

Jean BELLISSARD
Georgia Institute of Technology, Atlanta
School of Mathematics \& School of Physics
e-mail: jeanbel@math.gatech.edu

Sponsoring

This material is based upon work supported by the National Science Foundation under Grant No. DMS-0901514

Collaboration:

G. DE NITTIS (SISSA, Trieste, Italy
V. MILANI (U. Tehran, Tehran, Iran)

Main References

J. E. Anderson, I. Putnam,

Topological invariants for substitution tilings and their associated C^{*}-algebras, Ergodic Theory Dynam. Systems, 18, (1998), 509-537.
J. C. Lagarias,

Geometric models for quasicrystals I. Delone sets of finite type,
Discrete Comput. Geom., 21, (1999), 161-191.
J. Bellissard, R. Benedetti, J. M. Gambaudo,

Spaces of Tilings, Finite Telescopic Approximations,
Comm. Math. Phys., 261, (2006), 1-41.
J. Bellissard, G. De Nittis, V. Milani,

Wannier transform for aperiodic tilings,
in preparation, (2010)

Motivation

Physica Scripta. Vol. T9, 193-198, 1985

Renormalization of Quasiperiodic Mappings

Stellan Ostlund and Seung-hwan Kim

Motivation

Fig. 3. - We show, respectively, the IDOS of the Octonacci chain (up) and the IDOS of the labyrinth, for a) $r=0.8$ (no gap, finite measure), b) $r=0.6$ (some gaps and finite measure) and c) $r=0.3$ (infinity of gaps and zero measure). The energy varies between -2 and 2 , since $r<1$.
C. Sire

Electronic Spectrum of a 2D Quasi-Crystal Related
to the Octagonal Quasi-Periodic Tiling.
EUROPHYSICS LETTERS
Europhys. Lett., 10 (5), pp. 483-488 (1989)

Motivation

Figure 1: A sample of the icosahedral quasicrystal $A l P d M n$

Motivation

$t=$ Density
of States

Partial DoS $\boldsymbol{+}$ measured by SXES* or SXAS*
(a) Pure Al
(b) $\omega-\mathrm{Al}_{7} \mathrm{Cu}_{2} \mathrm{Fe}$
(c) Rhombohedral approximant $\mathrm{Al}_{62.5} \mathrm{Cu}_{26.5} \mathrm{Fe}_{11}$
(d) Icosahedral phase $\mathrm{Al}_{62} \mathrm{Cu}_{25.5} \mathrm{Fe}_{12.5}$

* $=$ Soft X-ray Emission or Absorption Spectroscopy

Motivation

DoS \dagger for alloys with

 close composition(A) Approximant $1 / 1$
$\mathrm{Al}_{62.5} \mathrm{Cu}_{25} \mathrm{Fe}_{12.5,} 128$ atom/cell

(B) Non approximant $\omega-\mathrm{Al}_{7} \mathrm{Cu}_{2} \mathrm{Fe} 40$ atom/cell

Motivation

- For periodic crystals, the Wannier transform leads to band spectrum calculation (Bloch theory)
- The Wannier transform uses the translation invariance of the crystal
- Is it possible to extend it to aperiodic solids ?

Content

1. An example: Fibonacci
2. The Wannier Transform
3. The Schrödinger Operator
4. To conclude

I - An example: Fibonacci

The Fibonacci Sequence

The Fibonacci sequence is an infinite word generated by the substitution

$$
\hat{\sigma}: \quad a \longrightarrow a b, \quad b \longrightarrow a
$$

Iterating gives

$$
\underbrace{a}_{a_{0}} \rightarrow \underbrace{a b}_{a_{1}} \rightarrow \underbrace{a b \mid a}_{a_{2}=a_{1} a_{0}} \rightarrow \underbrace{a b a \mid a b}_{a_{3}=a_{2} a_{1}} \rightarrow \underbrace{a b a a b \mid a b a}_{a_{4}=a_{3} a_{2}} \rightarrow \underbrace{\text { abaababa|abaab }}_{a_{5}=a_{4} a_{3}}
$$

It can be represented by a $1 D$-tiling if

$$
a \rightarrow[0,1] \quad b \rightarrow[0, \sigma] \quad \sigma=\frac{\sqrt{5}-1}{2} \sim .618
$$

The Fibonacci Sequence

- Collared tiles in the Fibonacci tiling -

The Fibonacci Sequence

- The Anderson-Putnam complex for the Fibonacci tiling -

The Fibonacci Sequence

- The substitution map -

The Fibonacci Sequence

Let $\Xi_{n} \subset X_{n}$ be the set of tile endpoints (0-cells). The sequence of complexes $\left(X_{n}\right)_{n \in \mathbb{N}}$ together with the maps $f_{n}: X_{n+1} \mapsto X_{n}$ gives rise to inverse limits

$$
\underset{\leftarrow}{\lim }\left(X_{n}, f_{n}\right)=\Omega \quad \lim _{\leftarrow}\left(\Xi_{n}, f_{n}\right)=\Xi
$$

- The space Ω is compact and is called the Hull.
- It is endowed with an action of \mathbb{R} generated by infinitesimal translation on the X_{n} 's
- The space Ξ is a Cantor set and is called the transversal
- Ξ parametrizes a the set of all tilings sharing the same words as the Fibonacci sequence with one tile endpoint at the origin.
- There is a two-to one correspondence between Ξ and the window.

The Fibonacci Sequence

The Fibonacci Sequence: Groupoid

Γ_{Ξ} is the set of pairs (ξ, a) with $\xi \in \Xi$ and $a \in \mathcal{L}_{\xi}$.
It is a locally compact groupoid when endowed with the following structure

- Units: Ξ,
- Range and Source maps: $r(\xi, a)=\xi, s(\xi, a)=\mathrm{T}^{-a} \xi$
- Composition: $(\xi, a) \circ\left(\mathrm{T}^{-a} \xi, b\right)=(\xi, a+b)$
- Inverse: $(\xi, a)^{-1}=\left(\mathrm{T}^{-a} \xi,-a\right)$
- Topology: induced by $\Xi \times \mathbb{R}$

II - Wannier Transform

J. Bellissard, G. De Nittis, V. Milani,

Wannier transform for aperiodic tilings, in preparation, (2010)

Wannier Transform: Periodic Case

If $\mathbb{Z} \subset \mathbb{R}$ is a one dimensional lattice the Wannier transform is defined for a function $f \in \mathcal{C}_{C}(\mathbb{R})$ by

$$
g(s ; k)=\mathscr{W} f(s ; k)=\sum_{a \in \mathbb{Z}} f(s+a) e^{-l k \cdot a}
$$

Here k belongs to the dual group of \mathbb{Z}, called Brillouin zone

$$
\mathbb{B} \sim \mathbb{T}=\mathbb{R} / 2 \pi \mathbb{Z}
$$

- Bloch boundary conditions: $g(s+a ; k)=g(s ; k) e^{i k \cdot a}$ whenever $a \in \mathbb{Z}$.
- Plancherel's formula:

$$
\int_{0}^{1} d s \int_{\mathbb{T}} \frac{d k}{2 \pi}|g(s ; k)|^{2}=\int_{\mathbb{R}} d x|f(x)|^{2}
$$

- Unitarity: $\mathscr{W}: L^{2}(\mathbb{R}) \mapsto L^{2}([0,1]) \otimes L^{2}(\mathbb{T})$ is a unitary operator.

Wannier Transform: Definition

In the case of the Fibonacci sequence: $\xi \in \Xi, \mathcal{L}_{\xi}$ being the corresponding Delone set, $v=\hat{\sigma}^{n}(w)$ the n-th substitute of a collared tile. Denote by $\mathbb{B} \simeq \mathbb{T}^{2}$ the dual group of \mathbb{Z}^{2}.
Then, for $s \in \mathbb{R}$ and $k \in \mathbb{B}$ the Wannier transform of a function $f \in \mathcal{C}_{C}(\mathbb{R})$ is

$$
\mathscr{W}_{\xi} f(v, s ; k)=\sum_{a \in \mathcal{\mathcal { L } _ { \xi }}(v)} f(s+a) e^{-i k \cdot a}
$$

Wannier Transform: Properties

- Smoothness: if f is smooth, then

$$
\mathscr{W}_{\xi}\left(\frac{d^{k} f}{d x^{k}}\right)=\frac{\partial^{k} \mathscr{W}_{\xi} f}{\partial s^{k}}
$$

- Covariance: if $g=\mathscr{W} f$ then

$$
g_{\xi}(v, s+b ; k)=g_{\mathrm{T} b \xi}(v, s ; k) e^{\imath k \cdot b} \quad b \in \mathcal{L}_{\xi}
$$

- Inversion: if $d k$ denotes the normalized Haar measure on \mathbb{B}

$$
f(s+a)=\int_{\mathbb{B}} d k_{\xi}(v, s ; k) e^{\imath k \cdot a} \quad a \in \mathcal{L}_{\xi}, s \in \mathbb{R}
$$

Wannier Transform: Momentum Space

Let $\mathcal{E}_{\xi}(v) \subset L^{2}(\mathbb{B})$ be the closed subspace generated by

$$
\left\{e_{a}: k \in \mathbb{B} \mapsto e^{-l k \cdot a} ; a \in \mathcal{L}_{\xi}\right\}
$$

- $\mathcal{E}(v)=\left(\mathcal{E}_{\xi}(v)\right)_{\xi \in \Xi}$ is a continuous field of Hilbert spaces.
- If $W_{v}(\xi, a): \mathcal{E}_{\mathrm{T}^{-a}(\underline{\xi}}(v) \mapsto \mathcal{E}_{\xi}(v)$ is defined by

$$
W_{v}(\xi, a) e_{b}=e_{a+b}
$$

then the family $\left(W_{v}(\gamma)\right)_{\gamma \in \Gamma_{\Xi}}$ defines a strongly continuous unitary representation of the groupoid Γ_{Ξ}.

Wannier Transform: Momentum Space

- Define $\mathcal{H}_{\xi}=\bigoplus_{v} L^{2}(v) \otimes \mathcal{E}_{\xi}(v) \subset L^{2}\left(X_{n}\right) \otimes L^{2}(\mathbb{B})$ where v varies among the d-cells of the Anderson-Putnam complex.
- Let $\Pi_{\xi}: L^{2}\left(X_{n}\right) \otimes L^{2}(\mathbb{B}) \mapsto \mathcal{H}_{\xi}$ be the corresponding orthogonal projection.
- $\mathcal{H}=\left(\mathcal{H}_{\xi}\right)_{\xi \in \Xi}$ is a continuous field of Hilbert spaces.
- Similarly $U(\gamma)=\bigoplus_{v} \mathbf{1}_{v} \otimes W_{v}(\gamma)$ defines a strongly continuous unitary representation of the groupoid Γ_{Ξ} on \mathcal{H}.

Wannier Transform: Plancherel

- The Wannier transform is a strongly continuous field of unitary operators defined on the constant field $L^{2}(\mathbb{R})$ with values in \mathcal{H}

$$
\int_{\mathbb{R}} d x|f(x)|^{2}=\sum_{v} \int_{v} d s \int_{\mathbb{B}} d k\left|\mathscr{W}_{\xi} f(v, s ; k)\right|^{2}
$$

- The Wannier transform is covariant:

$$
U(\xi, a) \mathscr{W}_{\mathrm{T}^{-a \xi}}=\mathscr{W}_{\xi} U_{\mathrm{reg}}(a)
$$

where $U_{\text {reg }}$ is the usual action of the translation group \mathbb{R} in $L^{2}(\mathbb{R})$.

III - Schrödinger's Operator

J. Bellissard, G. De Nittis, V. Milani,

Wannier transform for aperiodic tilings,
in preparation, (2010)

The Schrödinger Operator: Model

As an example let an atomic nucleus be placed is each tile, namely sites in \mathcal{L}_{ξ}. The atomic species are labeling the tiles. The corresponding atomic potential has compact support small enough to be contained in one tile

$$
V_{\xi}(x)=\sum_{v} \sum_{a \in \mathcal{L}_{\xi}(v)} v_{\mathrm{at}}^{(v)}(x-a)
$$

The Schrödinger operator describing the electronic motion is then a covariant family

$$
H_{\xi}(x)=-\Delta+V_{\xi}
$$

The Schrödinger Operator: Form

If $f \in C_{C}^{1}(\mathbb{R})$ then, like in the Bloch Theory for periodic potentials

$$
\begin{gathered}
Q_{\xi}(f, f)=\left\langle f \mid H_{\xi} f\right\rangle_{L^{2}(\mathbb{R})} \\
=\sum_{v} \int_{v} d s \int_{\mathbb{B}} d k\left(\left|\nabla_{s} \mathscr{W}_{\xi} f(v, s ; k)\right|^{2}+v_{\mathrm{at}}^{(v)}(s)\left|\mathscr{W}_{\xi} f(v, s ; k)\right|^{2}\right) \\
=\int_{\mathbb{B}} d k \hat{Q}_{k}\left(\left(\mathscr{W}_{\xi} f\right)_{k}\left(\mathscr{W}_{\xi} f\right)_{k}\right)
\end{gathered}
$$

with

$$
\hat{\mathrm{Q}}_{k}(g, g)=\sum_{v} \int_{v} d s\left(\left|\nabla_{s} g(v, s)\right|^{2}+v_{\mathrm{at}}^{(v)}(s)|g(v, s)|^{2}\right)
$$

The Schrödinger Operator: Form

A function g belongs to the form domain of \hat{Q}_{k} if and only if

1. both $g(v, s)$ and its derivative are in $L^{2}(v)$ for all $(d=1)$-cell v
2. g satisfies the following cohomological equation: at each $(\{d-1\}=0)$-cell u of the Anderson-Putnam complex

$$
\sum_{v: \partial_{0} v=u} g(v, u) e^{\imath k \cdot a_{\hat{v} \rightarrow v}}=\sum_{w: \partial_{1} v=u} g(w, u) e^{\imath k \cdot a_{\hat{v} \rightarrow w}}
$$

where $a_{v \rightarrow w}$ is the translation vector sending the initial point of v the initial point of w, and \hat{v} is one tile touching u.

The Schrödinger Operator: Form

$$
A: g_{3}(s=0)=g_{1}(s=1) e^{i k_{1}}
$$

$$
B: g_{1}(s=0)+g_{2}(s=0)=g_{0}(s=\sigma) e^{i k_{2}}
$$

$$
C: g_{0}(s=0)=\left(g_{2}(s=1)+g_{3}(s=1)\right) e^{i k_{1}}
$$

$$
-g_{j}^{\prime \prime}(s)+v_{j}(s) g_{j}(s)=E(k) g_{j}(s)
$$

$$
A: g_{3}^{\prime}(s=0)=g_{1}^{\prime}(s=1) e^{i-k_{1}}
$$

$$
\mathrm{B}: \mathrm{g}_{1}^{\prime}(\mathrm{s}=0)=\mathrm{g}_{2}^{\prime}(\mathrm{s}=0)=\mathrm{g}_{0}^{\prime}(\mathrm{s}=\sigma) \mathrm{e}-\mathrm{i}_{2}
$$

$$
C: g_{0}^{\prime}(s=0)=g_{2}^{\prime}(s=1) e^{-i k_{1}}
$$

$$
\left.=g_{3}^{\prime}(s=1)\right) e^{-i k_{1}}
$$

The Schrödinger Operator: Bands

The form \hat{Q}_{k} generates a selfadjoint operator \hat{H}_{k} defined by

$$
\left\langle g \mid \hat{H}_{k} g\right\rangle_{L^{2}\left(X_{n}\right)}=\hat{Q}_{k}(g, g)
$$

On each d-cell $v, \hat{H}_{k}=-\Delta_{s}+v_{\mathrm{at}}^{(v)}$, with k-dependent boundary conditions.

Since a cell is compact it follows that \hat{H}_{k} is elliptic, thus it has compact resolvent. In particular its spectrum is discrete with finite multiplicity, namely its eigenvalues are

$$
E_{0}(k) \leq E_{1}(k) \leq \cdots \leq E_{r}(k) \leq \cdots
$$

with each $E_{r}(k)$ a smooth function of $k \in \mathbb{B}$.

The Schrödinger Operator: Bands

What is the connection with the original operator?
Theorem The Schrödinger operator H_{ξ} is given by

$$
H_{\xi}=\Pi_{\xi} \int_{\mathbb{B}}^{\oplus} d k \hat{H}_{k} \Pi_{\xi}
$$

if Π_{ξ} is the orthogonal projection from $L^{2}\left(X_{n}\right) \otimes L^{2}(\mathbb{B})$ onto \mathcal{H}_{ξ}.
The restriction to the subspace \mathcal{H}_{ξ} is not innocent and reduces the band spectrum to produce a Cantor spectrum in the onedimensional cases.

IV - To Conclude

1. The Fibonacci sequence can be replaced by aperiodic, repetitive tilings on \mathbb{R}^{d} with finite local complexity. The Hull and the transversal are well-defined.
2. The Lagarias group \mathbb{L} plays the role of \mathbb{Z}^{2} in general. It is always free with finite rank. Then \mathbb{B} is the group dual to \mathbb{L}.
3. The definition of the Wannier transform can be extended to this case
4. The sequence of Anderson-Putnam complexes $\left(X_{n}\right)_{n \in \mathbb{N}}$ can be defined in this general case as well.
5. The Wannier transform identifies wave functions in $L^{2}\left(\mathbb{R}^{d}\right)$ with a proper subspace of $L^{2}\left(X_{n}\right) \otimes L^{2}(\mathbb{B})$
6. The Schrödinger operator can be written in terms of this new representation as the compression of a Bloch-type operator exhibiting band spectrum.
