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Abstract: For a pair of plane curves § and v, we give a sufficient and necessary condition
for the existence of a unique plane curve « that rolls on 3, while a reference point P traces
~. This study was motivated by rolling curve solutions to a few classical problems of the
calculus of variations.

1. Introduction

A roulette v is traced out by a reference point P of a plane curve «, that rolls without
slipping on a second co-planar curve 3. We will only consider rolling while the unit tangent
vectors of a and (3 agree at a unique point of contact.

2. An Equation for ~

Let a : U CR — R%t — (aq(t), aa(t)), B: V CR — R%u— (Bi(u), Bo(u), r=P —a,
P = (a,b), and ¢ = cos™! (r-a’/|r||a/|). We will assume that « and 3 are differentiable
and non-singular (/(t), '(u) # 0 ) on U and V, respectively. The normals to « and [ are
given by 7/2, counterclockwise rotations of each curves unit tangent.

Now, imagine placing « on 3 so that «a(tg) is in contact with 5(ug) and both curves are
tangent at the point of contact. Then envision rolling a on 3 for a length of arc s. If ¥ is
the angle between r(t) and e; = (1,0), and if (51 (uc), B2(u.)) is the new point of contact
between « and [, the coordinates for P are

Y(t) = (Buluc) + [r(8)] cos(¥), Ba(ue) + |r(t)| sin(0)). (1)

The new point of contact can be obtained by solving

i / it = [ 180l o)

for u.. Observe that u. : U — V is a monotone function of ¢ with derivative u/(t) =

|/ (D)I/15(ue(t))]. We'll write Ge = 3 © ue.

It is not difficult to see that ¥ = ¢ + £, where (5'(u.(t)) - e1, 5 (uc(t)) - e2) /|3 (uc(t))| =
(cos(€),sin(&)). Hence,
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Figure 1: Rolling o on (3; the path that P traces is 7.

Figure 2: ¥ = o + ¢
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Using the definition of ¢, we have

(hmt )= (St s ) (520 )
with (a(t) - e1, 2/ (£) - €2) /|o/(£)] = (cos(@),sin(¢)). By defining
0= (T o ) (ol oy )= (R e ):

(3) becomes
7 =Q(P —a)+ b (4)

This leads us to our first theorem.

Theorem 2.1 Let P, a and [ be defined as above, and suppose vy is traced out by P
as « rolls on 3. Then the coordinates of v are given by a translation by (. of the radial
vector r = P — « that has been rotated by the difference of inclination angles of o and (..

Example 1

We'll show that if P = (a,b) is a point inside the circumference of a circle « of radius R,
then P traces out an ellipse, as « rolls in another circle 3 of radius 2R. This result is due
to Besant [1].

Let
a(s) = R(cos(s/R),sin(s/R)), se€[0,2rR),

and

B(u) = 2R(cos(u/2R),sin(u/2R)), w € [0,4TR).

s = Jo 18'(O1d¢ = ue; o/ (s)/|e/ (5)| = (cos(s/R+m/2),sin(s/R+m/2)) and §'(sc) /|5 (se)| =
(cos(s/2R + w/2),sin(s/2R + 7/2), so & — ¢ = —s/2R. It follows that

(a+ R) cos(s/2R) + b sin (s/2R)
7(s) = QP — als)) + fels) = (b cos (s/2R) + (—a + R) sin (s/2R)> ' (5)

Without loss of generality we can suppose that a,b > 0. Doing so, and substituting

(cosT(s),sinT(s)) = (|7(~s)| cos (n(s) —0), W(ES” sin (n(s) — 0)>

a

cos(f) —sin(0) acosT(s)
<sin(9) cos(#) ) (l;sinT(s) )
gives (5), where n(s) satisfies v(s) = |v(s)|(cosn(s),sinn(s)), § = tan~* <\/}§}E>’ a =

R+|P|land b= R—|P|. 7'(s) = (R*> — |P|?) /2R|y(s)|*> > 0, so 7 is monotone on [0,47wR).
Consequently, the trace of v is an ellipse centered at the origin.
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Figure 3: A circle of radius R rolling in a circle of radius 2R with |P| < R.

Example 2
In this example, we’ll roll a logarithmic spiral on a straight line and see what curve the
origin (P = (0,0)) traces out. Let

a(0) = ’(cos(0),sin()), B(t) = (0,t) 6,t€R.
s = ["_|o/(9)]dg = V2e’; a/(8)/|o(0)] = (cos(6+7/4),sin(6+7/4)) and 3'(6.)/|8'(6c)] =
(1,0),s0 ¢ =0 + /4 and £ = 0. A straightforward calculation shows
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7(0) = Q(P — a(0)) + B(0) = E(L 1).

That is, v is linear. Therefore, we have just shown that the origin traces out the line y = x
as the logarithmic spiral rolls on y = 0.

™ A

Figure 4: A logarithmic rolls on y = 0, as the origin traces y = x.

3. The Inverse Problem

In this section, we’ll consider the possibility of recovering o and P, for a given pair § and
~. The following lemma states a fundamental property of roulettes.

Lemma 3.1 Let o and 3 be differentiable, non-singular plane curves. Suppose that o, with
reference point P, rolls on (3 to trace v. Then the radial vector from the point of contact
0. to the roulette v is always in the direction normal to the roulette.

PROOF: 1t suffices to show that v/(t) - (v(t) — B.(t)) = 0.

V(1) = Q'(P —aft)) — Qa'(t) + B.(t).

By equation (4), v(t) — B.(t) = Q(P — «(t)), and since the dot product is invariant under
rotations

—Q(P —a(t)) - Qd/(t) = =(P —a(t) - o/ (t) = =[P — a(t)[|o/(t)|cos(¢).



b cos({ —¢p—m/2) —sin(€ — ¢ —7/2)
@ =(-¢) ( Sin(é — ¢ —7/2)  cos(é — b — 7/2) )
SO
QP —a(t) - Q'(P —a(t)) =0.
The tangents to a(t) and [.(t) coincide at each point of contact; thus,

(V(t) = Be(t)) - B'(ue(t)) = [P = a(t)||o/ (t)|cos (),

which completes the proof. U

For any two differentiable, non-singular plane curves # and +, the following theorem
gives a sufficient and necessary condition for the existence of a plane curve a with reference
point P such that a rolls on 3, while P traces . Furthermore « is unique, up to a Euclidean
motion (a shift and a rotation). This theorem extends the result in [2], which was restricted
to the case where (3 is a line and ~y is periodic with respect to 3.

Theorem 3.2 Let v : U CR — R2 and 8 : V C R — R? be differentiable and non-
singular. There exists a differentiable, non-singular plane curve «, with reference point
P € R2?, such that P traces out v, as « rolls on 3 if, and only if, there is a bijection
A:~(U) — B(V);~(t) — B(u), where u is the unique number in V' that satisfies

(v(t) = B(w)) -~ (t) = 0. (6)

a s unique up to a Fuclidean motion.

PROOF: (Existence) = Suppose there exists a plane curve «, with reference point P
that traces out 7, as « rolls on 3. Lemma 3.1 asserts that v(¢) — 5.(t) is always along the
direction normal to 7/(t), so there is a unique solution in V' to (6) for all £ € U. We take
A(y(t)) = Be(t) = (Bowue)(t). Ais a composition of monotone functions and so is bijective.

< Conversely, suppose that there is a bijection A as described in the statement. We
define @ : U — V as the solution to (6). The monotonicity of % follows from the mono-

tonicity of of A. We'll write § = 3 o .
Let

a(t) = p(t) (cosO(t),sinb(t)), teU, (7)

b(0) = (00 + | %Ww dar:

(cosip(t),sin(t)) = ((B(t) — (1)) - B'(@()), (B(t) — (1)) - Jﬁ’@(ﬂ)) /plB'(u(t))] with
j($7y> = (-y,l’).



)] = /P2 + (p0'(1)2 = |3(t)] = |8 (@(t)]|@(t)] # 0, so a is differentiable and
non- Slngular IfU( ) = |t )I/Iﬁ(ﬂ( ), then @ = ue. Ifa'(t) = —|a(t)|/[6(a(t))] we simply
reparameterize G(V') so that it’s traced out in the opposite direction to get @ = u.. Now
we'll use equation (4) to determine the roulette obtained from rolling a on f.

Letting (o/(t) - e1, /(1) - e2) /]| (t)| = (cos(o), sin(¢)) and
(@) - e1, F(@(t)) - ) /|3 (@(1))] = (cos(€), sin(€)) , we have

cos(0(t) — p+ &) = (B(@) —Z(t)) ‘e

(B(t) = (1)) - e
p :

and  sin(6(t) —o+¢) = (8)

Hence,

cos(§ — @)  —sin(§ — @) 0 — p(t) cosO(t) T
(sin(& —¢)  cos(§—¢) ) (o — o(t)sinB(t) ) +B(t) =),

and, thus, « rolls on 3, while P = (0,0) traces .

(Uniqueness) Let « be defined as in (7), and suppose there exists another curve x that
rolls on 3 while the origin traces 7. We parameterize y as follows

X(t) =n(t) (cos¥(t),sind(t)), teU.

The existence of y requires that there is a unique line segment between ~y(t) and [(u)
along the direction normal to +/(¢) for each y(t) € v(U) with corresponding B(u) € 5(V).
Therefore, n(t) = |y(t) — B(u)|. By defining ¢ and ¢ implicitly as ((B(u) — (1)) - e,
(6(u) =~(t)) - e2) = p(cos(e), sin(e)) and (x'(t) - ex, X'(t) - €2) /X ()| = (cos(¢), sin(()), from
(8) we have

0="001) — o+ &+ jm=0(t) — (+ &+ km,

for some j, k € 27Z. Since,

L _ p)e'(t)

tan(0(t) — ¢ + jm) = tan(6(t) — ¢) = — PTG
B o n®)Y')
tan(¥(t) — ¢ + k) = tan(d(t) — ) = BEION

and p(t) = n(t), 0'(t) = ¥'(t). Therefore, o and y differ by a rotation. Furthermore, if we
choose any P € R?, and if we let « = & — P, P traces +, while & rolls on (. Thus, «a is
unique up to a Euchdean motion. O
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