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Main Result

Theorem

Let H be a pattern equivariant self-adjoint operator defined on a one-
dimensional aperiodic FLC lattice.

Then there is a sequence of periodic approximants, the spectrum of which
converges exponentially fast w.r.t. the period, in the Hausdorff metric.

In addition the spectral measures of the approximants converges weakly
to the spectral measure of the limit



I - GAP-graphs
J. E. Anderson, I. Putnam,

Topological invariants for substitution tilings and their associated C∗-algebras,
Ergodic Theory Dynam. Systems, 18, (1998), 509-537.

F. Gähler, Talk given at Aperiodic Order, Dynamical Systems, Operator Algebra and Topology
Victoria, BC, August 4-8, 2002, unpublished.



One-Dimensional FLC Atomic Sets

• Atoms are labelled by their species (color ck) and by
their position xk with x0 = 0

• The colored proto-tile is the pair ([0, xk+1 − xk], ck)

• Finite Local Complexity: (FLC)
the set A of colored proto-tiles is finite,
it plays the role of an alphabet.

• The atomic configuration L is represented by a dotted infinite
word

· · · a−3 a−2 a−1 • a0 a1 a2 · · · • = origin



Collared Proto-points and Proto-tiles

• The set of finite sub-words in the atomic configuration L is de-
noted by W

• If u ∈W is a finite word, |u| denotes its length.

• Vl,r is the set of (l, r)-collared proto-point, namely, a dotted word
u · v with

uv ∈W |u| = l |v| = r

• El,r is the set of (l, r)-collared proto-tiles, namely, a dotted word
u · a · v with

a ∈ A uav ∈W |u| = l |v| = r



Restriction and Boundary Maps

• If l′ ≥ l and r′ ≥ r then πv
(l,r)←(l′,r′) : Vl′,r′ → Vl,r is the natural

restriction map pruning the l′ − l leftmost letter and the r′ − r
rightmost letters⇒ compatibility.

• Similarly πe
(l,r)←(l′,r′) : El′,r′ → El,r,⇒ compatibility.

• Boundary Maps: if e = u · a · v ∈ El,r then

∂0e = πv
(l,r)←(l,r+1)(u · av) ∂1e = πv

(l,r)←(l+1,r)(ua · v)



GAP-graphs

•GAP: stands for Gähler-Anderson-Putnam

•GAP-graph: Gl,r = (Vl,r ,El,r , ∂) is an oriented graph.

• The restriction map π(l,r)←(l′,r′) = (πv
(l,r)←(l′,r′), π

e
(l,r)←(l′,r′)) is a

graph map (compatible with the boundary maps)

π(l,r)←(l′,r′) : Gl′,r′ → Gl,r

π(l,r)←(l′,r′) ◦ π(l′,r′)←(l”,r”) = π(l,r)←(l”,r”) (compatibility)

(l, r) ≤ (l′, r′) ≤ (l”, r”) (with (l, r) ≤ (l′r′)⇔ l ≤ l′ , r ≤ r′)



GAP-graphs Properties

• Theorem If n = l + r = l′ + r′ then Gl,r and Gl′,r′ are isomorphic
graphs. They all might be denoted by Gn

• Any GAP-graph is connected without dandling vertex

• Loops are Growing: if L is aperiodic the minimum size of a loop
in Gn grows as n→∞



II - Examples of GAP-graphs



The Fibonacci Tiling

• Alphabet: A = {a, b}

• Fibonacci sequence: generated by the substitution a→ ab , b→
a starting from either a · a or b · a

Left: G1,1 Right: G8,8



The Thue-Morse Tiling

• Alphabet: A = {a, b}

• Thue-Morse sequences: generated by the substitution a →
ab , b→ ba starting from either a · a or b · a

Thue-Morse G1,1



The Rudin-Shapiro Tiling

• Alphabet: A = {a, b, c, d}

• Rudin-Shapiro sequences: generated by the substitution a→
ab , b → ac , c → db , d → dc starting from either b · a , c · a or
b · d , c · d

Rudin-Shapiro G1,1



The Full Shift on Two Letters

• Alphabet: A = {a, b} all possible word allowed.

G1,2 G2,2



III - Graph Complexity



Complexity Function

• The complexity function of L is p = (p(n))n∈N where p(n) is the
number of words of length n.

• L is Sturmian if p(n) = n + 1

• L is amenable if

lim
n→∞

p(n + 1)
p(n)

= 1

• The configurational entropy of a sequence is defined as

h = lim sup
n→∞

ln(p(n))
n

• Amenable sequence have zero configurational entropy



Branching Points of a GAP-graph

• A vertex v of Gl,r is a forward branching point if there is more
then one edge starting at v. It is a backward branching point if
there is more then one edge ending at v.

• The number of forward (backward) branching points is bounded
by p(n + 1) − p(n)

• Any GAP-graph of a Sturmian sequence has at most one forward and
one backward branching points.

• L is amenable if and only if the number of branching points in Gn
becomes eventually negligible as n→∞

• If the configurational entropy h is positive the ratio of the number of
branching points in Gn to the number of vertices is bounded below by
eh
− 1 in the limit n→∞



IV - Global Properties



The Tiling Space

• The ordered set {(l, r) ∈N2 ; ≤} is a net and the restriction maps
are compatible.

• The tiling space of L is the inverse limit

Ξ = lim
←

(
Vl,r , π

v
(l,r)←(l′,r′)

)
• The Tiling Space of L is compact and completely disconnected. If no

element of Ξ is periodic then Ξ is a Cantor set.

• The Tiling Space of L can be identified with the subset of the orbit of
L by translation, made of configurations with one atom at the origin.



The Groupoid of the Transversal

• Given a letter a ∈ A, let Ξ(·a) (resp. Ξ(a·)) be the set of points
in Ξ made of sequences of the form u · av (resp. ua · v)) with u, v
one-sided infinite words. Then there is a canonical homeomorphism
sa : Ξ(·a)→ Ξ(a·) obtained from the inverse limit of the GAP-graphs
as moving the dot by one edge.

• The family of partial maps {sa ; a ∈ A}generates a locally compact
étale groupoid ΓΞ with unit space Ξ.



The Lagarias group

• The Lagarias group L is the free abelian group generated by the
alphabet A. By FLC, L has finite rank.

• Given a GAP-graph Gn, Ln ⊂ L is the subgroup generated
by the words representing the union of edges separating two
branching points. Ln has finite index.

• The Lagarias-Brillouin (LB)-zones are the dual groups

Bn = Hom{Ln,T}

• Reminder: If B ⊂ A are abelian groups with dual A∗ , B∗, then B∗

is isomorphic to A∗/B⊥ and B⊥ is isomorphic to the dual of A/B



Address Map

• Since one atom is at the origin, L can be mapped into the
Lagarias group: this is the address map.



V - Bloch Theory



Labeling atomic sites

• For ξ ∈ Ξ let Lξ denotes the atomic configuration associated
with ξ, which can be seen as a doubly infinite dotted word, the
dot representing the position of the origin.

• Letters in A are the generators of L.
Through the address map, Lξ ⊂ L.

• For a proto-point of the form v = a−l · · · a−1 • a1 · · · ar let Lξ(v)
denote the set of elements x ∈ Lξ such that

x − a−1 + · · · − a−i ∈ Lξ 1 ≤ i ≤ l

x + a1 + · · · + a j ∈ Lξ 1 ≤ j ≤ r

Remark: v is a vertex in the GAP-graph Gl,r.



Hilbert Spaces

• Through Fourier transformK = `2(L) ' L2(B).

• LetHξ = `2(Lξ) ⊂ K with orthogonal projection Πξ.

• Hξ(v) = `2(Lξ(v)) ⊂ Hξ with projection Pξ(v). Then

Vl,r 3 v , w ⇒ Pξ(v) ⊥ Pξ(w)
∑

v∈Vl,r

Pξ(v) = Πξ



Wannier Transform

•Wannier transform: if f ∈ Hξ , v ∈ Vl,r , κ ∈ B

(Wξ f )(v;κ) =
∑

x∈Lξ(v)

f (x) eıκ·x

• Parseval Formula:∑
v∈Vl,r

∫
B

dκ
∣∣∣(Wξ f )(v;κ)

∣∣∣2 =
∑

x∈Lξ(v)

| f (x)|2

• In particularWξ f ∈ `2(Vl,r) ⊗ΠξL2(B)



Shift Representation

• Given a letter a ∈ A, two vertices v,w ∈ Vl,r are a-related, de-

noted by v a
→ w, if there is an edge e ∈ El,r of the form u · a · u′

with ∂0e = v , ∂1e = w

• Then

WξPξ(w)Sξ(a)Pξ(v)W−1
ξ =

{
eıκ·a if v a

→ w
0 otherwise

•Hence Sξ(a) is associated with the κ-dependent matrix indexed
by the vertices Vl,r

Sv,w(a;κ) =

{
eıκ·a if v a

→ w
0 otherwise



A Strategy For Spectral Theory

• Let H = H∗ be a polynomial w.r.t the shift operators {S(a) ; a ∈ A}
then:

H is called pattern-equivariant

• Let Hξ be its representative inHξ:

How can one get its spectral properties ?

• The Main Idea:

– Replace H by the corresponding polynomial in the matrices Sv,w(a;κ),
– Compute the spectrum (band spectrum)
– Let (l, r)→∞

Hopefully the spectrum of H is recovered in the limit.



The Branching Points Problem

• If u is a branching point a-related to both v,w, the matrix
Sv,w(a;κ) admits the following submatrixs

T = eıκ·a
u→

v→

w→

u v w︷   ︸︸   ︷ 0 0 0
1 0 0
1 0 0

 ⇒ ‖T∗T‖ = 2

•Hence Sv,w(a;κ) cannot be a partial isometry, while Sξ(a) is.



The Branching Points Problem

• The following rules provides a solution: change the matrix ele-
ments corresponding to the edge e = v a

→ w into χe so that

T = eıκ·a

 0 0 0
χuv 0 0
χuw 0 0

 ⇒ ‖T∗T‖ = 1

• This requires the formal elements χe’s to commute and satisfy

χ2
e = χe = χ∗e

∑
e;∂0e=u

χe = 1
∑

e;∂1e=u

χe = 1

• This defect algebra is commutative and finite dimensional with
spectrum given by the set of branching points Bl,r.



The Branching Points Problem

• Choosing a point in the spectrum of the edge algebra leading
to defining paths in the GAP-graph.

• In such a case either none of these paths are closed or at least
one is closed: a loop will design a closed path.

• Loops provide periodic approximants for the initial lattice.

• Unclosed paths represents approximants with defects



VI - Periodic Approximants



The Augmented Tiling Space

• For each n, the set of loops in Gn is called On

• The idea is to glue together the vertices of each such loops with
the transversal and to define a topology of this set implying
that as n→∞ the loops are getting closer to Ξ.

• This can be done using an ultrametric d.

•Note: if the initial Delone set is aperiodic, the size of the loops
goes to infinity as n→∞.

• The result is the augmented tiling space (Ξ̂, d)



The Augmented Groupoid

• Each loop γ ∈ On admits a (periodic) Z-action by translation
along the loop. Hence it define a groupoid Γn,γ.

• The augmented groupoid Γ̂ is obtained by gluing together all the
Γn,γ’s with the groupoid ΓΞ of the transversal. This can be done
by using a topology implying that given any neighborhood U

of ΓΞ, there is some N ∈ N such that if n > N then Γn,γ is
included in U.



Continuous Field of Algebras

• The C∗-algebra C∗(̂Γ) can be seen as a continuous field of C∗-
algebras

(
C∗(Γn,γ)

)
n∈N,γ∈On

.

• Given a letter a ∈ A the partial map sa induces a partial isometry
S(a) in C∗(̂Γ), and consequently, evaluating it on each (n, γ) gives
a partial isometry in each of the C∗(Γn,γ)’s.

• The family {S(a) ; a ∈ A} generates C∗(̂Γ).

• Consequently if H = H∗ is a Hamiltonian constructed from the
S(a)’s gives rise to a family

(
Hn,γ

)
n∈N,γ∈On

of Hamiltonians,
which is a continuous vector field for the continuous field of
C∗-algebras including a family

(
Hξ

)
ξ∈Ξ

in the limit n→∞.



Convergence Results
J. Dixmier, Les C∗-algèbres et leurs représentations, Editions Jacques Gabay, 1969

Definition Let T be a topological space space. A family (At)t∈T of self-
adjoint operators on a Hilbert spaceH is called continuous if the maps
t ∈ T 7→ ‖p(At)‖ are continuous for each polynomial p.

Theorem If (At)t∈T is a continuous family of self-adjoint operators on
the Hilbert space H , then the spectrum edges and the gap edges of the
spectrum of At are continuous w.r.t. t ∈ T.



Convergence Results

Corollary The spectrum edges and the gap edges of the field
(
Hn,γ

)
n∈N,γ∈On

converges to the spectrum edges and the corresponding gap edges of Hξ
as n→∞.

Proposition The spectral measures of the field
(
Hn,γ

)
n∈N,γ∈On

con-
verges weakly to the corresponding spectral measures of Hξ as n→∞.



VII - Lipshitz Continuity



Lipshitz Constant

• Let (T, d) be a complete metric space. A function f : T → C is
called Lipshitz continuous on T if there is a constant K > 0 such
that

| f (s) − f (t)| ≤ K d(s, t) , s, t ∈ T

• If f : T→ C is Lipshitz continuous it Lipshitz constant is defined
by

‖ f ‖Lip = sup
s,t

| f (s) − f (t)|
d(s, t)



Gap Edges Continuity
Definition Let (T, d) be a complete metric space. A family (At)t∈T of
self-adjoint operators on a Hilbert spaceH is called Lipshitz continuous
if the maps t ∈ T 7→ ‖A2

t + aAt + b‖ are uniformly Lipshitz for a, b in a
compact subset of R.

Theorem If (At)t∈T is a Lipshitz continuous family of self-adjoint op-
erators on the Hilbert space H , such that supt ‖At‖ < ∞, then the
spectrum edges and the gap edges of the spectrum of At are Lipshitz
continuous w.r.t. t ∈ T as long as the corresponding gap is open, and
Hölder continuous of exponent 1/2 otherwise.



Lipshitz Continuity of the Norm
Let (T, d) be a complete metric space. Let (At)t∈T be a family of
operators on a Hilbert space H . Let D = (Dt)t∈T be a family of
self adjoint operator on H such that At leaves the domain of Dt
invariant for all t ∈ T.

Definition The family (At)t∈T is called weakly Lipshitz continuous
w.r.t. D whenever each states ψ ∈ H the Lipshitz constant of the map
t ∈ T 7→ 〈ψ|Atψ〉 is bounded by∥∥∥〈ψ|Atψ〉

∥∥∥Lip ≤ sup
t∈T
‖[D,At]‖ < ∞

Theorem If (At)t∈T is a weakly Lipshitz continuous family of opera-
tors on (H ,D), then t ∈ T 7→ ‖At‖ is Lipshitz continuous.



Ultrametric

• To us the previous arguments, the augmented tiling space Ξ̂ is
endowed with an ultrametric d.

• Remark: Let d be an ultrametric. If F : [0,∞) → [0,∞) is
increasing and F(0) = 0, then F(d) is an ultrametric.

• It becomes possible to choose d such that the distance from a
loop γ ∈ On to Ξ is exponentially small in n.



Spectral Triples
A standard construction (I. Palmer ‘10), leads to a spectral triple, namely
(C(Ξ̂),H ,D) where

• H is a Hilbert space,

• C(Ξ̂) is represented faithfully onH

• D is a self-adjoint operator onH with compact resolvent

• for f ∈ C(Ξ̂) Lipshitz continuous, then

‖[D, f ]‖ = ‖ f ‖Lip



Metric Bundle Construction

• Including the Z-action requires an additional construction,
called the metric bundle construction (Bellissard, Marcolli, Reihani ‘10).

• This leads to a new spectral triple (B, Ĥ , D̂), where B is a Cast-
algebra on which the original observable algebra A acts as
bounded multipliers.

• The result is
Definition H = H∗ is called pattern equivariant if it is given by a
polynomial in the S(a)’s
If H = H∗ is a pattern equivariant Hamiltonien then the field(
Hn,γ

)
n∈N,γ∈On

is weakly Lipshitz continuous w.r.t. D̂



Convergence Results

Theorem The spectral and gap edges of any pattern equivariant Hamil-
tonian is approximate exponentially fast w.r.t. the period by the spectral
and gap edges of its periodic approximants



Conclusion



Interpretation

•Noncommutative Geometry versus Combinatoric: The pre-
vious formalism puts together both the knowledge about the
tiling space developed during the last fifteen years and the C∗-
algebraic approach proposed since the early 80’s to treat the
electronic properties of aperiodic solids.

• Finite Volume Approximation: the Anderson-Putnam com-
plex, presented here in the version proposed by Franz Gähler,
provides a way to express the finite volume approximation
without creating spurious boundary states.



Defects

•Defects and Branching Points: The main new feature is the
appearance of defects expressed combinatorially in terms of
the branching points.

•Worms in Quasicrystals: Such defects actually exist in qua-
sicrystals under the names of flip-flops, worms or phason modes.
They responsible for the continuous background in the diffrac-
tion spectrum.

• Branching: Since branching comes from an ambiguity in grow-
ing clusters, it is likely that such defects be systematic in any
material which can be described through an FLC tiling.

• Amenability: If the tiling is not amenable, the accumulation
of defects makes the present approach inefficient. The use of
techniques developed for disordered systems might be more
appropriate.



Prospect

• Continuous case: This formalism can be extended to the case
of the continuous Schrödinger equation with similar conse-
quences.

•Higher Dimension: It also extends to higher dimensional col-
ored tilings. However, the geometry is much more demanding.

• A Conjecture: The most expected result is the following con-
jecture
in dimension d ≥ 3 in the perturbative regime, namely if the potential
part is small compared to the kinetic part, the Schrödinger operator
for an electron in the field of an FLC configuration of atoms should
have a purely absolutely continuous simple spectrum

• Level Repulsion: It is expected also that this a.c. spectrum
corresponds to a Wigner-Dyson statistics of level repulsion.


