M can be recovered through

d(x, y) = sup{| f (x) − f (y)| ; f ∈ A, ‖[D, f ]‖ ≤ 1}

Actually ‖[D, f ]‖ = ‖∇ f ‖L∞ = ‖ f ‖CLip
and C1(X) = Lip(M).

The geodesic flow defines a one-parameter group of quasi-isome-
tries (actually isometries) onA.



Problem

Let (X, α) = (A,H ,D, α) be a metric dynamical system.

Is there a canonical spectral triple Y = (A oα Z,K , D̂), based on the
crossed product algebra induced by the dynamics, inducing on X an
equivalent metric structure ?

It will be shown that the answer is YES only when α is equivalent
to an isometry.



Problem

If α cannot be reduced to an isometry, then, following the Connes-
Moscovici approach, the analog of the metric bundle construction
gives a way to change X into a new spectral triple X̂ on which
α induces a dynamic α̂ which becomes an isometry and allows to
make the construction.

The latter construction comes with a price: X̂ is no longer compact
on which the metric is unbounded in general.

This is a source of technical difficulties that are not understood fully
yet.



II - The Basic Construction



Compact Spectral Metric Spaces
Let X = (A,H ,D) be a spectral triple.
It will be called compact wheneverA is unital.
It will be called a spectral metric space if

• The D-commutantA′D = {a ∈ A ; [D, a] = 0} is reduced to C1

• The Lipshitz ball BLip = {a ∈ A ; ‖ [D, a] ‖ ≤ 1} has a precompact
image inA/A′D.

Theorem (Pavlovic, Rieffel) A compact spectral triple is a spectral
metric space if and only if the Connes distance on the state space

d(ρ,ω) = sup{|ρ(a) − ω(a)| ; a ∈ A, ‖ [D, a] ‖ ≤ 1}

is bounded and generates the weak∗-topology.



Quasi-isometries
Let Qiso(X) be the set of quasi-isometries of the compact spectral
metric space X = (A,H ,D). Then

Proposition A ∗-automorphism ofA is a quasi-isometry if and only if
it generates a bi-Lipshitz transformation of the state space, namely there
is C > 0 such that

1
C

d(ρ,ω) ≤ d(ρ ◦ α,ω ◦ α) ≤ C d(ρ,ω)

for every pair of states (ρ,ω).



Equicontinuity
Let X = (A,H ,D) be a compact spectral metric space. A quasi-
isometry α ∈ Qiso(X) is called equicontinuous whenever

sup
n∈Z
‖ [D, αn(a)] ‖ < ∞ ∀a ∈ C1(X)

Theorem A quasi-isometry is equicontinuous if and only if the group
it generates in the set of ∗-automorphism ofA has a compact closure

α ∈ Qiso(X) is called an isometry whenever

‖ [D, a] ‖ = ‖ [D, α(a)] ‖ ∀a ∈ C1(X)

Proposition (Rieffel)α ∈ Qiso(X) is an isometry if and only if it
defines an isometry in the state space for the Connes metric.



Main Result
LetA be a unital separable C∗-algebra.
Let α be a ∗-automorphism ofA.
Then, let u denotes the unitary implementing α inA oαZ.

Theorem There is a spectral metric space X = (A,H ,D) based on A
for which α is equicontinuous if and only if there is a spectral metric
space Y = (A oαZ,K , D̂), based on the crossed product, such that

• The dual action onA oαZ is equicontinuous

• u−1 [D̂,u] is bounded and commutes to the elements ofA

• The Connes metrics induced by X and by Y on the state space of A
are equivalent



Constructing Y

•Hilbert space: K = H ⊗ `2(Z) ⊗ C2

Then f ∈ K ⇔ f = ( fn+, fn−)n∈Z with fn± ∈ H

• Representation: left regular representation π̂ ofA oαZ

(
π̂(a) f

)
n = α−n(a) fn

(
π̂(u) f

)
n = fn−1 a ∈ A

•Dirac operator: (
D̂ f

)
n

=

[
0 D − ın

D + ın 0

]
fn



Properties of Y

• Commutator with D̂:(
[D̂, π̂(a)] f

)
n

=

[
0 1
1 0

]
[D, α−n(a)] fn

Hence [D̂, π̂(a)] is bounded if and only if α ∈ Qiso(X).(
π̂(u−1)[D̂, π̂(u)] f

)
n

=

[
0 −ı
ı 0

]
fn

Hence u−1[D̂,u] commutes with the elements ofA.

•Dual action: (
vk f

)
n = e−ıkn fn k ∈ T

commutes with D̂, thus is isometric



Properties of Y
Lemma: (difficult) The Lipshitz Ball of Y is precompact modulo the
D̂-commutant

Lemma: The metric induced on the state space ofA by D̂ is equivalent
to the metric induced by X and makes α an isometry

The last result shows that the basic construction is the noncommu-
tative analog of the construction of an invariant metric on a classical
metric space when the action is provided by an equicontinuous
bi-Lipshitz homeomorphism.



Examples
Crossed product algebra C(M) oφ Z if M is a compact metric space
and φ an isometry or, more generally, an homeomorphism satisfying

sup
n∈Z

sup
x,y

d(φn(x), φn(y))
d(x, y)

 < ∞

• For instance the action of an odometer on the Cantor set can be
seen in this way.

• Any Kronecker flow on a torus (leading to a noncommutative
torus)

• The geodesic flow at time t = 1 on a compact spinc Riemannian
manifold



III - The Metric Bundle



Examples

Arnold’s cat map:A = C(T2) ,H = L2(T2) ⊗ C2, and

D =

[
0 −ı∂1 − ∂2

−ı∂1 + ∂2 0

]
, φ(x) =

[
2 1
1 1

]
x ,

with α( f ) = f ◦ φ−1. Then α is a quasi-isometry that is not equicon-
tinuous

‖ [D, αn( f )] ‖ |n|↑∞∼

√5 + 1
2

|n|
More generally any strictly hyperbolic map on a compact metric
space (Smale spaces) will give rise to a similar situation.



The Metric Bundle

If M is a smooth manifold, the metric bundle is a principle bundle
over M such that the fiber over each point is the cone of possible
positive definite metrics on the tangent space.

Connes and Moscovici have shown that this bundle admits a
tautological Riemannian structure that is invariant by the diffeomor-
phisms of M. In particular each diffeomorphim becomes an isom-
etry for this structure.



The Metric Bundle

If φ is a diffeomorphism of M, it is sufficient to restrict this bundle
to the orbits of φ with its Riemannian structure.

The C∗-algebra of this orbit is the tensor product C(M) ⊗ c0(Z). The
action of φ on the Z-part is reduced to the shift.



Metric on Z
Let dZ be a bounded translation invariant metric onZ. Then a spectral
triple, based on c0(Z), can be defined as follows

• Clifford matrices: γ1, · · · , γ4 acting on the Hilbert space E

•Hilbert Space: `2(Z ×N) ⊗ E

•Operators:,

(
∇ f

)
n,r =

fn,r − fn−r,r
dZ(n,n − r)

,
(
X f

)
n,r =

(
nγ3 +

1
dZ(0, r)2γ4

)
fn,r

•Dirac operator:

DZ =
γ1 + ıγ2

2
∇ +

γ1 − ıγ2
2

∇
∗ + X.



Metric on Z
Ref.: F. Latrémolière, Taiwanese J. of Math., 11, (2007), 447-469.

Proposition: (c0(Z), `2(Z ×N) ⊗ E,DZ) is a spectral triple.
Its Lipshitz Ball BLip is bounded and, for any strictly positive sequence
h ∈ c0(Z), hBLiph is precompact.
In particular, while the state space of c0(Z) is not weak∗-compact, the
Connes distance is bounded and generates the weak∗-topology.



The Spectral Metric Bundle

Theorem: Let X = (A,H ,D) be a compact spectral metric space. Let
α ∈ Qiso(X) be non-equicontinuous.

Then there is a spectral triple Y = (A⊗ c0(Z),K ,DK ) which is a non-
compact spectral metric space for which the Connes metric is bounded
on which α can be extended as an isometry.

Moreover, K support a representation of C = A ⊗ c0(Z) oα Z which
makes Z = (C,K ,DK ) a spectral metric space on which the dual action
is equicontinuous with respect to the weak-uniform topology.



The Spectral Metric Bundle
Let X = (A,H ,D) be a compact spectral metric space and let
α ∈ Qiso(X). If α is not equicontinuous, then Y will be the spectral
triple built as follows

• A is replaced byA⊗ c0(Z). Then α is extended as

α̂(b)n = α(bn−1) , b ∈ A ⊗ c0(Z)

•Hilbert space: K = H ⊗ `2(Z ×N) ⊗ E, where now, E is the
representation space for five Clifford matrices.

• Representation:(
b f

)
n,r = α−n(bn) fn,r , b ∈ A ⊗ c0(Z)



The Spectral Metric Bundle

•Dirac operator: DK = DZ + γ5 D

• The action α̂(
u f

)
n,r = fn−1,r , ⇒ ubu1 = α̂(b)

• Then u−1[DK ,u] is bounded and commutes with the elements
ofA⊗ c0(Z).

• In particular α̂ is isometric on Y.

•Moreover, K supports a representation of the crossed product
C = A⊗ c0(Z) oα̂Z.



The Spectral Metric Bundle

•Dual action:(
vk f

)
n,r = eıkn fn,r , ⇒ vkuv−1

k = eıku

This dual action is not equicontinuous for the norm topology.
However it is equicontinuous for the weak-uniform topology.

• If CLip is the Lipshitz ball in the crossed product, then there is h
strictly positive in C = A ⊗ c0(Z) oα̂ Z such that hCLiph is norm
compact.

• this is enough to show that the Connes metric associated with
the triple (C,K ,DK ) generates the weak∗-topology in the state
space.



IV - Conclusion and Remarks



To Conclude

1. Equicontinuity of a quasi-isometry is necessary and sufficient to
built a spectral metric space over the crossed product algebra.

2. If equicontinuity fails, the metric bundle construction, restricted
to the orbit of the dynamical system, provides a way to make
the dynamics isometric.

3. As long as the metric chosen along this orbit is bounded the
construction is under control: the Connes metric generates the
weak∗ topology on the state space.



Open Problems

1. Can this construction be extended to the case of a group action ?
Say for discrete groups with a length function ?

2. •What if the metric on Z chosen along the orbit in the metric
bundle, is unbounded (like the usual metric on Z) ?

•More generally, is there an analog of the Rieffel-Pavlovič
result for spectral triples for which the Lipshitz ball is un-
bounded ? Namely, what are the condition for the Connes
metric to generate the weak∗-topology ?

• This is the noncommutative analog of the Wasserstein distance
on the set of probabilities on a complete (unbounded) metric
space.


