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Abstract: For a pair of plane curves β and γ, we give a sufficient and necessary condition
for the existence of a unique plane curve α that rolls on β, while a reference point P traces
γ. This study was motivated by rolling curve solutions to a few classical problems of the
calculus of variations.

1. Introduction

A roulette γ is traced out by a reference point P of a plane curve α, that rolls without
slipping on a second co-planar curve β. We will only consider rolling while the unit tangent
vectors of α and β agree at a unique point of contact.

2. An Equation for γ

Let α : U ⊆ R → R2; t 7→ (α1(t), α2(t)), β : V ⊆ R → R2;u 7→ (β1(u), β2(u)), r = P − α,
P = (a, b), and ϕ = cos−1 (r · α′/|r||α′|). We will assume that α and β are differentiable
and non-singular (α′(t), β ′(u) 6= 0 ) on U and V , respectively. The normals to α and β are
given by π/2, counterclockwise rotations of each curves unit tangent.

Now, imagine placing α on β so that α(t0) is in contact with β(u0) and both curves are
tangent at the point of contact. Then envision rolling α on β for a length of arc s. If ϑ is
the angle between r(t) and e1 = (1, 0), and if (β1(uc), β2(uc)) is the new point of contact
between α and β, the coordinates for P are

γ(t) = (β1(uc) + |r(t)| cos(ϑ), β2(uc) + |r(t)| sin(ϑ)). (1)

The new point of contact can be obtained by solving

s =

∫ t

to

|α′(τ)|dτ =
∫ uc

uo

|β′(ζ)|dζ (2)

for uc. Observe that uc : U → V is a monotone function of t with derivative u′c(t) =
|α′(t)|/|β ′(uc(t))|. We’ll write βc = β ◦ uc.

It is not difficult to see that ϑ = ϕ + ξ, where (β ′(uc(t)) · e1, β
′(uc(t)) · e2) /|β ′(uc(t))| =

(cos(ξ), sin(ξ)). Hence,
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Figure 1: Rolling α on β; the path that P traces is γ.
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Figure 2: ϑ = ϕ+ ξ

γ(t) = βc(t) +

(

|r(t)| cos(ϕ+ ξ)
|r(t)| sin(ϕ+ ξ)

)

= βc(t) +

(

cos(ξ) − sin(ξ)
sin(ξ) cos(ξ)

)(

|r(t)| cos(ϕ)
|r(t)| sin(ϕ)

)

. (3)



Using the definition of ϕ, we have
(

|r(t)| cos(ϕ)
|r(t)| sin(ϕ)

)

=

(

cos(φ) sin(φ)
− sin(φ) cos(φ)

)(

a− α1(t)
b− α2(t)

)

,

with (α′(t) · e1, α
′(t) · e2) /|α′(t)| = (cos(φ), sin(φ)). By defining

Q =

(

cos(ξ) − sin(ξ)
sin(ξ) cos(ξ)

)(

cos(φ) sin(φ)
− sin(φ) cos(φ)

)

=

(

cos(ξ − φ) − sin(ξ − φ)
sin(ξ − φ) cos(ξ − φ)

)

,

(3) becomes

γ = Q(P − α) + βc (4)

This leads us to our first theorem.

Theorem 2.1 Let P, α and β be defined as above, and suppose γ is traced out by P
as α rolls on β. Then the coordinates of γ are given by a translation by βc of the radial

vector r = P − α that has been rotated by the difference of inclination angles of α and βc.

Example 1

We’ll show that if P = (a, b) is a point inside the circumference of a circle α of radius R,
then P traces out an ellipse, as α rolls in another circle β of radius 2R. This result is due
to Besant [1].

Let
α(s) = R(cos(s/R), sin(s/R)), s ∈ [0, 2πR),

and
β(u) = 2R(cos(u/2R), sin(u/2R)), u ∈ [0, 4πR).

s =
∫ uc

0
|β′(ζ)|dζ = uc; α

′(s)/|α′(s)| = (cos(s/R+π/2), sin(s/R+π/2)) and β ′(sc)/|β ′(sc)| =
(cos(s/2R + π/2), sin(s/2R + π/2), so ξ − φ = −s/2R. It follows that

γ(s) = Q(P − α(s)) + βc(s) =

(

(a+R) cos (s/2R) + b sin (s/2R)
b cos (s/2R) + (−a+R) sin (s/2R)

)

. (5)

Without loss of generality we can suppose that a, b > 0. Doing so, and substituting

(cos τ(s), sin τ(s)) =

( |γ(s)|
ã

cos (η(s)− θ) ,
|γ(s)|
b̃

sin (η(s)− θ)

)

in
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)(

ã cos τ(s)
b̃ sin τ(s)

)

gives (5), where η(s) satisfies γ(s) = |γ(s)|(cos η(s), sin η(s)), θ = tan−1
(√

|P |−a

|P |+a

)

, ã =

R+ |P | and b̃ = R−|P |. τ ′(s) = (R2 − |P |2) /2R|γ(s)|2 > 0, so τ is monotone on [0, 4πR).
Consequently, the trace of γ is an ellipse centered at the origin.
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Figure 3: A circle of radius R rolling in a circle of radius 2R with |P | < R.

Example 2

In this example, we’ll roll a logarithmic spiral on a straight line and see what curve the
origin (P = (0, 0)) traces out. Let

α(θ) = eθ(cos(θ), sin(θ)), β(t) = (0, t) θ, t ∈ R.

s =
∫ θc

−∞
|α′(φ)|dφ =

√
2eθc ; α′(θ)/|α′(θ)| = (cos(θ+π/4), sin(θ+π/4)) and β ′(θc)/|β ′(θc)| =

(1, 0), so φ = θ + π/4 and ξ = 0. A straightforward calculation shows

γ(θ) = Q(P − α(θ)) + βc(θ) =
eθ√
2
(1, 1).

That is, γ is linear. Therefore, we have just shown that the origin traces out the line y = x
as the logarithmic spiral rolls on y = 0.
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Figure 4: A logarithmic rolls on y = 0, as the origin traces y = x.

3. The Inverse Problem

In this section, we’ll consider the possibility of recovering α and P , for a given pair β and
γ. The following lemma states a fundamental property of roulettes.

Lemma 3.1 Let α and β be differentiable, non-singular plane curves. Suppose that α, with
reference point P , rolls on β to trace γ. Then the radial vector from the point of contact

βc to the roulette γ is always in the direction normal to the roulette.

PROOF: It suffices to show that γ ′(t) · (γ(t)− βc(t)) = 0.

γ′(t) = Q′(P − α(t))−Qα′(t) + β ′c(t).

By equation (4), γ(t)− βc(t) = Q(P − α(t)), and since the dot product is invariant under
rotations

−Q(P − α(t)) ·Qα′(t) = −(P − α(t)) · α′(t) = −|P − α(t)||α′(t)|cos(ϕ).



Q′ = (φ′ − ξ′)

(

cos(ξ − φ− π/2) − sin(ξ − φ− π/2)
sin(ξ − φ− π/2) cos(ξ − φ− π/2)

)

,

so
Q(P − α(t)) ·Q′(P − α(t)) = 0.

The tangents to α(t) and βc(t) coincide at each point of contact; thus,

(γ(t)− βc(t)) · β ′(uc(t)) = |P − α(t)||α′(t)|cos(ϕ),

which completes the proof. ¤

For any two differentiable, non-singular plane curves β and γ, the following theorem
gives a sufficient and necessary condition for the existence of a plane curve α with reference
point P such that α rolls on β, while P traces γ. Furthermore α is unique, up to a Euclidean
motion (a shift and a rotation). This theorem extends the result in [2], which was restricted
to the case where β is a line and γ is periodic with respect to β.

Theorem 3.2 Let γ : U ⊆ R → R2 and β : V ⊆ R → R2 be differentiable and non-

singular. There exists a differentiable, non-singular plane curve α, with reference point

P ∈ R2, such that P traces out γ, as α rolls on β if, and only if, there is a bijection

Λ : γ(U)→ β(V ); γ(t) 7→ β(u), where u is the unique number in V that satisfies

(γ(t)− β(u)) · γ ′(t) = 0. (6)

α is unique up to a Euclidean motion.

PROOF: (Existence) ⇒ Suppose there exists a plane curve α, with reference point P
that traces out γ, as α rolls on β. Lemma 3.1 asserts that γ(t)− βc(t) is always along the
direction normal to γ ′(t), so there is a unique solution in V to (6) for all t ∈ U . We take
Λ(γ(t)) = βc(t) = (β ◦ uc)(t). Λ is a composition of monotone functions and so is bijective.

⇐ Conversely, suppose that there is a bijection Λ as described in the statement. We
define ũ : U → V as the solution to (6). The monotonicity of ũ follows from the mono-
tonicity of of Λ. We’ll write β̃ = β ◦ ũ.

Let

α(t) = ρ(t) (cos θ(t), sin θ(t)) , t ∈ U ; (7)

where ρ(t) = |γ(t)− β̃(t)| and

θ(t) = θ(t0) +

∫ t

t0

sin(−ψ(τ))
ρ(τ)

|β̃′(τ)| dτ ;

(cosψ(t), sinψ(t)) =
(

(β̃(t)− γ(t)) · β ′(ũ(t)), (β̃(t)− γ(t)) · J β ′(ũ(t))
)

/ρ|β ′(ũ(t))| with
J (x, y) = (−y, x).



|α′(t)| =
√

ρ′(t)2 + (ρθ′(t))2 = |β̃′(t)| = |β ′(ũ(t))||ũ′(t)| 6= 0, so α is differentiable and
non-singular. If ũ′(t) = |α(t)|/|β(ũ(t))|, then ũ = uc. If ũ

′(t) = −|α(t)|/|β(ũ(t))| we simply
reparameterize β(V ) so that it’s traced out in the opposite direction to get ũ = uc. Now
we’ll use equation (4) to determine the roulette obtained from rolling α on β.

Letting (α′(t) · e1, α
′(t) · e2) /|α′(t)| = (cos(φ), sin(φ)) and

(β′(ũ(t)) · e1, β
′(ũ(t)) · e2) /|β ′(ũ(t))| = (cos(ξ), sin(ξ)) , we have

cos(θ(t)− φ+ ξ) =
(β̃(t)− γ(t)) · e1

ρ
and sin(θ(t)− φ+ ξ) =

(β̃(t)− γ(t)) · e2

ρ
. (8)

Hence,
(

cos(ξ − φ) − sin(ξ − φ)
sin(ξ − φ) cos(ξ − φ)

)(

0− ρ(t) cos θ(t)
0− ρ(t) sin θ(t)

)

+ β̃(t) = γ(t),

and, thus, α rolls on β̃, while P = (0, 0) traces γ.

(Uniqueness) Let α be defined as in (7), and suppose there exists another curve χ that
rolls on β while the origin traces γ. We parameterize χ as follows

χ(t) = η(t) (cosϑ(t), sinϑ(t)) , t ∈ U.

The existence of χ requires that there is a unique line segment between γ(t) and β(u)
along the direction normal to γ ′(t) for each γ(t) ∈ γ(U) with corresponding β(u) ∈ β(V ).
Therefore, η(t) = |γ(t) − β(u)|. By defining % and ζ implicitly as ((β(u) − γ(t)) · e1,
(β(u)−γ(t)) · e2) = ρ(cos(%), sin(%)) and (χ′(t) · e1, χ

′(t) · e2)/|χ′(t)| = (cos(ζ), sin(ζ)), from
(8) we have

% = θ(t)− φ+ ξ + jπ = ϑ(t)− ζ + ξ + kπ,

for some j, k ∈ 2Z. Since,

tan(θ(t)− φ+ jπ) = tan(θ(t)− φ) = −ρ(t)θ
′(t)

ρ′(t)
,

tan(ϑ(t)− ζ + kπ) = tan(ϑ(t)− ζ) = −η(t)ϑ
′(t)

η′(t)
,

and ρ(t) = η(t), θ′(t) = ϑ′(t). Therefore, α and χ differ by a rotation. Furthermore, if we
choose any P̃ ∈ R2, and if we let α = α̃ − P , P̃ traces γ, while α̃ rolls on β̃. Thus, α is
unique up to a Euclidean motion. ¤
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